Inter Met 氣象探測系統簡介

作者:顏嘉彭

提要

- 一、精準射擊的五大條件為精確的目標位置、精確的氣象諸元、精確的陣地位 置、精確的火砲及彈藥與精確的計算程序,其中氣象探測作業乃為求得彈 道氣象資料,提供射擊指揮所實施氣象修正作業,以減少大氣對砲彈之影 響,提高射擊精度。
- 二、砲兵彈道氣象探測系統以嚴苛之軍事應用為設計考量,具有可抗衝擊及震 動的保護裝置,於軍事用途中可兼具車裝載具及移動系統之操作方式,符 合 MIL-STD-810G (運送震動、機能操作衝擊及搬運掉落等)及 MIL-STD-461 及環境測試標準。
- 三、Inter Met 氣象探測系統組成可區分為氣象處理單元、無線電經緯儀、地面 自動氣象站、氣球釋放器、無線電探空儀、GNSS 探空儀、發電機、GNSS 衛星接收天線、電源供應器、附件等十大部分,採雙系統作業模式執行砲 兵彈道氣象。
- 四、國軍砲兵換裝新型砲兵彈道氣象自動探測系統後,可為砲兵彈道氣象探測 任務達成、射擊效果與整體戰力提升,增添莫大助益,國軍幹部須具備前 瞻的思維與廣泛的科技知識,方能順利完成各項裝備操作準備與訓練。
- 五、筆者撰文研究之目的,係藉由自身操作 RT-20A 無線電經緯儀與實際參加 新型氣象探測系統測評經驗,介紹該系統特性並分析比較,以作為後續研 究之參考。

關鍵詞:砲兵彈道氣象自動探測系統、GNSS 探空儀

前言

精準彈道氣象乃在求取各空層風向、風速、氣壓、溫度、溼度等氣象因素。 依據美軍砲兵所定義精準射擊之五大條件為精確的目標位置、精確的氣象諸元、 精確的陣地位置、精確的火砲及彈藥與精確的計算程序等, 」其中氣象探測作業 乃為求得彈道氣象資料,提供射擊指揮所實施氣象修正作業,以減少大氣對砲 彈之影響,提高射擊精度。

國軍砲兵為提升砲兵彈道氣象自動探測作業能量,求得精確之彈道氣象資 料,筆者積極蒐整先進裝備發展現況及現貨市場商情,瞭解氣象探測系統提供

¹ 陳天祐、〈精進砲兵氣象探測作業之研究〉《砲兵季刊》(臺南)、第157期、陸軍砲訓部、民國101年6月、 頁 2。

氣象探測系統組成與功能

大氣之風、氣壓、溫度及濕度剖面,用於彈道天氣計算外,資料亦可輸入至數值天氣模式,提供更新氣象觀測資料,提升預報精確度,大氣剖面亦可用於,航空、核生化及輻射(CBRN)以及航海應用。²此文目的為說明國軍最新獲得之砲兵彈道氣象自動探測系統,希為砲兵氣象探測系統操作與運用略盡棉薄。

Inter Met 氣象探測系統,可採雙系統(無線電波訊號接收、GNSS 衛星訊號接收)實施氣象探測,其要求以嚴苛之軍事應用為設計考量,具有可抗衝擊及震動的保護裝置,於軍事用途中可兼具車裝載具及移動系統之操作方式。砲兵彈道氣象自動探測系統可符合 MIL-STD-810G(運送震動、機能操作衝擊以及搬運掉落)MIL-STD-461 及環境測試標準軍規標準,3氣象處理單元、無線電經緯儀、地面自動氣象站、氣球釋放器、無線電探空儀、GNSS 探空儀、發電機、GNSS 衛星接收天線、電源供應器、附件等十大部分。各部份組成、特性與作業方式,分述如次。

一、氣象處理單元

氣象處理單元主機(Sounding System)為強固型軍規筆記型電腦,具備軍規 MIL-STD-810G 防護等級、IP65 防水及防塵等級,14 吋螢幕及觸控面板(圖1),具電池熱插拔功能,避免中斷氣象探測作業,可提供野戰作業效能,以實體鍵盤採 LED 背光功能可在夜戰環境下使用,接線面板使用軍規接頭連接所有電纜,標準組件尚包括避震器及攜行握把。

二、無線電經緯儀

IMet-1600 無線電探空儀(圖 2) 使用 RDF 或 GPS 技術連續追踪原理, 以優化連續追蹤探空儀之設計,其作業方式及功能分述如次。⁴

- (一)系統採雙追踪模式,在 GPS/GNSS 干擾的情況仍能提供可靠性。
- (二)離軸角度由量測的相位計算所得,機械的方位及高度角度訊息則由 方位及高度同步控制傳輸器獲得。由組合離軸角度及在控制器的機械方位及高 度角度,演算出正確的方位及高度角度後,供無線電探空儀計算風之方位、高 度,並追踪角度之水平誤差(垂直位置的本體傾斜)並自動修正。⁵
- (三)氣壓、溫度、濕度(PTU)資料調變由降頻之無線電經緯儀信號載入,並由 GPS 信號及無線電波信號以,將方位及高度角度資料及 PTU 資料進行計算,並將資料傳到資料處理器(氣象處理單元)及產生電碼。

^{2 《}InterMet International Met Systems》(臺北:翰霖電子股份有限公司,民國 108年6月5日),頁2。

³ 同註 2,頁。

⁴ 同註 2, 頁 36。

⁵ 同註 2, 頁 36。

三、地面自動氣象站

地面自動氣象站(IMS-201AWS) 6適用於嚴苛戰鬥要求的自動氣象觀測系 統(圖3),此精簡的氣象站可存取及處理感應器資料,並執行資料品管,且將 格式化資料作為特定用途需求輸出。設計著眼為可移動、快速架設及可在多樣 的戰鬥環境下操作,且選擇隱蔽掩蔽較佳、適合於野外使用之綠色塗裝。

四、氣球釋放器

「氣球釋放器」(IMS-031) 用於施放氣象氣球及探空儀(圖 4), 其設計在 強風下作業時,填充探測氣球避免破裂,氣球釋放器組成以固定架及帆布構成, 且帆布由利於野外偽裝材質製成,氣球施放器亦可緊密地摺疊,置入專屬的攜 行箱中。7

五、探空儀

南非 Inter Met 所生產之探空儀 iMet-54 區分 Radiosonde-1680、GPS-403 二種,其功能分述如次。8

- (一) iMet-54 無線電探空儀 (1680MHZ): 為 Inter Met 公司標準之探空儀 (圖 5),此型號探空儀具備無線電波及 GNSS 訊號功能,以多種 GNSS 提高 風向(竦)和高度測量精度,探空儀內部設計具有雙傳感器,快速反應之溫度 及壓力,減少太陽所造成輻射熱所造成溫度誤差,溼度傳感器係薄膜電容性聚 合物,改進的測量技術有助於克服先前的限制,例如過冷和傳感器結冰,另外 該型探空儀最大傳輸距離可達 250 公里,為該氣象系統重要利器(圖5)。
- (二) iMet-54 探空儀(403MHZ): 搭配運用 GNSS 接收天線,此型號探 空儀具備 GNSS 訊號功能,以多種 GNSS 訊號探測各空層氣象資料,提高風向 (竦)和高度精度,該探空儀為整體式設計可快速選用固定頻率,無須再實施 重新校正組裝,大幅度減少氣象探測開設作業時間(圖6)。

六、GNSS 衛星接收天線

- (一) iMet-3100M 接收天線:具備超高頻(UHF)天線設計及安裝於三腳 架上之 GPS 衛星訊號接收用天線⁹(圖 7),各種天線及三腳架均可經過折疊後 運輸,組合僅需 2 分鐘的時間,避免戰時曝露陣地位置,天線設計為軍綠色, 可達隱蔽效果,且依據各種特殊環境及復雜地形,可選用適合之作業天線。
- (二)iMet-3200M接收天線:具超高頻(UHF)天線及安裝於三腳架上之 GPS 衛星訊號接收用天線,可接收 250 公里範圍氣象資料,操作組合僅需 2 分 鐘的時間,避免戰時曝露陣地位置天線設計為軍綠色,可達隱蔽效果,且依據

⁶同註 2,頁 36。

⁷同註 2,頁 36。

⁸同註 2, 頁 36。

⁹同註 2,頁 36。

各種特殊環境及復雜地形作業,可大幅度減少氣象作業人員架設時間,即時提供作戰環境氣象資料獲得之能力,符合現代化、科技化之作戰(圖8)。

七、發電機

汽油發電機為 ELEMAX 澤藤 SH6500EX 汽油發電機(四行程),可供應野戰作業時所需之電源。

圖 1 氣象處理單元

圖 2 iMet-1600 無線電經緯儀

資料來源:《InterMet International Met Systems》(臺北:翰霖電子股份有限公司,民國 108年6月5日)。

圖 3 地面自動氣象站 (IMS-201AWS)

資料來源:《InterMet International Met Systems》(臺北:翰霖電子股份有限公司,民國 108年6月5日)。

圖 4 氣球釋放器 (IMS-031)

資料來源:《InterMet International Met Systems》(臺北:翰霖電子股份有限公司,民國 108年6月5日)。

圖 5 iMet-54 無線電探空儀 1680MHZ

資料來源:翰霖電子股份有限公司官網 https://www.InterMetSystems.com 擷取圖片

圖 6 iMet-54 探空儀 403MHZ

資料來源:《InterMet International Met Systems》(臺北:翰霖電子股份有限公司,民國 108 年 6 月 5 日)。

圖 7 iMet-3100M 天線

資料來源:《InterMet International Met Systems》(臺北:翰霖電子股份有限公司,民國 108 年 6 月 5 日)。

圖 8 iMet-3200M 天線

資料來源:《InterMet International Met Systems》(臺北:翰霖電子股份有限公司,民國 108年6月5日)。

圖9發電機

資料來源:《InterMet International Met Systems》(臺北:翰霖電子股份有限公司,民國 108 年 6 月 5 日)。

氣象探測系統諸元及特性

砲兵彈道氣象自動探測系統為先進裝備,其基本諸元、成果精度、系統功能、系統限制等四項,分述如下。

一、基本諸元10

- (一) 作業系統: Windows 10。
- (二)探測原理:RDF無線電經緯儀、GNSS衛星信號。
- (三)系統硬體:軍規強固型筆記型電腦。
- (四)操作防水係數:IP65等級。

二、成果精度11

- (一) 風向:1分。
- (二) 風速: 0.5 m/s。
- (三) 大氣壓力範圍 1200hpa (毫巴) 至 10hpa (毫巴)
- (四)空氣溫度:0.01°C。
- (五)相對溼度:0.1%。

三、系統功能12

- (一)能為野戰砲兵、海軍火砲、多管火箭發射系統、無人搖控飛行載具等,迅速提供精確之彈道氣象報告,並對射擊指揮所,適時提供彈道修正諸元。
- (二)適應砲兵部隊機動作戰需要,能隨時獲得砲兵彈道氣象報告,利於 砲兵目標獲得與戰、技術射擊指揮執行。
- (三)縮短砲兵彈道氣象自動探測系統作業時間,提升砲兵彈道氣象報告 成果精度。
- (四)具備探空儀軌跡圖、PTU 斜溫圖、探空資料自動備份、GPS 接收狀態顯示圖、GNSS 衛星信號品質顯示圖、地面氣象數據圖、調頻掃描分析圖等多種顯示圖。

四、系統限制13

- (一)無線電經緯儀、GNSS 衛星接收天線應架設於平坦地形或高地之空曠地,避免遮障影響接收天線訊號。
- (二)氣象處理單元與無線電經緯儀、GNSS 衛星接收天線間,最大距離為30公尺。
 - (三)氣球釋放器位置應選擇於下風 50 公尺處。
 - (四)氣象台位置應選定於戰術位置之中心,以能涵蓋所有彈道區域為主。

¹⁰ 同註 2, 頁 59。

¹¹ 同註 2, 頁 59-60。

¹² 同註 2, 頁 60。

^{13《} RT-20 氣系自動探測系統操作手冊》(桃園: 國防部陸軍司令部, 民國 90 年 11 月, 頁 3-19~21)。

(五)氣象台附近之地面遮蔽物(高山、樹林、建築物等)不得超過 **10** 度, 否則影響無線電波與頻率接收。

氣象探測系統分析與比較

Inter Met 氣象探測系統與 RT-20A 砲兵彈道氣象自動探測系統,為使砲兵部隊能瞭解新、舊款彈道氣象自動探測系統之效能,將就兩型系統之主機性能、接收天線、探空儀效能、地面層資料取得、軟體介面功能等五大方面,進行分析與比較。

一、氣象處理單元性能

砲兵氣象作業組目前使用之氣象裝備為電腦處理單元,雖具備獨立、自主性之高空彈道氣象自動探測系統,惟使用迄今已達 29 年,仍能持續支援砲兵彈道氣象資料之提供,惟性能已明顯降低。氣象處理單元為目前 Inter Met 生產之最新款主機,在作業上可大幅提升作業速度、精簡人力,且具備多種介面,更能與現行通裝整合(表 1)。

二、GNSS 接收天線

其各 GNSS 接收天線外觀構造及操作組裝程序均相同無異。iMet-3100M 天線乃搭配氣象處理單元運用,其天線接收以超高頻(UHF)天線及安裝於三腳架上或戰術輪車上之 GNSS 衛星訊號接收天線,構造符合軍用規格標準,操作上簡單僅需一人即能於短時間內完成架設。(接收天線差異比較,如表 2)

三、無線電經緯儀

IMet-1600 無線電經緯儀相較於 RT-20 (A) 無線電經緯儀,其外觀構造及操作組裝程序有所不同,RT-20 (A) 無線電經緯儀採相位天線接收設計以干擾作業原理、IMet-1600 無線電經緯儀以網形天線及 GNSS 天線設計,以 RDF 或 GNSS 技術連續追踪原理接收探空儀氣象資料,重量輕可大幅度減少氣象作業人員架設時間,提升整體作業效率。(接收天線 差異比較,如表 3)

四、探空儀效能

砲兵完成氣象裝備升級後,目前新式氣象系統使用新式 iMet-54 探空儀,惟目前各部隊所使用舊式 RS92-D 探空儀已停止生產,故與現行新式氣象探測系統無法通用。基於新式 iMet-54 探空儀為數位式傳輸,可接收無線電波及 GPS 兩種訊號,所獲得之氣象資料能提供砲兵部隊運用,更能符合精準射擊之需求,故應儘速建立申補管道與相關作業規範,因此各項戰演訓任務建議以新式探空儀為優先,俾大幅提升射擊效果(新舊探空儀比較分析,如表 4)。

五、地面層資料取得

氣象探測系統屬高空探測裝備,而彈道氣象報告地面層之資料,乃藉由地面氣象站測得做為零空層之氣象資料,RT-20A及Inter Met 氣象探測系統搭配

之地面氣象站,屬於整合式地面氣象探測系統,可自動測得數值後將數據傳至 氣象處理單元,朝自動化接收即時地面氣象資料,監視最新地面風場狀態。(地 面層資料差異比較,如表 5)

六、軟體介面功能

氣象處理單元介面選用 Windows 10 為操作平台及繁體中文化操作介面, 相較於舊型 MW-32 採用 Windows XP 系統及英文版本操作介面,更有利操作人 員之學習與操作。此外,氣象處理單元採用軍規強固型筆記型電腦,具有防呆 操作介面程序,防止操作人員操作程序錯誤造成裝備損壞,加快人員熟裝及教 育訓練;硬體部份且具有超大的硬碟容量達,可有效支援氣象處理單元並資料 可快速輸出,具備多種網路傳輸介面等,且可將原始探空資料轉換氣象電碼 (WMO, STANAG) 相關運用格式,提升整體砲兵彈道氣象之精確度與速度, 使未來砲兵彈道氣象自動探測作業更具彈性。(軟體介面功能,如表6)

表 1 氣象處理單元性能比較表

	* * * * * * * * * * * * * * * * * * * *	ME-T- / LILL HE DUTY / L	
型式項目	MW-32 主機	MW-12 主機	氣象處理單元
主機型式			
主機規格	尺寸:43×38×28cm	尺寸:40.5×58.5×41cm	尺寸:26.3×30.3×6cm
需求電源	AC110V (220V) DC24V	AC110V (220V) · DC24V	AC110V \ DC12-24V
內部電源 備援時間	較長	短短	最長
重量	22 公斤	29 公斤	3.5 公斤
耗電量	低	占	低
傳輸介面	4種	2種	4種
記憶體容量	較多	少	最多
資料處理能 力	強	低	強
探空儀	RS92 系列	RS80-67 · RS92-D	iMet-54 (1680 · 403)

接收模式	雙接收模式(RT-20 經緯 儀及 GPS 天線)	單接收模式(RT-20 經緯 儀)	雙接收模式(IMet-1600 經緯儀及 iMet-3100M 天 線)
接收方式	定點及移動式(搭配車裝 天線,氣球施放後,於方 圓 200 公里內可接收訊 號)	定點固定式	定點及移動式(搭配車裝 天線,氣球施放後,於方 圓 250 公里內可接收訊 號)
所需人力	較少	多	較少
系統操作	簡便,主機開機後連接探空儀即可完成頻率校正 及地面氣象資料自動接 收	複雜	簡便,主機開機後連接探空儀即可完成頻率校正 及地面氣象資料自動接 收
氣象台開設 作 業	較短	長	較短
備考	現貨市場供應	已停產	現貨市場供應
系統分析★	***	**	***

表 2 GNSS 接收天線比較表

項目型號	CG31 天線	CG32 天線	iMet-3100M
天線型式			
探空儀型式	RS92-GPS	RS92-GPS	iMet-54 (1680 \ 403)
追蹤方式	全向式	全向式	全向式
追蹤範圍	高度 30 公里 距離 200 公里	高度 30 公里 距離 200 公里	高度 30 公里 距離 200 公里
組裝人力	1 員	1員	1 員
組裝時間	2 分鐘	2 分鐘	2 分鐘
搭配主機型式	MW-32 型	MW-32 型	IMet-1600 型
系統分析★	***	***	***

表 3 無線電經緯儀比較表

型號項目	RT-20 經緯儀	RT-20A 經緯儀	IMet-1600 經緯儀
天線型式	8		
探空儀型式	RS80-67 RS92-D	RS92-D	iMet-54 (1680 \ 403)
追蹤方式	全向式	全向式	全向式
追蹤範圍	高度 30 公里 距離 160 公里	高度 30 公里 距離 160 公里	高度 30 公里 距離 200 公里
組裝人力	2-3 員	2-3 員	2-3 員
組裝時間	5 分鐘	5 分鐘	5 分鐘
搭配主機型式	MW-32 型	MW-32 型	IMet-1600 型
重量	172KG	172KG	110KG
系統分析★	***	***	***

表 4 探空儀比較表

型號項目	iMet-54 探空儀 1680	iMet-54 探空儀 403	RS92-D 探空儀
探空儀型式			
傳輸方式	數位式傳輸	數位式傳輸	數位式傳輸
最大發射距離	250 公里	250 公里	160 公里
測風方式	RDF/GPS 計算	GNSS 接收天線	無線電經緯儀計算
加熱元件	內建加熱器	內建加熱器	具備加熱器
感測元件	雙感應元件	雙感應元件	雙感應元件
電池類型	Lithium 電池	Lithium 電池	鹼性(3號)電池
頻率寬度	1680MHz±20	403MHz±3	1680MHz±20
探空時間	135 分鐘	135 分鐘	120 分鐘
裝備現況	現貨市場供應	現貨市場供應	106 年底停產
重量	120 克	120 克	135 克
系統分析★	***	***	***
新式探空儀效益	1.可縮小頻寬、減少電波雜訊等干擾,確保回傳資料完整性。 2.能有效降低風向、風速之誤差,定位精度較舊式探空儀提昇達探測時間。 3.高靈敏度,多星座 GNSS 提供較風向(速)和高度測量精度。 4.探空儀頻率設定可快速選定並可自動調整頻率。 5.封閉式乾電池不需要事先連接,無需進行飛行前重新校準。 6.性能提升後可大幅提升彈道氣象探測精確度,有利砲兵射擊效果精進。		

表 5 地面氧象站比較表

表5地面系象站比較表			
項目型號	IMS-201AWS 地面氣象站(新式)	MAWS201 地面氣象站(舊式)	MAWS201M 地面氣象站(舊式)
	地面积家町(別八)	地田釈家町(百八)	地田無家町(百八)
型式			
組成	整合式地面 氣象探測系統	整合式地面 氣象探測系統	整合式地面 氣象探測系統
探測資料	風向、風速、氣溫、氣壓、 相對濕度、雨量	風向、風速、氣溫、氣壓、 相對濕度	風向、風速、氣溫、氣 壓、相對濕度、雨量
定向功能	電子式羅盤	簡易指北針	簡易指北針
主機端資料 輸入方式	主機自動擷取	主機自動擷取	主機自動擷取
傳輸介面	RS422\RS232\NMEA2000		RS422 · RS232
搭配主機型式	IMet-160	MW-12M	MW-32
搭配主機型式	IMet-160	MW-12M	MW-32
重量	約5公斤	約42公斤	約42公斤
系統分析★	***	***	***

表 6 軟體介面功能

項目型號	MW-32 主機	MW-12 主機	IMet-160 主機
型式	0 tax - 0 tax		

探空儀 軌跡畫面	具備	無法顯示	具備
PTU 數據趨勢圖	具備	僅文字顯示	具備
地面氣象 數據圖	具備	僅文字顯示	具備
GNSS 接收狀況圖	可顯示	無法顯示	可顯示
作業顯示 紀錄畫面	自動記錄每筆 探空作業時間	手動儲存	自動記錄每筆 探空作業時間
重量	22 公斤	29 公斤	3.5 公斤
系統分析★	***	**	***

資料來源:表 1 至表 5 來源為一、陳天祐,〈精進砲兵氣象探測作業之研究〉《砲兵季刊》(臺南),第 157 期,陸軍砲訓部,民國 101 年 6 月,頁 14~15。二、《InterMet International Met Systems》(臺北:翰霖電子股份有限公司,民國 108 年 6 月 5 日)。三、作者整理。

提升彈道氣象資料效益之我見

一、配置新型氣象探測系統

舊型砲兵氣象作業組所使用之氣象裝備為 MW-12 (M) 主機搭配 RT-20 無線電經緯儀,屬自主性之高空氣象探測系統,惟其性能已明顯降低。此砲兵部隊氣象裝備,迄今均已逾壽期 30 年,後續接收新型氣象系統,可採雙系統實施探空作業,提升作業速度、增加作戰地區之幅員之彈道氣象資料,符合數位科技作戰趨勢,達到火箭部隊朝快速射擊、遠程及高精準度發展,以符合「即時、精確」之氣象情資需求。

二、精進氣象資料通資鏈結時效

砲兵射擊指揮運用氣象修正資料獲得,需藉由多種方式傳無線電機以數據傳輸方式實施資料分發,惟配合戰、技術射擊指揮系統時,仍須手動輸入氣象,因善用 37C 無線電機鏈結氣象資料,達成「彈道氣象精確化、資料儲存數位化、數據傳輸即時化、氣象情資共享化」之目標,可縮短作業時間及提升資料精度,有效發揮我砲兵部隊精準與奇襲火力,另彈道氣象報告表以數據報表呈現,不以人工填寫保留資料完整性。

結語

砲兵彈道氣象自動探測作業隨著砲兵戰術、技術與氣象科技之進步,及作 戰中對提高火砲射擊命中精度之要求,目前已有突破性之發展。未來藉由氣象 探測技術及各種地形、氣象條件下累積與總結之經驗,將使砲兵彈道氣象探測 能力不斷增強,成效亦更趨顯著。彈道氣象資料對於砲兵射擊而言,可消除氣 象因素對砲彈飛行之影響,發揮砲兵奇襲、精準之火力,達成火力支援任務,¹⁴因此運用各空層相關之氣象因素,消除(或減低)氣象因素對砲彈(火箭)飛行之影響,提升射擊精度,各先進國家皆付諸莫大之努力。

參考文獻

- 一、陳天祐、〈精進砲兵氣象探測作業之研究〉《砲兵季刊》(臺南),第157期, 陸軍砲訓部,民國101年6月。
- 二、翰昇環境科技股份有限公司,《氣象探測系統教育訓練教材》(臺北:翰昇環境科技股份有限公司,民國 101 年 8 月)。
- 三、《RT-20 氣系自動探測系統操作手冊》(桃園:國防部陸軍司令部,民國 90 年 11 月)。
- 四、耿國慶、〈共軍砲兵氣象保障之研究〉《砲兵季刊》(臺南),第 **145** 期,陸 軍砲訓部,民國 **98** 年 **5** 月。
- 五、翰霖電子股份有限公司,《InterMet International Met Systems》(臺北:翰霖電子股份有限公司,民國 108 年 6 月 5 日)。
- 六、《陸軍氣象教範》(桃園:國防部陸軍司令部,民國94年11月7日)。
- 七、翰霖電子股份有限公司官網,https://www.InterMetSystems.com
- /\ VAISALA , \ Vaisala Marwin Sounding System MW32 (2010.09.21) \ http://www.vaisala.com \

作者簡介

顏嘉芝士官長,陸軍專科學校士官長正規班 39 期、曾任測量班長、連士官 督導長,現任職陸軍砲兵訓練指揮部目標獲得教官組。

www.mnd.gov.tw 50

 $^{^{14}}$ 耿國慶,〈共軍砲兵氣象保障之研究〉《砲兵季刊》(臺南),第 145 期,陸軍砲訓部,民國 98 年 5 月,頁 18 。