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Natural Convection Flow past a Vertical Truncated Cone in Porous Media
Filled with Nanofluids
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Abstract

The natural convection flow past a vertical truncated cone in porous media filled with
nanofluids is numerically analyzed in this paper. The transformed conservation equations
governing the nonsimilar boundary layers are solved by the Keller box method (KBM).
Numerical results for the dimensionless temperature profiles and the reduced Nusselt number
are graphically and tabularly presented for the dimensionless distance & and the
nanoparticles volume fraction ¢ (three nanoparticles are considered). Increasing the value
of dimensionless distance & increases the reduced Nusselt number. Moreover, the reduced
Nusselt number approaches to the limit of the inclined plate (full cone) as dimensionless
distance & is very small (large). However, enhancing the nanoparticles volume fraction ¢
decreases the reduced Nusselt number. For the case of Cu-nanoparticles (Al.Oz-nanoparticles),
the reduced Nusselt number is higher (lower).
Keywords: natural convection, vertical truncated cone, porous media, nanofluids
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1. Introduction
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The problem of convective heat transfer
in a saturated porous medium has many
important applications in geothermal system
and geophysical engineering such as
enhanced recovery of petroleum resources,
nuclear reactor cooling system and
underground disposal of nuclear wastes, as
reported by Nield and Bejan [1].

Cheng et al. [2] studied the natural
convection of a Darcian fluid about a cone.
Coupled heat and mass transfer by free
convection over a truncated cone in porous
media: variable wall temperature/variable
wall concentration (VWT/VWC) or variable
heat flux/variable mass flux (VHF/VMF) was
analyzed by Yih [3]. Chamkha et al. [4]
examined free convection flow over a
in a porous
medium saturated with pure or saline water at
low temperatures. Cheng [5] investigated
natural convection heat and mass transfer
from a vertical truncated cone in a porous
medium saturated with a non-Newtonian
fluid with variable wall temperature and
concentration. Double-diffusive  convection
with variable viscosity from a vertical
truncated cone in porous media in the
presence of magnetic field and radiation
effects was reported by Mahdy et al. [6]. Yih
and Huang [7] studied effect of internal heat
generation on free convection flow of
non-Newtonian fluids over a vertical
truncated cone in porous media for the case
of VWT/VWC. Amanulla et al. [8]
investigated thermal and momentum slip
effects on hydromagnetic convection flow of
a Williamson fluid past a vertical truncated
cone. Tu et al. [9] analyzed Taguchi method
and numerical simulation for variable

truncated cone embedded
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viscosity and non-linear Boussinesq effects
on natural convection over a vertical
truncated cone in porous media.
Nanotechnology application
biological sciences, physical sciences,
electronic cooling, and advanced nuclear
systems. An innovative technique for
improving heat transfer by using ultra fine
solid particles in the fluids has been used
extensively during the last several years.
Choi [10] is the first who used the term
“nanofluids” to refer to the fluid containing a
suspension of submicronic solid particles
(nanoparticles). Buongiorno [11] made a
comprehensive survey of convection in
nanofluids and wrote down the conservation
equations for nanofluids involving both the
Brownian motion and thermophoresis effects.
Recently, review of convection heat transfer
and fluid flow in porous media with
nanofluid was made by Kasaeian et al. [12].
Cheng [13] studied free convection of
non-Newtonian nanofluids about a vertical
truncated cone in a porous medium. Free
convection of a nanofluid about a vertical
truncated cone was analyzed by Cheng [14]
for zero nanoparticle flux. In both of these
papers [13-14] the authors have used the
nanofluid model proposed by Buongiorno
[11]. Although this author discovered that
seven slip mechanisms take place in
convective transport in nanofluids, it is only
the  Brownian  diffusion and the
thermophoresis that are the most important
when the turbulent flow effects are absent.
Oztop and Abu-Nada [15] used another
model of nanofluid to study natural
convection in partially heated rectangular
enclosures filled with nanofluids based on

is in



BRI ¥ L%

% 22-31 F (xR 110 #)

Journal of Air Force Institute of Technology, Vol. 20, pp. 22-31 2021

the real thermophysical properties of fluid
and nanoparticles. Ahmad and Pop [16]
examined mixed convection boundary layer
flow from a vertical flat plate embedded in a
porous medium filled with nanofluids.
Boundary-layer flow over a porous medium
of a nanofluid past from a vertical cone was
investigated by Mohammad and Jamaladin
[17]. EL-Kabeir et al. [18] discussed effect of
thermal radiation on non-Darcy natural
convection from a vertical cylinder
embedded in a nanofluid porous media.
Waini et al. [19] analyzed mixed convection
of a hybrid nanofluid flow along a vertical
surface embedded in a porous medium.

The objective of the present work,
therefore, is to extend the work of Cheng et
al. [2] and another model of nanofluid [15] to
consider the natural convection flow past an
isothermal vertical truncated cone embedded
in a porous medium filled with nanofluids.

2. Analysis

Let us consider the problem of the
two-dimensional, steady, laminar free
convection boundary layer flow past a
vertical truncated cone (with half angle y)
embedded in a saturated porous medium
filled with nanofluids. Figure 1 shows the
flow model and physical coordinate system.
The origin of the coordinate system is placed
at the vertex of the vertical full cone, where
X and y are coordinates measured along
and normal to the vertical truncated cone
surface, respectively. The radius of the
vertical truncated cone is r. The uniform
wall temperature of the vertical truncated
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than the ambient
temperature T_. The physical properties of
the nanofluid are considered to be constant
except for the density variation in the body
force term.

cone T, is higher

boundary
layer

Fig. 1. The flow model and physical
coordinate system

Introducing the spherical nanofluid
model proposed by Oztop and Abu-Nada
[15], the boundary layer approximation and
Boussinesq approximation, the governing
equations and the boundary conditions based
on the Darcy law can be written as follows:

ﬁg(u) N o) _ 0 (1)
¥
ar_(pB)ygcosK a1 @
O’y /unf éy ’
u£+vﬂ:oznf 52-!. (3)
X ¥ ¥
y=0: v=0, T=T,, 4)
y — 00! u=0, T=T,. %)
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where u and v are the Darcian velocities
in the x- and vy - directions, respectively.
g is the gravitational acceleration. K
the permeability of the porous medium. T
is the temperature.

The thermal expansion coefficient of the

is

nanofluid (pp),, is given by:

(0B) =(A—p)XpB); +o(pB).  (6)

The dynamic viscosity of the nanofluid g,
is determined by:

:unf

(")

The thermal diffusivity of the nanofluid «

is defined as:
Ko
o ®)
with
Ky (ko +2K, )-20(k, —k,) ©)

K_ (ks + 2k, )+¢’(kf _ks)

(nC, ), =@=p)eC, ), +oloC, )

Here,

(10)
@ is the solid volume fraction

parameter; p, and p, are the densities of

the basic fluid and the nanoparticle,

respectively; g, and p, are the thermal

expansion coefficients of the base fluid and

the nanoparticle, respectively; u, is the

dynamic viscosity of the basic fluid; Kk,

and (oC,), are the thermal conductivity

and the heat capacitance of nanofluid,

respectively; k, and k, are the thermal

conductivity of the base fluid and the

(Cs);

(pC, ), are the heat capacitance of the base

nanoparticles, respectively; and

fluid and the nanoparticles, respectively. The
thermophysical properties of the nanofluid
are given in Table 1.

Table 1. Thermophysical properties of fluid
and nanoparticles (Oztop and Abu-Nada

[15]).

Physical Fluid | Cu | Al:Os | TiO2
properties phase

(water)
C. (J/kgK) 4179 385 | 765 686.2
o (kg/m3) 997.1 | 8933 | 3970 | 4250
kK (WmK) |[0613 |400 |40 8.9538
ﬁX].O_S (1/K) 21 167 | 085 |09
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The boundary layer is assumed to be
sufficiently thin in comparison with the local
radius of the vertical truncated cone. The
local radius to a point in the boundary layer,
therefore, can be replaced by the radius of the
vertical truncated cone, i.e., r=xsin y. EQs.
(1)—(5) are valid in x, <x<oo where X,
is the distance of the leading edge of vertical
truncated cone measured from the origin.

Defining a stream function w such
that

(4%
5

ru =
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Eqg. (1), i.e., continuity equation is then
automatically satisfied.

Using the following dimensionless
variables
X X=X
f=" =" (12)
(0] XO
n="2Ra (13)
X
v
f(&n)=—"— 14
(&) a7 Ra’ (14)
T-T
0(&n)= - 15
(&) T T, (15)
cos yB3, K(T, —T,)x"
Rax* _ g yﬂf (TW oo) (16)

and substituting Egs. (6) — (16) into Egs.
(1)—(5), we can obtain the dimensionless

governing equations and the boundary

conditions
1, (pﬂ)s}
f'=|1- o 17
1-p)** { R P) ()
kel
1-— /
I. (P+(P(,0Cp)s( P)fJ | (18)
J{LJFEJW’:Q{VE—Q'OT—}
1+& 2 & o
n=0: f=0, =1 (19
n,—>w: 0=0. (20)

In the above equations, the primes
denote the differentiation with respect to 7.

Eqg. (17) is obtained by integrating Eq. (2)
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once with the help of Eq. (5). «; is the

thermal diffusivity of the base fluid. Ra . is

the modified local Rayleigh number based
upon X (the distance measured from the
leading edge of the vertical truncated cone).
In terms of the new variables, the
Darcian velocities in x- and vy - directions

are given by
Ra .
a0 g 1)
X
aRaZ[( & 1 A 1
Ve—— 2 || 22—+ [f+5——=yf"|.
X 1+& 2 ot 2
(22)
For  the engineering practical

applications, it is the local Nusselt number
that is of interest and is given by

th Q. X

Nu. = = .
kf kf (TW _Too)

« =

(23)

where h, denotes the local heat transfer

coefficient. The rate of heat transfer g, at
the surface of the vertical truncated cone is

(24)

Substituting Egs. (12)—(16), (24) into
EQ. (23), we get the reduced Nusselt number
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Nu,. /Ra? (see Nield and Kuznetsov [20])

*
X

Ra’2

X

k
=k—"*[—0'(5,0)1 (25)

It is apparent that for the case of ¢ =0
(regular fluid-porous medium), Egs. (17)—
(20) are reduced to those of Cheng et al. [2].
For the case of £=y=0 (£—> ), Egs.
(17)—(20) are reduced to the vertical plate

(vertical full cone) and
solutions are obtained

of 10& =0010& =0)

the similarity
@ &—-wo |,

3. Numerical method

The present analysis integrates the
system of equations (17)—(20) by the Keller
box method (KBM) of Cebeci and Bradshaw
[21]. To begin with, the partial differential
equations are first converted into a system of
three first-order equations. Then these
first-order equations are expressed in finite
difference forms and solved along with their
boundary conditions by an iterative scheme.

The computations were carried out on a
personal computer. The variable grid
parameter is 1.01, Az, =0.01, 7, =20, and
AE=0.001 (0<£<0.01), 0.01 (0.01<é<
0.1), 0.1 (0.1<&£<1), 1 (1<£<10), 10 (10
< £<100), 100 (100< & <1000), 1000 (1000
< £<10000). The iterative procedure is
stopped to give the temperature distribution

when the error in computing the 8, in the

next procedure becomes less than 107°.
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4. Results and discussion

In order to check the accuracy of our
computer simulation model, we have
compared our results with those of Cheng et
al. [2] and Tu et al. [9]. Table 2 lists the
comparison result of the values of —6'(&,0)
in the absence of the nanoparticles (¢ =0). It
is found that the values of —¢'(£,0) of
Cheng et al. [2] are overestimated by the
local nonsimilarity solution (LNS). The
difference is due to the derivatives of certain
terms are discarded in the local nonsimilarity
solution.

Table 2. Comparison of —6'(£,0) at ¢ =0

£ Chengetal.| Tuetal. Present
[2] [9] results

0.0 0.4437 0.4437 0.4437
0.001 — 0.4440 0.4440
0.01 — 0.4458 0.4459
0.1 — 0.4647 0.4647
0.5 0.5412 — 0.5286

1 0.5991 0.5807 0.5808

2| 0.6572 0.6372 0.6373

4 — 0.6895 0.6895

6| 0.7219 0.7123 0.7123

8 — 0.7250 0.7250

10| 0.7391 0.7330 0.7330
20| 0.7532 - 0.7500
40/ 0.7607 - 0.7591
100 — 0.7648 0.7648
1000 — 0.7682 0.7682
104 0.7685 0.7685 0.7685

Numerical results are presented in the
graphical and tabular forms for the
dimensionless distance & ranging from 0 to
10000, and nanoparticles volume fraction ¢
varying from 0 to 0.3. In this study, three
nanoparticles are Copper (Cu), Alumina
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(Al203), and Titanium oxide (TiO2), when the
base fluid is water.

Figure 2 illustrates the dimensionless
temperature profiles for three values of ¢
with Cu-Water, £=1. As the nanoparticles
volume fraction ¢ increases, both the
dimensionless temperature profiles 6(&,7)
and the thermal boundary layer thickness &
increase, yet the dimensionless wall
temperature gradient [ —&'(£,0) ] decreases.

1 T T
*
0.8\ Cu-Water E=1 T
AW
(RS 1
06;‘$ ¢0=03 i
L\ ]
e : \\ \/(p _ 02 :
0.4 vV .
\/ ([) = 01 :
0.2} < ]
i 1 - ‘\;T-\‘_‘ o |
% 5 10 15

n

Fig. 2. Dimensionless temperature profiles
for three values of ¢ with Cu-Water, & =1

Table 3 displays the values of reduced

Nusselt number Nux*/RaX}? for wvarious

values of & and ¢ in the case of Cu-Water.
On the one hand, for the fixed ¢, the

reduced  Nusselt  number Nux*/RaX}?

enhances with increasing the dimensionless
distance &. This is because an increase in
the value of the dimensionless distance &
implies the increase of the buoyancy force
which tends to accelerate the flow. It is also

revealed that the reduced Nusselt number
approaches to constant value when ¢& is

very small and large.
On the other hand, at a given &, an

increase in the value of the nanoparticles
volume fraction ¢ leads to decreasing the

reduced Nusselt number Nux*/Rany . This is

on account of the fact
nanoparticles volume fraction ¢

increasing the
reduces

the value of k. /k,, as seen from Eg. (9),

and decreases the dimensionless wall
temperature gradient [ - 6'(£,0) ], as shown in

Fig. 2. Therefore, the reduced Nusselt

number Nu. / Rax}? decreases  with
increasing the nanoparticles volume fraction

¢ , with the help of (25).

Table 3. Values of Nu . /Rai? for various

values of & and ¢ in the case of Cu-Water

: Nu,. /Ra*

¢p=0.1 p=0.2 =03

0| 0.3293 0.2424 0.1756

0.001 | 0.3295 0.2425 0.1757

0.01| 0.3309 0.2436 0.1764

0.1| 0.3448 0.2538 0.1838

1| 0.4310 0.3172 0.2295

5| 0.5215 0.3838 0.2775

10 | 0.5440 0.4003 0.2894

100 | 0.5675 0.4177 0.3019

1000 | 0.5701 0.4195 0.3033

10* | 0.5703 0.4197 0.3034

Dimensionless temperature profiles for

three nanoparticles with £=10000, ¢ =0.3
are illustrated in Fig. 3. This figure depicts
that by using three types of nanofluid as the
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value of the dimensionless temperature
profiles is lower (larger) for the case of the
Cu-nanoparticles (Al2O3-nanoparticles).

The values of the reduced Nusselt

number Nu_./Ra’ for various values of ¢
and three nanoparticles with (@) £=0 (b)
£=1 (c) £=10" are displayed in Table 4.

For the fixed £ and ¢, it is observed that
the reduced Nusselt number is higher (lower)
for the case of  Cu-nanoparticles
(Al.Oz-nanoparticles). This is because for
Cu-nanoparticles case, the dimensionless
temperature profiles is the
dimensionless wall temperature gradient is
greater, as shown in Fig. 4. The greater the
dimensionless wall temperature gradient, the
larger the reduced Nusselt number.

lower and

1 LN A L L L A L AL L A B

! = 10000, =023 ]

08} g , ¢ ]

o6l —— Copper ]

0 | - - - - Titanium oxide |

0.4F ' - - - - Alumina ]

0.2f .
00~ 12

Fig. 3. Dimensionless temperature profiles
for three nanoparticles with £ =10000,
=03

Table 4. Values of Nu_./Ra’* for various

29

values of ¢ and three nanoparticles with

(@ £=0 (b) £=1 (c) &=10°

(8 £=0 Nu. /Ra*
% Cu TiO2 Al>O3
0.05 0.3824 | 0.3809 | 0.3772
0.1 0.3293 | 0.3261 | 0.3200
0.15 0.2830 | 0.2783 | 0.2706
0.2 0.2424 | 0.2366 | 0.2279
0.25 0.2068 | 0.2003 | 0.1910
0.3 0.1756 | 0.1691 | 0.1593

(b) £=1 Nu,. /Ra’
¢ Cu TiO> Al,O3
0.05 0.5005 | 0.4983 | 0.4937
0.1 0.4310 | 0.4266 | 0.4188
0.15 0.3703 | 0.3640 | 0.3542
0.2 0.3172 | 0.3093 | 0.2983
0.25 0.2705 | 0.2616 | 0.2498
0.3 0.2295 | 0.2202 | 0.2080

(€) &=10° Nu. /Ra*
% Cu TiO2 AlO3
0.05 0.6623 | 0.6596 | 0.6533
0.1 0.5703 | 0.5647 | 0.5542
0.15 0.4901 | 0.4818 | 0.4687
0.2 0.4197 | 0.4092 | 0.3947
0.25 0.3579 | 0.3456 | 0.3304
0.3 0.3034 | 0.2901 | 0.2748

5. Conclusions

The effect of the nanoparticles volume
fraction on free convection over a vertical
truncated cone embedded in a saturated
porous medium is numerically analyzed. The
surface is maintained at uniform wall
temperature. The nonlinear boundary-layer
equations were transformed and the resulting
non-similarity equations were solved by an
implicit finite difference scheme (Keller box
method: KBM). The decay of the
dimensionless temperature profiles has been

observed in all cases. When the
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dimensionless distance ¢ increases, the
reduced Nusselt number also increases.
Furthermore, the reduced Nusselt number of
the vertical truncated cone approaches that of
inclined plate (vertical full cone) for the case
of £=0 (&—> o). The reduced Nusselt
number reduces with increasing the
nanoparticles volume fraction ¢. It is also
found that the reduced Nusselt number is
higher ~ (lower) for the case of

Cu-nanoparticles (Al2Os-nanoparticles).
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