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Abstract 

The natural convection flow past a vertical truncated cone in porous media filled with 

nanofluids is numerically analyzed in this paper. The transformed conservation equations 

governing the nonsimilar boundary layers are solved by the Keller box method (KBM). 

Numerical results for the dimensionless temperature profiles and the reduced Nusselt number 

are graphically and tabularly presented for the dimensionless distance   and the 

nanoparticles volume fraction   (three nanoparticles are considered). Increasing the value 

of dimensionless distance   increases the reduced Nusselt number. Moreover, the reduced 

Nusselt number approaches to the limit of the inclined plate (full cone) as dimensionless 

distance   is very small (large). However, enhancing the nanoparticles volume fraction   

decreases the reduced Nusselt number. For the case of Cu-nanoparticles (Al2O3-nanoparticles), 

the reduced Nusselt number is higher (lower). 
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摘   要 

在本文中吾人使用數值解法以探討在飽和多孔性介質內充滿奈米流體之垂直截尾

圓錐體自然對流。偏微分方程式經轉換成非相似邊界層方程式後，再以凱勒盒子法解

之。數值計算結果主要以圖表來顯示：無因次距離、奈米粒子體積分率(考慮三種奈米

粒子)對無因次溫度分佈與縮減的紐賽數之影響。增加無因次距離，則增強縮減的紐賽

數。此外，當無因次距離非常小(大)時，縮減的紐賽數趨近於傾斜平板(完全錐體)之極

限情況。然而，增大奈米粒子體積分率，降低縮減的紐賽數。對於銅-奈米粒子(三氧化

二鋁)，縮減的紐賽數為較高(較低)。 

關鍵詞:自然對流，垂直截尾圓錐體，飽和多孔性介質，奈米流體 

 

1. Introduction  
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The problem of convective heat transfer 

in a saturated porous medium has many 

important applications in geothermal system 

and geophysical engineering such as 

enhanced recovery of petroleum resources, 

nuclear reactor cooling system and 

underground disposal of nuclear wastes, as 

reported by Nield and Bejan [1]. 

Cheng et al. [2] studied the natural 

convection of a Darcian fluid about a cone. 

Coupled heat and mass transfer by free 

convection over a truncated cone in porous 

media: variable wall temperature/variable 

wall concentration (VWT/VWC) or variable 

heat flux/variable mass flux (VHF/VMF) was 

analyzed by Yih [3]. Chamkha et al. [4] 

examined free convection flow over a 

truncated cone embedded in a porous 

medium saturated with pure or saline water at 

low temperatures. Cheng [5] investigated 

natural convection heat and mass transfer 

from a vertical truncated cone in a porous 

medium saturated with a non-Newtonian 

fluid with variable wall temperature and 

concentration. Double-diffusive convection 

with variable viscosity from a vertical 

truncated cone in porous media in the 

presence of magnetic field and radiation 

effects was reported by Mahdy et al. [6]. Yih 

and Huang [7] studied effect of internal heat 

generation on free convection flow of 

non-Newtonian fluids over a vertical 

truncated cone in porous media for the case 

of VWT/VWC. Amanulla et al. [8] 

investigated thermal and momentum slip 

effects on hydromagnetic convection flow of 

a Williamson fluid past a vertical truncated 

cone. Tu et al. [9] analyzed Taguchi method 

and numerical simulation for variable 

viscosity and non-linear Boussinesq effects 

on natural convection over a vertical 

truncated cone in porous media.  

Nanotechnology application is in 

biological sciences, physical sciences, 

electronic cooling, and advanced nuclear 

systems. An innovative technique for 

improving heat transfer by using ultra fine 

solid particles in the fluids has been used 

extensively during the last several years. 

Choi [10] is the first who used the term 

“nanofluids” to refer to the fluid containing a 

suspension of submicronic solid particles 

(nanoparticles). Buongiorno [11] made a 

comprehensive survey of convection in 

nanofluids and wrote down the conservation 

equations for nanofluids involving both the 

Brownian motion and thermophoresis effects. 

Recently, review of convection heat transfer 

and fluid flow in porous media with 

nanofluid was made by Kasaeian et al. [12]. 

Cheng [13] studied free convection of 

non-Newtonian nanofluids about a vertical 

truncated cone in a porous medium. Free 

convection of a nanofluid about a vertical 

truncated cone was analyzed by Cheng [14] 

for zero nanoparticle flux. In both of these 

papers [13-14] the authors have used the 

nanofluid model proposed by Buongiorno 

[11]. Although this author discovered that 

seven slip mechanisms take place in 

convective transport in nanofluids, it is only 

the Brownian diffusion and the 

thermophoresis that are the most important 

when the turbulent flow effects are absent. 

Oztop and Abu-Nada [15] used another 

model of nanofluid to study natural 

convection in partially heated rectangular 

enclosures filled with nanofluids based on 
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the real thermophysical properties of fluid 

and nanoparticles. Ahmad and Pop [16] 

examined mixed convection boundary layer 

flow from a vertical flat plate embedded in a 

porous medium filled with nanofluids. 

Boundary-layer flow over a porous medium 

of a nanofluid past from a vertical cone was 

investigated by Mohammad and Jamaladin 

[17]. EL-Kabeir et al. [18] discussed effect of 

thermal radiation on non-Darcy natural 

convection from a vertical cylinder 

embedded in a nanofluid porous media.  

Waini et al. [19] analyzed mixed convection 

of a hybrid nanofluid flow along a vertical 

surface embedded in a porous medium. 

The objective of the present work, 

therefore, is to extend the work of Cheng et 

al. [2] and another model of nanofluid [15] to 

consider the natural convection flow past an 

isothermal vertical truncated cone embedded 

in a porous medium filled with nanofluids. 

 

2. Analysis 

 

Let us consider the problem of the 

two-dimensional, steady, laminar free 

convection boundary layer flow past a 

vertical truncated cone (with half angle  ) 

embedded in a saturated porous medium 

filled with nanofluids. Figure 1 shows the 

flow model and physical coordinate system. 

The origin of the coordinate system is placed 

at the vertex of the vertical full cone, where 

x  and y  are coordinates measured along 

and normal to the vertical truncated cone 

surface, respectively. The radius of the 

vertical truncated cone is r . The uniform 

wall temperature of the vertical truncated 

cone wT  is higher than the ambient 

temperature 
T . The physical properties of 

the nanofluid are considered to be constant 

except for the density variation in the body 

force term.  

 

 

Fig. 1. The flow model and physical 

coordinate system 

 

Introducing the spherical nanofluid 

model proposed by Oztop and Abu-Nada 

[15], the boundary layer approximation and 

Boussinesq approximation, the governing 

equations and the boundary conditions based 

on the Darcy law can be written as follows: 
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where u  and v  are the Darcian velocities 

in the x - and y - directions, respectively. 

g  is the gravitational acceleration. K  is 

the permeability of the porous medium. T  

is the temperature.  

The thermal expansion coefficient of the 

nanofluid  nf  is given by: 

      sfnf   1     (6) 

The dynamic viscosity of the nanofluid nf  

is determined by: 

  5.2
1

1
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


f

nf            (7) 

The thermal diffusivity of the nanofluid nf  

is defined as: 
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Here,   is the solid volume fraction 

parameter; f  and s  are the densities of 

the basic fluid and the nanoparticle, 

respectively; f  and s  are the thermal 

expansion coefficients of the base fluid and 

the nanoparticle, respectively; f  is the 

dynamic viscosity of the basic fluid; nfk  

and  
nfPC  are the thermal conductivity 

and the heat capacitance of nanofluid, 

respectively; fk   and sk  are the thermal 

conductivity of the base fluid and the 

nanoparticles, respectively;  
fPC  and 

 
sPC  are the heat capacitance of the base 

fluid and the nanoparticles, respectively. The 

thermophysical properties of the nanofluid 

are given in Table 1. 

 

Table 1. Thermophysical properties of fluid 

and nanoparticles (Oztop and Abu-Nada 

[15]). 

Physical 

properties 

Fluid 

phase 

(water) 

Cu Al2O3 TiO2 

PC  (J/kg K) 4179 385 765 686.2 

  (kg/m3)  997.1 8933 3970 4250 

k  (W/m K)  0.613 400 40 8.9538 
510 (1/K)  21 1.67 0.85 0.9 

 

The boundary layer is assumed to be 

sufficiently thin in comparison with the local 

radius of the vertical truncated cone. The 

local radius to a point in the boundary layer, 

therefore, can be replaced by the radius of the 

vertical truncated cone, i.e., sinxr  . Eqs. 

(1)—(5) are valid in  xxo  where ox  

is the distance of the leading edge of vertical 

truncated cone measured from the origin. 

Defining a stream function   such 

that 
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Eq. (1), i.e., continuity equation is then 

automatically satisfied. 

Using the following dimensionless 

variables 
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and substituting Eqs. (6)－ (16) into Eqs. 

(1)—(5), we can obtain the dimensionless 

governing equations and the boundary 

conditions 
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In the above equations, the primes 

denote the differentiation with respect to  . 

Eq. (17) is obtained by integrating Eq. (2) 

once with the help of Eq. (5). f  is the 

thermal diffusivity of the base fluid. *x
Ra  is 

the modified local Rayleigh number based 

upon *x (the distance measured from the 

leading edge of the vertical truncated cone).  

In terms of the new variables, the 

Darcian velocities in x - and y - directions 

are given by 
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For the engineering practical 

applications, it is the local Nusselt number 

that is of interest and is given by 
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where fh  denotes the local heat transfer 

coefficient. The rate of heat transfer wq  at 

the surface of the vertical truncated cone is 
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Substituting Eqs. (12)—(16), (24) into 

Eq. (23), we get the reduced Nusselt number 
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2
1

/  x
RaNu

x
 (see Nield and Kuznetsov [20]) 
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It is apparent that for the case of 0  

(regular fluid-porous medium), Eqs. (17)—

(20) are reduced to those of Cheng et al. [2]. 

For the case of 0   (  ), Eqs. 

(17)—(20) are reduced to the vertical plate 

(vertical full cone) and the similarity 

solutions are obtained (as  , 

0//  f ) 

 

3. Numerical method 

 

The present analysis integrates the 

system of equations (17)—(20) by the Keller 

box method (KBM) of Cebeci and Bradshaw 

[21]. To begin with, the partial differential 

equations are first converted into a system of 

three first-order equations. Then these 

first-order equations are expressed in finite 

difference forms and solved along with their 

boundary conditions by an iterative scheme. 

The computations were carried out on a 

personal computer. The variable grid 

parameter is 1.01, 01.01  , 20 , and 

001.0  (0   0.01), 0.01 (0.01    

0.1), 0.1 (0.1   1), 1 (1   10), 10 (10 

  100), 100 (100   1000), 1000 (1000 

  10000). The iterative procedure is 

stopped to give the temperature distribution 

when the error in computing the w   in the 

next procedure becomes less than 510 . 

 

4. Results and discussion 

 

In order to check the accuracy of our 

computer simulation model, we have 

compared our results with those of Cheng et 

al. [2] and Tu et al. [9]. Table 2 lists the 

comparison result of the values of )0,(  

in the absence of the nanoparticles ( 0 ). It 

is found that the values of )0,(  of 

Cheng et al. [2] are overestimated by the 

local nonsimilarity solution (LNS). The 

difference is due to the derivatives of certain 

terms are discarded in the local nonsimilarity 

solution. 

 

Table 2. Comparison of )0,(  at 0  

  
Cheng et al. 

[2] 

Tu et al. 

[9] 

Present 

results 

0.0 0.4437 0.4437 0.4437 

0.001 — 0.4440 0.4440 

0.01 — 0.4458 0.4459 

0.1 — 0.4647 0.4647 

0.5 0.5412 — 0.5286 

1 0.5991 0.5807 0.5808 

2 0.6572 0.6372 0.6373 

4 — 0.6895 0.6895 

6 0.7219 0.7123 0.7123 

8 — 0.7250 0.7250 

10 0.7391 0.7330 0.7330 

20 0.7532 — 0.7500 

40 0.7607 — 0.7591 

100 — 0.7648 0.7648 

1000 — 0.7682 0.7682 

104 0.7685 0.7685 0.7685 

 

Numerical results are presented in the 

graphical and tabular forms for the 

dimensionless distance   ranging from 0 to 

10000, and nanoparticles volume fraction   

varying from 0 to 0.3. In this study, three 

nanoparticles are Copper (Cu), Alumina 
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(Al2O3), and Titanium oxide (TiO2), when the 

base fluid is water. 

Figure 2 illustrates the dimensionless 

temperature profiles for three values of   

with Cu-Water, 1 . As the nanoparticles 

volume fraction   increases, both the 

dimensionless temperature profiles ),(   

and the thermal boundary layer thickness 
T  

increase, yet the dimensionless wall 

temperature gradient [ )0,( ] decreases.  

0 5 10 15
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Fig. 2. Dimensionless temperature profiles 

for three values of   with Cu-Water, 1  

 

Table 3 displays the values of reduced 

Nusselt number 2
1

/  x
RaNu

x
 for various 

values of   and   in the case of Cu-Water. 

On the one hand, for the fixed  , the 

reduced Nusselt number 2
1

/  x
RaNu

x
 

enhances with increasing the dimensionless 

distance  . This is because an increase in 

the value of the dimensionless distance   

implies the increase of the buoyancy force 

which tends to accelerate the flow. It is also 

revealed that the reduced Nusselt number 

approaches to constant value when   is 

very small and large.  

On the other hand, at a given  , an 

increase in the value of the nanoparticles 

volume fraction   leads to decreasing the 

reduced Nusselt number 2
1

/  x
RaNu

x
 . This is 

on account of the fact increasing the 

nanoparticles volume fraction   reduces 

the value of fnf kk / , as seen from Eq. (9), 

and decreases the dimensionless wall 

temperature gradient [ )0,( ], as shown in 

Fig. 2. Therefore, the reduced Nusselt 

number 2
1

/  x
RaNu

x
 decreases with 

increasing the nanoparticles volume fraction 

 , with the help of (25). 

 

Table 3. Values of 2
1

/  x
RaNu

x
 for various 

values of   and   in the case of Cu-Water 

  
2

1

/  x
RaNu

x
 

1.0  2.0  3.0  

0 0.3293 0.2424 0.1756 

0.001 0.3295 0.2425 0.1757 

0.01 0.3309 0.2436 0.1764 

0.1 0.3448 0.2538 0.1838 

1 0.4310 0.3172 0.2295 

5 0.5215 0.3838 0.2775 

10 0.5440 0.4003 0.2894 

100 0.5675 0.4177 0.3019 

1000 0.5701 0.4195 0.3033 

104 0.5703 0.4197 0.3034 

 

Dimensionless temperature profiles for 

three nanoparticles with ,10000  3.0  

are illustrated in Fig. 3. This figure depicts 

that by using three types of nanofluid as the 
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value of the dimensionless temperature 

profiles is lower (larger) for the case of the 

Cu-nanoparticles (Al2O3-nanoparticles).  

The values of the reduced Nusselt 

number 2
1

/  x
RaNu

x
 for various values of   

and three nanoparticles with (a) 0  (b) 

1  (c) 
410  are displayed in Table 4. 

For the fixed   and  , it is observed that 

the reduced Nusselt number is higher (lower) 

for the case of Cu-nanoparticles 

(Al2O3-nanoparticles). This is because for 

Cu-nanoparticles case, the dimensionless 

temperature profiles is lower and the 

dimensionless wall temperature gradient is 

greater, as shown in Fig. 4. The greater the 

dimensionless wall temperature gradient, the 

larger the reduced Nusselt number. 
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Fig. 3. Dimensionless temperature profiles 

for three nanoparticles with ,10000  

3.0  

 

Table 4. Values of 2
1

/  x
RaNu

x
 for various 

values of   and three nanoparticles with 

(a) 0  (b) 1  (c) 
410  

(a) 0  2
1

/  x
RaNu

x
 

  Cu TiO2 Al2O3 

0.05 0.3824 0.3809 0.3772 

0.1 0.3293 0.3261 0.3200 

0.15 0.2830 0.2783 0.2706 

0.2 0.2424 0.2366 0.2279 

0.25 0.2068 0.2003 0.1910 

0.3 0.1756 0.1691 0.1593 

(b) 1  2
1

/  x
RaNu

x
 

  Cu TiO2 Al2O3 

0.05 0.5005 0.4983 0.4937 

0.1 0.4310 0.4266 0.4188 

0.15 0.3703 0.3640 0.3542 

0.2 0.3172 0.3093 0.2983 

0.25 0.2705 0.2616 0.2498 

0.3 0.2295 0.2202 0.2080 

(c) 
410  2

1

/  x
RaNu

x
 

  Cu TiO2 Al2O3 

0.05 0.6623 0.6596 0.6533 

0.1 0.5703 0.5647 0.5542 

0.15 0.4901 0.4818 0.4687 

0.2 0.4197 0.4092 0.3947 

0.25 0.3579 0.3456 0.3304 

0.3 0.3034 0.2901 0.2748 

 

5. Conclusions 

 

The effect of the nanoparticles volume 

fraction on free convection over a vertical 

truncated cone embedded in a saturated 

porous medium is numerically analyzed. The 

surface is maintained at uniform wall 

temperature. The nonlinear boundary-layer 

equations were transformed and the resulting 

non-similarity equations were solved by an 

implicit finite difference scheme (Keller box 

method: KBM). The decay of the 

dimensionless temperature profiles has been 

observed in all cases. When the 
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dimensionless distance   increases, the 

reduced Nusselt number also increases. 

Furthermore, the reduced Nusselt number of 

the vertical truncated cone approaches that of 

inclined plate (vertical full cone) for the case 

of 0  (  ). The reduced Nusselt 

number reduces with increasing the 

nanoparticles volume fraction  . It is also 

found that the reduced Nusselt number is 

higher (lower) for the case of 

Cu-nanoparticles (Al2O3-nanoparticles). 
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