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Localization and Mapping by an Improved ICP Algorithm
and a Feature-based Alignment Correction Algorithm
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ABSTRACT

This study presented a real-time localization and mapping algorithm that integrates an improved
iterative closest point (ICP) algorithm, a feature-based alignment correction algorithm, and a local
minimum avoidance mechanism. It started with an investigation of the ICP algorithm. Such a point-
based algorithm guarantees a local minimum for the process matching two scans (i.e., maps). However,
the local minimum often has a large difference from the desired global minimum. Such an issue is often
induced by outliers. A mechanism neglecting some high-leverage outliers was incorporated in every ICP
iteration to resolve this issue. Although this process produces an acceptable result, the efficiency and
accuracy issues must be addressed. A line-based representation for scans is able to reduce processing
time and was therefore adopted in this study. Also, an alignment correction algorithm utilizing line
features was proposed to reduce the error of alignment between two matched scans. The derived line-
based process produces better results than the original one. Finally, the methods to avoid local minima
were described. Although it may be resolved to some degree by neglecting a part of outliers, the process
may still converge to a local minimum occasionally. Accordingly, a mechanism for avoiding local
minima was integrated into the process to further cope with this issue. The feasibility of the presented
algorithm was verified through various experiments.
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I. INTRODUCTION

Localization and mapping is a technique
utilized in the research of autonomous robots. It
provides a robot with a means to incrementally
building the map of its environment while
simultaneously estimating its pose (i.e.,
orientation and position) on this map [1-4]. The
single consistent map being built can be described
as the global map, with respect to a sequence of
local maps created at different locations.

A local map is often referred to as a local
scan. The local scan may be represented in any
format, as long as the created scan is consistent in
illustrating the environment surrounding the
robot at every scanning location. For example, the
point-based and the line-based representations
were adopted in this study for particular uses. For
building a local map, the robot uses its onboard
sensors (e.g., ultrasonic and laser ranging devices)
to collect information regarding the environment
relative to its current location.

The general concept of localization and
mapping is straightforward. Supposing that the
robot's transformation (i.e., a rotation and a
displacement) at the time of taking the current
scan relative to the one at the time of taking the
previous scan is determined, the mapping process
can be carried out by directly applying such a
transformation to either scan and thus allowing it
to be matched and aligned with the other. That is
to say, the transformation converting one pose of
the robot to the other is the same one aligning one
scan with the other. Therefore, on the premise that
the localization problem is solved (i.e., the
transformation is known), the mapping problem
will be solved as well. However, the
transformation that drives the robot toward its
new pose is often inaccurate due to the odometry
errors accumulated over time. In consideration of
this situation, solving the localization problem
beforehand may be infeasible, and the
transformation may need to be determined from
the other perspective, that is by solving the
mapping problem (i.e., how to match and align
one scan with the other). This approach will
require determining the correspondence between
two scans being matched. Since the two problems
(namely, the Ilocalization and the mapping
problems) are tightly coupled, they can be
combined and regarded as one single study—
localization and mapping.
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The procedure following the mapping
process that matches and aligns two scans is
merging them into a single one. Such a single
scan represents the environment of the robot
better than either of the local scans. As the robot
takes scans along its path while moving, its
trajectory and the global map are constructed
incrementally.

Without regard to the merge of the two
matched scans, localization and mapping can be
simply regarded as the scan matching study in
this context. However, while the localization and
mapping concept is straightforward, coping with
the issues regarding the process of scan matching
is much more complex. For instance, a majority
of proposed algorithms in the literature
determining the transformation that matches two
scans are fairly difficult and their results greatly
depend on the conditions of the environments. An
algorithm that is suited to the particular
requirement of an environment may not
necessarily be suited to others. Another issue to
consider is that there is almost always an
efficiency-accuracy tradeoff in any algorithm,
especially the ones being aimed at real-time
operations. For the scan matching process, it is
the tradeoff between the process efficiency and
scan matching accuracy, and it depends on
different conditions and requirements.

The primary task of this study is to develop
a real-time ranging sensor-based localization and
mapping algorithm that addresses the two
common issues:

1) resolving the local minimum issue of

scan matching, and

2) improving accuracy and efficiency.

A scan matching technique, namely, the
iterative closest point (ICP) algorithm, is
considered to be a benchmark for the algorithms
and mechanisms to be developed in this study.
Although such a technique is fairly old, it is still
worth investigating because of its great efficiency
for use in real time.

The laser ranging system used in this study
is a UTM-30LX. Such a system was reported to
produce stable measurements with little influence
from the reflectance and colors of objects. It
utilizes the 905-nanometer infrared laser. For
every scanning cycle, it scans counterclockwise
in a 270-degree fan-shaped area. Fig. 1 illustrates
a notional representation of the scanning area.
The guaranteed scanning range covers from 0.1



to 30 meters. The maximum range is 60 meters
(by degrading its performance). The system
estimates the distances between objects and itself
for 1080 angular steps (with a total of 1081
measurements) covering the 270-degree area. By
processing the distance measurements, the
environment information around the system can
be obtained. The time needed to complete the
scanning cycle once is 25 milliseconds
(approximately 24 milliseconds to scan and 1
millisecond to synchronize the data) without
regard to that to transmit and to process the data

VI/

= Sensor o

Detection Angle: 270°
Angular Resolution: 0.25°
Measurement Step: 1080

Max. Distance: 30m

Fig. 1. The UTM-3OLX scanning area [5]

The rest of this paper is organized as follows.

Section 2 describes the related studies in the
literature that sought improvements in either
efficiency or accuracy, and in adapting to
different environment conditions. Section 3
investigates the ICP algorithm and improves it for
real-time processing of localization and mapping.
Section 4 presents a feature-based alignment
correction algorithm to cope with the issue of
large accumulated estimation errors associated
with localization and mapping using the ICP
algorithm. Section 5 proposes a local minimum
avoidance mechanism. The final section provides
a summary of the contributions of this study and
also  discusses some  limitations  and
considerations for future work.

II. RELATED WORKS

Some localization and mapping studies, that
sought improvements in either efficiency or

accuracy, and in adapting to different
environment conditions, are introduced as
follows.

In the studies by Amigoni, Gasparini, and
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Gini [6, 7], a local scan is a collection of line
segments obtained by processing the distance
measurements of a two-dimensional (2D) laser
sensor. The resulting global map is a 2D line-
based geometric map built by post-processing the
local scans (i.e., not processing in real time). The
integration of the two scans will be based on the
geometrical information within the scans.
Specifically, the angle between each pair of line
segments is regarded as a geometrical landmark
(i.e., feature). The integration process is thus
characterized by the comparison between such
geometrical landmarks of the two scans being
matched. When the difference between two
angles is less than a specified threshold, they are
considered equal. Similarly, when the distance
between two points is short enough, they are
considered to coincide.

A sonar-based algorithm was presented for a
robot operating in an unknown and unstructured
environment [8]. The algorithm utilizes the sonar
measurements to construct a multileveled
description for the environment, where the local
scans are described using the probability profiles
to discriminate between the occupied and empty
areas. The global map is built by integrating
multiple local scans from different points of view
and is used for navigation and path planning.

Similarly, a probabilistic approach was
adopted [9]. The distance measurements are
converted by a sensor model into a sequence of
grid statuses forming a local scan. The global map
is then updated by using the Bayes’ theorem. As
for the robot's pose, it is estimated by utilizing the
incremental maximum likelihood (ML) scan
matching. By integrating the distance
measurements gathered from the laser and sonar
sensors, both mapping accuracy and obstacle
detection were reported to be improved.

A map optimization algorithm was
developed [10] to cope with the initially poor
estimate of the map. It utilizes a variant of the
stochastic gradient descent (SGD) on an
alternative representation of the state space. The
algorithm was reported to have good stability and
computational properties.

An approach combining two existing
algorithms, namely, the polar scan matching
(PSM) algorithm and the point-to-line iterative
closest point (PLICP) algorithm, was proposed
[11] to resolve the issue due to low-quality
distance estimates from a small ranging device
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and to offer robust scan matching results in
different types of environments that are human-
made.

A design focusing on feature matching was
developed for map building [12]. Such a design
uses an improved linear binary relation algorithm
to determine the similarity in the line features
between two adjacent maps and to establish a
matching degree matrix of line features. After a
rough match between two maps is performed, a
region search optimization algorithm and a
random-walk method are used to improve the
orientation and position estimates, respectively.

A method that uses progressive scan
matching was proposed to promote the pose
tracking performance [13]. The orientation and
position estimates are generated separately to
enhance the process efficiency and accuracy. It
was reported that applying progressive iteration
in pose estimation is able to ensure achieving a
certain precision.

An adaptive perception system was
developed [14] to adapt to different types of
environments, namely, the outdoor and indoor
environments. Such a system classifies the
operational environments before applying
corresponding systems to conduct localization
and mapping. The classification of operational
environments is conducted by utilizing image
classification techniques. The features in the
images are extracted from video imagery and are
utilized for training a classification function built
by adopting the supervised learning techniques.
When operating outdoors, a terrain map utilizing
the data collected by the global positioning
system (GPS) and the inertial measurement unit
(IMU) is used. On the other hand, when operating
indoors, a 2D laser-based technique is used for
conducting localization and mapping. The indoor
local map is first transformed and represented in
the global reference frame and then is combined
with the outdoor map to generate a global map.

Some studies also focused on reducing
memory consumption. For example, a method
based on a particle filter was proposed [15] to
perform scan matching and to generate a grid map
online. Such a method maintains only one single
grid map so that the memory being consumed can
be limited to a certain degree. Both accuracy and
memory consumption were reported to be
improved.
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I1I. IMPROVED ITERATIVE
CLOSEST POINT (ICP)
ALGORITHM

In this section, a scan matching technique,
the iterative closest point (ICP) algorithm [16], is
investigated and further improved for real-time
processing of localization and mapping.

3.1 Point-based Maps

Various types of representations were
adopted in the literature to illustrate a 2D map of
the environment. Considering the outline of the
operating environment and the characteristics of
the utilized ranging system, some may adopt a
representation utilizing features (e.g., shapes, line
segments, and points) to illustrate the corners and
walls in indoor environments, while others may
adopt one utilizing the occupancy grids to
indicate whether a set of square spaces are vacant
or occupied in indoor or outdoor environments
[17-20].

The information collected by a ranging
system (e.g., a laser scanner) typically consists of
a series of distance measurements (or estimates).
Each of such measurements may be represented
by a 2D/3D point (in the Cartesian or polar form)
since its direction is known. Considering this fact,
it is straightforward to use a point-based map for
representing the distance measurements. The map
that geometrically describes the outline of an
environment of the ranging system (i.e., scanner)
is also called a scan. Fig. 2 shows an example of
the 2D point-based map (or scan). Fig. 3 shows
the actual environment for this particular example.

3.2 The Original ICP Algorithm

As the ranging system (mounted on the
mobile robot) consecutively scans the
environment during level movements, the
localization and mapping process can be
conducted by incrementally matching and
merging the map with each new scan acquired.
The iterative closest point (ICP) algorithm is one
of the techniques for matching two point-based
scans (or maps). It was presented by Besl and
McKay (1992) [16].

Assuming that there are two separate scans,
each of which consists of a series of points, the



scan matching process is to find a transformation
best aligning one scan with the other. However, to
obtain an optimized transformation, the
correspondence between the two scans should be
determined beforehand. Such a correspondence
represents the way that the points of one scan are
related to the points of the other scan. The
transformation and the correspondence are
therefore the two major subjects in the study of
scan matching [21].

Laser Scan Map
1 :

10;

X - axis (meter)

—6 -4 -2 o 2

Y - axis (meter)

Fig. 2. A point-based map (The map consists of 1081
points. The ranging system is located at (0, 0).)

Fig. 3. The environment scanned by the ranging
system for the example in Fig. 2

It often seems fairly simple to determine the
correspondence between two scans by visual
inspection of humans based on prior knowledge
and experience regarding the general features of
an environment in which the scans were taken.
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However, it turns into a whole new situation for
an automated system. In other words, finding the
correspondence between two point-based scans is
a complicated task because both of the scans
consist of a set of points appearing randomly
positioned. It is usually the most difficult part
when conducting scan matching. Furthermore,
due to a certain amount of sensing error in most
cases, two sets of points from two separate scans
cannot be aligned perfectly, even if the system
that takes scans stays stationary. This means that
real correspondence may never exist. Certain
assumptions need to be made to resolve this issue.
As aresult, some kind of correspondence close to
the truth will be defined. For the ICP algorithm
that matches two sets of points, the
correspondence of every point within one set is
defined as its closest point within the other. Due
to the fact that this assumption is often not
accurate, the transformation calculated may not
be accurate either. The ICP algorithm copes with
this situation by alternating between determining
the correspondence and estimating the
transformation until the two scans are aligned
closely under a specified threshold.

Given scans A and B, the following steps are
to be carried out by the ICP algorithm to match
(or to align) A with B:

1) For each of the points in A, search for its
closest point in B and assign this point as
its corresponding point,

2) Determine a transformation (i.e., a
composite of a rotation and a
displacement) minimizing the sum of all
squared distances between pairs of points
that correspond to each other,

3) Apply the determined transformation to
A, and

4) Repeat steps 1 through 3 until A is closely
aligned with B or some threshold is
reached.

Fig. 4 shows a notional ICP process. As
described in the upper left and lower left parts of
the figure, the closest points are assumed to be the
corresponding points although this may not be
true. Despite this, it almost always brings two
scans closer after each of the process iterations.
More precisely, the ICP algorithm guarantees
reaching one of the local minima for minimizing
the sum of all squared distances between pairs of
points that correspond to each other. In a few
cases, such a local minimum achieved is
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coincidentally global, and the two scans can be
tightly matched. However, the process often falls
into a local minimum that is not global and gets
trapped.

- scanA '. transformed scan A
scanB
! VA ] et

.
scanB 4. o transformedscan A scanB transformed scan A

R e

+
TN

4

Fig. 4. An ICP process matching scan A and scan B
(In subfigures 1 and 3, a search for A's
corresponding points in B is conducted, while
in subfigures 2 and 4, a transformation is
determined and applied to A to bring it closer
to B.)

As mentioned earlier, the transformation to
be determined is to minimize the sum of all
squared distances between pairs of points
corresponding to each other. The following
summarizes the algorithm for such a
transformation [22].

Given two corresponding sets of points, A
and B, they can be described as follows.

A= {all az, =, an}a
B = {bll b2' Y bn}a (1)
where a; and b, are 3D points, and ay
corresponds with by, fork = 1,2,---,n.
ap = [ak,x ak,y ak,Z]T,
by = [bkx bry brz]". 2)
A transformation consisting of a rotation and a
displacement is required to best align A with B
(i.e., ai with by ). The terms @ and b represent
the centroids of A and B, respectively.

_ 1 - 1
The terms A" and B’ represent the sets of points
obtained by referring A and B to their centroids.

A = {(ay —a),(ay —a),-,(a, —Q)}
= @}, @y ), )
B' = {(b; — b),(by —b),,(by — b)}

= {b1, by, -, bn}. 4)
M is a 3X3 matrix. Its elements represent the
sums of products of elements in A" and elements
in B'.
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Sxx Sxy Sxz
M =YR_apby” = [Syx Syy Syz|,  (5)
Szx Szy Szz

where

Syx = 2113:1 a;c,xbllc,xa Sxy = 2:1 a;c,xbllc,ya (6)
and so on. N represents a 4X4 real symmetric
matrix. Its 16 elements are determined by the
mathematical operations of the 9 elements in the
3% 3 matrix M.

N =
(Sex + Syy +S22) Sys = Suy Spx = Sez Sey = Syx
Syz = Szy (Sex = Syy = Szz) Sy + Sy Sox + Sz
Sy = ez Sey + Syx (=Sex + Sy = S2) Sy + Sy
Sey = Syx Sy + ez Syz + Sy (=Sex = Syy +522)
(7)

The desired rotation represented by a unit
quaternion q is the eigenvector corresponding to
the most positive eigenvalue A,,,, of the matrix
N.

q = eigenvector(N, Ay gx)- (®)
The desired displacement d is the vector from the
rotated centroid of A to the centroid of B.

d = b — rotated_by_q(a). &)
The determined transformation (q,d) is then
applied to A. Ideally, the transformed 4 is able to
be closely aligned with B.

Fig. 5 shows a scan matching process
utilizing the ICP algorithm. In this example, the
process took 10 iterations to achieve the threshold.
Such a threshold was defined as the improvement
of decreasing the mean squared distance between
pairs of points corresponding to each other in the
latest iteration. Its value was set to 0.001. The
process was terminated as soon as the
improvement went below this value. The result
shows that the two scans are closely matched.

This example was set up to reduce
variability caused by some high-leverage outliers
that will be defined later in this study, but not to
excessively idealize the condition. The system
stayed stationary when the two scans were taken.
This made them similar to each other but still
different because there existed the random
sensing error. Furthermore, the scan in blue was
rotated by 10 degrees about the origin and then
translated by +1 meter and +2 meters in the x-axis
and y-axis, respectively. Even though they may
be aligned closely with each other, there may still
be some small error in the result, which is
expected. It is worth mentioning that when taking
only one scan and transforming it to make up the
other, the result will show that the two scans are



aligned completely without any error because
there exists a perfect correspondence between
them in such a specific case.

Laser Scan Map
1

)
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4
sk
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X - axis (meter)
IS o
o @ e @

"
C N

Y - axis (meter)

Fig. 5. A process of scan matching utilizing the ICP
(The two point scans in blue and in red are
shown in the upper figure. Both scans consist
of 1081 points. The process iterations for
converging (or aligning) the scan in blue
towards the scan in red are shown in the
middle figure. The result is shown in the
lower figure.)

-8 —6

3.3 Outlier Neglecting when Using the ICP
Algorithm

When matching two scans, the features (i.e.
points) existing within either but having no real
correspondence within the other may be regarded
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as outliers. Fig. 6 illustrates the concept of
outliers used in this study. In the illustration, it is
assumed that the way two scans are aligned is
known, although such an assumption may not
always be true. It is merely intended for providing
a clearer concept.

Points that have approximate correspondence between two scans
(partially overlapped regions)

scanA

Qutliers:
Points in scan A that have
no correspondence in scan B

Outliers:
Points in scan B that have
no correspondence in scan A

scanB

Fig. 6. The concept of outliers (The features existing
within one scan but not having a real
correspondence within the other may be
considered to be outliers.)

Before describing the means of identifying
and neglecting outliers, it is essential to realize
the effect introduced by outliers and the reason to
incorporate a mechanism for neglecting outliers
in the process. As shown in Fig. 7, the most
apparent effect introduced by outliers is that the
process falls into one of the local minima.

As previously mentioned, by adopting the
assumption of closest-point correspondence in
each process iteration, the ICP algorithm
calculates a transformation minimizing the sum
of squared distances between pairs of points
corresponding to each other. When the process
reaches one of the local minima, any other
transformation calculated in the neighborhood in
the following iterations will further increase the
sum of squared distances. Under this
circumstance, the process is considered falling
into a local minimum and being "trapped". Taking
more process iterations is not useful for two scans
to converge. As the example shown in Fig. 7, the
long tail in the blue scan contains a large part of
high-leverage outliers and will inevitably cause
the local-minimum issue. The reason is that the
squared distances between the points on this tail
and their designated correspondence within the
other scan will only get larger whenever the two
scans try to converge and thus prevent the actual
convergence from proceeding. This observation
suggests that the issue of local minima may be
resolved to some degree by neglecting a part of
outliers.
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Fig. 7. ICP scan matching without neglecting outliers
(Two scans are shown in the upper figure. The
scans in blue and in red consist of 1047 points
and 1081 points, respectively. The process
iterations for the convergence are shown in the
middle figure. The result is shown in the lower
figure.)

Various techniques were proposed in the

literature to cope with the issue caused by outliers.
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For example, a measure utilizing a distance value
was developed and named the fractional root
mean squared distance (FRMSD) by Phillips, Liu,
and Tomasi (2007) [23]. By minimizing the
FRMSD between two scans, the determined
transformation was reported to be less affected by
outliers. This assumes that the two scans being
matched are fairly similar and that a clear
correspondence exists between them. Specifically,
the transformation of one scan relative to the
other must be small, so as to limit the part
containing outliers. As the part containing
outliers gets larger, some neglecting mechanism
may be needed to guarantee an acceptable scan
matching result.

A research  study conducted by
Rusinkiewicz and Levoy (2001) addressed the
outlier identifying issue by justifying the
distances between pairs of corresponding points
[24]. Similarly, assuming that the relative
transformation is small, points in one scan and
their corresponding points in the other shall be
within some specified distance apart. The points
that are outside a specified distance from their
correspondence are considered to be outliers and
neglected. The same technique was initially
tested in our study to approach the outlier issue.
However, the effect provided is limited, and the
process may eventually fall into one of the local
minima and get trapped. A more tangible
technique is needed to better resolve this issue.

A frustum culling approach was proposed in
the studies by May, Droeschel, Holz, Fuchs, and
Nuchter (2009) [25] and by Holz and Behnke
(2010) [26]. The term, frustum, represents the
field of view from a certain perspective. The
points outside the specified frustum are
considered to be outliers and neglected.

By adopting an approach similar to frustum
culling, the mechanism for identifying and
neglecting outliers developed in our study
specifies the angular range of the scan being
aligned with from the ranging system's
perspective as the frustum. As shown in Fig. 8§,
when the process is to converge scan A towards
scan B, the part of A falling outside of the angular
range of B will be considered to be the part
consisting of outliers. This part will be identified
and neglected in every ICP iteration before
assigning the correspondence. To better illustrate
the concept of the identifying mechanism, the
figure is showing the final stage of scan matching



(i.e. the last iteration of the process) at which the
two scans being matched almost converge and the
majority of outliers are able to be identified and
neglected. On the other hand, at the beginning
stage, since the two scans have not converged, the
process will only identify a small part of the
outliers. As it proceeds, the outliers identified will
increase incrementally. Also, outlier neglecting is
only used to find the correspondence and to
calculate the optimized transformation in every
ICP iteration. None of the points is actually
removed. The transformation will be utilized to
transform all of the points in the original scan.
Fig. 9 shows the result of the ICP process
integrated with the outlier neglecting mechanism
for the same scans shown in Fig. 7. By this means,
the two scans are closely matched with each other.

o SCanA
@ o y
=3
= oo oy ° o @
oo *
[ ]
L] Part of scan A being identified as outliers
[ ] Angular range
° of scan B
L]
scan B 'Y

Sensor (origin)

Fig. 8. Notional illustration of the part of a scan
being identified as outliers (The part of
scan A falling outside of the angular
range of scan B from the sensor's
perspective will be identified as outliers
and neglected. The sensor (origin) point
is the ranging system's location.)

Laser Scan Map
15—
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B egt3v 2
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Fig. 9. The result of the ICP process integrated

with the outlier neglecting mechanism
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3.4 Mergence of the Matched Point Scans

Localization and mapping conducted in this
study is characterized by a process of scan
matching that converges the old scan towards a
scan that is newly acquired. The old scan
represents either one single scan or the
combination of a sequence of scans taken so far.

After completing scan matching, a certain
process needs to be carried out for merging the
two separate scans being matched into a single
one. The process for mergence will depend on the
requirements specified, such as the nature of the
implementation  (i.e., post or real-time
processing), and the map's intended use.

Since there usually exists a fairly large
overlapped region between any two scans being
matched in a consecutive process of scanning, to
keep all points of two scans after merging them
into one single scan may not be efficient. The
number of redundant points will keep growing
and thus will reduce the efficiency of the
subsequent  process of scan  matching
considerably. This situation will prevent the
process from being conducted in real time. A
method characterized by the concept of sparse
point maps was proposed to resolve this issue
[26]. Its purpose is to avoid storing duplicate
points by carrying out one additional search of
correspondence and rejecting those points of one
scan with corresponding points identical to
themselves existing within the other scan. An
issue associated with this method is that the time
consumption for the additional search of
correspondence may considerably slow down the
process since it is applied to all of the points
within the scan, not merely a down-sampled
subset as frequently adopted in every ICP
iteration. (It is noted that the time consumption of
each ICP iteration can be effectively reduced by
down-sampling  the scan  points  for
correspondence searches.)

For our study, the method for mergence
consists of the following steps. Fig. 10 illustrates
such a merging process.

1) Keep all points in the new scan. The
newer scan is intuitively more accurate in
comparison with the older one that
contains a relatively larger accumulated
error.

2) Discard those old scan points lying inside
of the overlapped region of the two
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matched scans (i.e., within the new scan's
angular range). This removes a part of old
and duplicate information to avoid
unlimited data growth.

3) Following the previous step, keep those
points lying outside of the overlapped
region of the two matched scans.

e, o

.
P ° transformed old scan

e  Angularrange

¢ of new scan
)

new scan )
Sensor (origin)

resulting map

Sensor (origin)

Fig. 10. Notional illustration for the process of
mergence (The upper figure shows two
matched point scans to be merged. The
lower figure shows the result.)

3.5 Real-time Localization and Mapping

The incremental process for localization and
mapping begins with one scan taken by the
ranging system at a certain location. Such a scan
is considered to be the original old scan. Note that
a scan taken earlier or a known map constructed
by matching multiple scans beforehand may also
be used, on the condition that it adopts a
representation the same as the one used in the
process. For every newly acquired scan, the
process cycle conducts the following two tasks:

1) The ICP scan matching process aligning
the old scan with the new one. (The
process includes the outlier neglecting
mechanism.)

2) The merging process combining the two
scans being matched into one. (The
resulting scan is in turn regarded as the
updated old scan.)

The transformation used to align the old scan
with the new one is calculated during each scan
matching process cycle. Such a transformation at
the end of the kth cycle consists of a rotation g,
described by a unit quaternion and a displacement
dj, described by a 3-dimensional (3D) vector. The
system's orientation Q; and position Dj, relative
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to the initial values, Q, and Dy, after completing
the kth process cycle are determined in the
following equations.
Qk = q1Qk-1,
Dy = Qp(—di)Qx + Dy—1.  (10)
The orientation Q) is represented by a unit
quaternion, while the position Dy is represented
by a 3D vector. The superscript * indicates the
complex conjugate of the quaternion, and the
subscript k indicates the kth cycle of the process.
Quaternion multiplication is the operation used in
the equations. The initial orientation Q, and
position Dy, are as the following.
Qo =[1.0,0.0, 0.0, 0.0],
Dy = (0.0, 0.0, 0.0). (11)
The absolute initial values of orientation and
position can be adopted instead. In such a case,
Qy and D, will be represented by the absolute
values as well.

A general concept of real-time processing
often indicates that the algorithm is able to
process inputs (e.g., sensor data) as soon as they
are present without requiring any buffering
mechanism. For every process cycle, the
presented process in our study takes one new scan
over the environment and matches (and also
merges) the older one built from the previous
cycle with the new one just acquired. It is
considered to be a real-time process if it can be
conducted continuously as the ranging system
moves. A speed as slow as humans’ natural
walking speed may be set for the system.
Therefore, it is acceptable for allowing the real-
time process to take 1 to 2 seconds on average to
complete each process cycle. Note that the time
for taking a new scan (which is reported to be in
tens of milliseconds) is trivial and negligible in
comparison to the time for matching and merging
scans.

For real-time localization and mapping,
efficiency is a major issue to be coped with.
Specifically, the time required for every process
cycle must be reduced so that it is able to operate
reasonably fast in real time. The most time-
consuming operation during a process cycle is the
search for correspondence between two scans in
each ICP iteration.

When adopting a brute-force approach, the
correspondence search for each closest point is
completed by calculating and comparing all
squared distances between all points of the new
scan and each point of the old scan. Therefore,



assuming the numbers of points in the old and
new scans are M and N, respectively, such a
search in each ICP iteration of each process cycle

has a complexity of O(MN) , which is
computationally expensive.
To resolve the complexity issue,

Maneewongvatana and Mount (1999) proposed
an approach that utilizes a tree-search technique
(named the K-D tree) [27]. By incorporating this
method, conducting a search among a series of
points for the closest one is more efficient. The
concept of the K-D tree is to build a binary tree
for the data points. Each node of the tree defines
one axis and divides the points along this axis
according to their coordinates. In this way, for
every new scan acquired, the structure of a K-D
tree is constructed. In each ICP iteration, the
closest point to each point in the old scan will be
searched within this K-D tree. The complexity for
such a search is O(log,N) if there are N points in
the new scan. For the complete correspondence
search with M points in the old scan, the
complexity will be O(Mlog,N), which is less
complex and more efficient than the brute-force
approach. Note that building a K-D tree has a
complexity of O(Nlog,N). During each process
cycle, the K-D tree structure is only built once.

Although there is an improvement in
efficiency gained by utilizing the K-D tree search
method, completing each process cycle may still
be too time-consuming, especially when the two
scans being matched are large in size (i.e.,
containing large numbers of points). Certain
means may be needed to ease the computational
load on the search for correspondence. Our study
adopts an approach that down-samples the old
scan by a specified number. Such down-sampling
is applied at the start in each of the ICP iterations
to decrease the number of old scan points
partaking in search for correspondence. The
process efficiency may be improved to a degree.
However, it may also be possible to affect
accuracy if the sampled point features are not
sufficient to offer enough information for the
process. This is one situation in which an
accuracy-efficiency trade-off needs to be
determined.

An example of one localization and mapping
process cycle is shown in Fig. 11. In such an
example, a comparison of the time consumption
of the process using different correspondence
search methods and different ICP setups is shown
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in Table 1. It is noted that the process is more
efficient by applying down-sampling and
incorporating the K-D tree search method so that
it can be conducted in real time. Although
specifying a larger value for the threshold can
reduce the processing time as well, this usually
decreases the accuracy directly and is not
emphasized in our study.

Laser Scan Map

X - axis (meter)

Y - axis (meter)

Laser Scan Map

=10 -5 0 5 10 5
¥ - axis (meter)

Fig. 11. An example of one localization and mapping
process cycle (Two separate scans are shown
in the upper figure. The scans in red and blue
are the old and new ones consisting of 1081
points and 1047 points, respectively. The
resulting scan consisting of 1242 points is
shown in the lower figure.)

Table 1. Comparison of time consumption

Methods Incorporated Time (seconds) # Iterations

Brute-force 127.49573576200 19
K-D tree 10.70492927460 19
Down-sampling by 20

+K-D tree 1.13340847026 20

Threshold (meters?):
Reduction in the mean squared distance < 0.000025

This table shows the comparison in process time when applying
different correspondence search methods and different ICP setups
(for the same example in Fig. 11). The program was executed on a
computer equipped with an Intel Core i7 2.20 GHz processor. It
was implemented by the Python scripting language and was not
optimized. The result is only for an approximate comparison.

Fig. 12 shows a process of real-time point-
based localization and mapping that adopts the
improved ICP algorithm (i.e., the ICP algorithm
integrated with the outlier neglecting mechanism).
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In this example, the ranging system alternated
between moving straight forward and making a
left turn until arriving at its initial location (i.e.,
moved approximately in a rectangular loop). The
point set in blue describes the map, while the one
in red represents the system's trajectory. The map
was constructed consecutively by matching and
merging scans taken during the movements of the
system. The system's coordinates are represented
in the north-east-down (NED) coordinates
relative to its initial position and orientation. For
our specific case, a 2D map is represented. Only
the north and east coordinates (i.e., the x and y
axes) are adopted. Fig. 13 shows an image of the
real environment taken from the relative location
at the lower-right corner on the map. As observed
in Fig. 12, it may not be easy to identify the error
of the estimated transformation by examining the
final map. Alternatively, it may be reflected in the
trajectory being estimated. Although the real
initial and final locations were perfectly the same,
the estimated values may still show a large
difference in between. This is caused by the error
accumulated in every scan matching process
cycle. The distance error of the estimated final
location from the real one is approximately 1.45
meters, which gives a mean distance error of 0.02
meters per scan-matching process cycle (for a
total number of 80 process cycles matching 81
scans). Certain means may be needed to
effectively reduce such an error to some degree.

IV. IMPROVED ICP
ALGORITHM COMBINED WITH
A FEATURE-BASED
ALIGNMENT CORRECTION
ALGORITHM

In this section, a feature-based alignment
correction algorithm is presented to resolve the
issue of accumulated errors associated with

localization and mapping using the ICP algorithm.

4.1 Line-based Description for Point Maps

The point-based representation is sufficient
for describing the outlines of general
environments. However, to cope with the
accumulated error, some other representation will
be worth investigating in a sense that it may offer
better features for correcting the alignment error.
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Fig. 12. A process of real-time point-based localization
and mapping (The point set in blue represents
the map, while the one in red shows the
trajectory. The map was constructed by
incrementally matching and merging 81 scans.
It consists of 1473 points. The coordinates are
relative to the system's initial position and
orientation. The real initial and final positions
are both (0,0). The estimated ones are (0, 0)
and (—1.15098078202,—-0.874567350456),
respectively.)

=5 0 5

shown in Fig. 12

The representation utilizing line segments is
adopted for the following reasons:

1) The outline of a general environment can
usually be illustrated by a series of 2D
line segments from the top view.

2) Line segments describe the boundaries
(e.g., obstacles and walls) better than
points. In a point map, it is often difficult



to tell whether the space is occupied or
not between any two adjacent points.

3) Using line segments is more
computationally efficient since every
single line segment can represent all
points on it.

4) When conducting ICP scan matching,
instead of adopting all points in the
original  point scan  for  the
correspondence search, utilizing the start
and end points on the line segments may
be more efficient, since it systematically
down-samples the original scan.

5) An algorithm analyzing line features
may be used to correct the alignment
error after each ICP localization and
mapping process cycle.

Hough transform is one technique utilizing
line features [28]. As illustrated in Fig. 14, one
straight line in the 2D coordinates is described by
the following equation.

y=mx+b, (12)
m and b are the slope and intercept parameters,
respectively. Therefore, the line can be
represented by (m, b). One issue associated with
this representation is its instability. When the line
gets vertical (or horizontal), the value of m (or b)
becomes infinite.

y=mx+b

r=xcosf+ysinf

® (r.0)
0

Fig. 14. One straight line represented in the Cartesian
coordinates (upper and middle) and the -8
coordinates (lower)
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The same line may be defined by utilizing

the range r and bearing 6 as well. The range r

represents the distance of the line from the origin,

and the bearing 6 represents the angle of the

vector from the origin to the closest point of the
line.

r = xcosO + ysing. (13)

Given two points (x4, y;) and (x,, y,) on a

straight line, 6 and r can be calculated as follows
[29].

6 = tan™* ((xZ B xl)/(}ﬁ - YZ)) 1 # Y

Ty if y1=ya.
(14)
r = x4c0s6 + y, sin 6
= x,cos6 + y, sin 6. (15)

The line is therefore described by one
particular point in the r - 8 coordinates by
performing the Hough transform. A useful
concept is that if the distances between multiple
points in the -0 coordinates are short enough,
these points can be represented approximately by
one single line in the x-y coordinates.

Given a point map, the procedure to convert
it into a line map is described in the following
steps. (Fig. 15 shows a notional illustration of
such a conversion.)

1) Connect every two adjacent points by one
line segment if the distance between them
is short enough to form a part of the
boundary. A threshold value for the
distance needs to be specified. Each line
segment has 5 features: the start point, the
end point, the bearing 6, the range r, and
the length.

2) Examine every two adjacent line
segments to decide if the two points
representing them in the -0 coordinates
are close enough for them to be combined,
and keep a record of these combined
points. A threshold value for the distance
needs to be specified. Any cluster of
points with distances in between shorter
than the distance threshold in the r-6
coordinates represents one group of line
segments being approximated by a single
one.

3) For each group of line segments being
combined and approximated by one
single line segment, extract all of the
points originally associated with these
segments and determine a segment of the
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least square line fitting those points. All
of such line segments being determined
are to take the place of the original line
segments for describing the line map.
Fig. 16 shows the result of a conversion
process from points into line segments. The
number of line segments and their lengths in the
result may depend on the value of the threshold
specified for combining the original shorter line
segments. In our study, the threshold value
represents the upper bound distance between
points in the -0 coordinates. It was set to 1.0 for
this example. Distances between multiple points
below this threshold will be regarded short
enough for these points to be approximated by a
single one. These points will also be represented
by one single line in the x - y coordinates.
Intuitively, adopting line segments to describe the
map is expected to reduce the required space for
maintaining it, since a large number of points in
the original map are to be replaced by fewer line
segments.

4.2 Scan Matching for Aligning a Line
Map Towards a Point Map

The line-based localization and mapping
process is to estimate the transformation and to
incrementally build a line map simultaneously in
the meantime of conducting scan matching. Since
every new scan just acquired is still in the form of
a point map, it will be straightforward to match
the maintained line map with the new one that is
a point map.

A line map consisting of line segments may
be directly decomposed into points by drawing
out the start point and the end point from every
line segment. Therefore, the ICP algorithm may
still apply to aligning a line map towards a point
map. In this way, the process will be more
efficient than originally to match two point maps
because the number of points is significantly
reduced. For aligning a line map towards a point
map, here are several steps to follow:

1) Draw out the start point and the end point
from every line segment in the line map
to form a group of points.

2) Align the group of points with the point
map by utilizing the improved ICP
algorithm discussed in this study.

3) Apply the calculated transformation to
the line map.

Point-based map Connecting any two adjacent points

e ©® o © © O
o9 o
oo —o—

(7—0—0.\.—,

e |

line segments
to be combined

Line-based map

line segments
to be combined

o o

line segments

to be combined I

Fitting least square lines

c

Fig. 15. A notional illustration of the conversion
from a point map to a line map
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Fig. 16. The result of a conversion process from
points into line segments (The original
point map consists of 1047 points. The
resulting line map consists of 175 line
segments.)

Fig. 17 shows a process example that aligns
a line map towards a point map. Adopting the
same sensor measurements, Table 2 shows a
comparison of time consumed when conducting
scan matching for different types of maps. One
case was aligning between point maps, and the
other case was aligning a line map towards a point
map. In either case, the process was conducted
without down-sampling the points in the map
beforehand for each search of correspondence. It
is observed that conducting the alignment of a



line map towards a point map achieved greater
efficiency. To process in real time, the consumed
time for either case may be reduced further by
appropriately conducting down-sampling for the
search of correspondence in every ICP iteration.
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Fig. 17. A process example showing the alignment of
a line map towards a newly acquired point
map (The point map consists of 1047 points.
It is illustrated in blue. The line map consists
of 316 line segments and is illustrated in red.
The initial two separate maps are shown in the
upper figure. The result is shown in the lower
figure.)

Table 2. Comparison of time consumption

Types of Maps Time (seconds) # Iterations
point map / point map 10.7217815053 19
line map / point map 7.81693578522 23

Threshold (meters?):
Reduction in the mean squared distance < 0.000025

This is a comparison of processing time consumption between
aligning a point map and a line map towards a point map
respectively. Both were conducted without down-sampling the
points beforehand for the search of correspondence. The raw
measurements are the same as used in Fig. 17. The program was
executed on a computer equipped with an Intel Core i7 2.20 GHz
processor. It was implemented by the Python scripting language and
was not optimized. The result is only for an approximate comparison.
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4.3 The Line Feature-based Alignment
Correction Algorithm

The issue associated with the point-based
process of localization and mapping is the
cumulative estimation error. Such an issue still
exists for the line-based process because the same
technique (i.e., the ICP) is adopted. It is observed
that by adjusting the threshold value for taking
more iterations, the scan matching accuracy may
be enhanced to some degree. However, more
iterations may require more processing time but
only offer a limited improvement. Some other
measures still need to be investigated.

An algorithm utilizing line features (e.g., the
range r and the bearing 0) is presented in this
study to adjust the alignment between two line
maps.

Assuming that two line segments A and B
(as shown in Fig. 18) are corresponding to each
other, to align the straight line extending A
towards that extending B, complete the following
two steps:

1) Rotate A by an angle of (6, — 8,) about

the origin.

2) Translate A by (xq, ¥,), where

xg = (r; —11)cos by,

Yo = (1 —11) sin ;. (16)
The unit quaternion for performing the rotation is
calculated by

q4,-6,) = [cos ((922;91)) 10,0, sin (@)]

17)
segment B

6/

X
A

segment A

> Y
Fig. 18. Two line segments corresponding to each
other in the x-y coordinates

To fix the error in the alignment between two
maps (or scans), the line feature-based alignment
correction algorithm aligns a pair of
corresponding line segments, each of which is
extracted from each of the two maps (or scans).
For better convergence, such a process may be
conducted several times by adopting different
pairs of corresponding line segments that are not
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in parallel with the pairs already used. This is
assuming that the pair of line segments
corresponding to each other in the two scans are
able to be determined. However, correctly
determining the correspondence may not be a
simple task, and any incorrect determination will
only increase the error of aligning two scans.
Therefore, the correction algorithm was
developed as an extension based on the ICP
algorithm. When the two scans being matched are
nearly aligned with each other after completing
the iterations of ICP, the pairs of corresponding
line segments are to be extracted by comparing
the line features of the segments in the two scans
(e.g., lengths, ranges, bearings, and positions of
mid-points).

The determination of pairs of corresponding
line segments between two line scans (e.g., X and
Y ) accomplished by the line feature-based
alignment correction algorithm is to complete the
following steps:

1) Select the longest 10 line segments in X.

2) For each of the 10 segments in X, select
the one in Y with the smallest difference
in length as its correspondence.

3) Verify each of the 10 pairs of
corresponding line segments by
checking if the conditions as follows are
satisfied.

3.1) The lengths of the two segments
are both greater than 2 (meters).

3.2) The difference in length is less than
1 (meter).

3.3) The difference in range (i.e., the
difference between r; and r, in Fig.
18) is less than 1 (meter).

3.4) The difference in bearing (i.e., the

difference between 6, and 6, in Fig.

18) is less than 0.4 (radians).

3.5) The mid-point distance between the
two segments is less than 0.5
(meters).

It may also be possible that none of the line
segments corresponding to each other is
determined in some cases. The specified number
of segments being selected and the values of
thresholds are adjustable for satisfying the
requirements in different conditions. The values
in this study are solely adopted to examine the
feasibility of the algorithm and are not necessarily
optimal.

An example of incorporating the algorithm
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is shown in Fig. 19. The results before and after
applying the algorithm are shown in the upper
and lower figures, respectively. One
corresponding pair between the two maps is
determined. A small error in the alignment
between the two maps (in red and in blue) in the
upper figure is corrected as shown in the lower
figure. Note that before such a correction is made,
the point map must be converted into a line map
beforehand. The alignment of a line map towards
a point map rather than towards a converted line
map in the lower figure is meant for providing a
better comparison to that in the upper figure.

Laser Scan Map

X - axis (meter)

Y - axis (meter)
Laser Scan Map

X - axis (meter)

=7

—6 -5

Y - axis (meter)
An example of integrating the improved ICP
algorithm with the alignment correction
algorithm using line features (The results
before and after incorporating the alignment
correction algorithm are shown in the upper
and lower figures, respectively.)
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Fig. 19.

4.4 Real-time Processing

The process starts with the first point scan
acquired. Such a scan is transformed into a line
scan and considered to be the initial old scan. It is
worth mentioning that a previously constructed



map is also acceptable, on the condition that such
a map is able to be described by or transformed
into a series of line segments. For each
subsequently acquired new point scan, the
following steps are carried out by the process
cycle.

1) Align the old line scan towards the most
recently acquired new point scan by
utilizing the improved ICP algorithm
proposed in this study.

2) Convert the point scan into a series of line
segments (i.e., a line scan).

3) If the corresponding line segments
between the old line scan and the new line
scan are able to be determined, apply the
line feature-based alignment correction
algorithm to correct the error in the
alignment between the two scans.

4) Merge the two closely aligned line scans
into one by adopting the same concept of
merging two point scans discussed in
Section 3. The resulting scan is
considered to be the newer representation
of the old scan for the subsequent process
cycle.

Fig. 20 illustrates the result of a post-
processed experiment of line-based localization
and mapping. It was intended for comparing the
performance of the line-based process in
estimation accuracy with that of the point-based
process illustrated in Fig. 12. The same raw
sensor data was fed to the line-based process. The
overall distance error between the estimated final
position and the real one is approximately 0.63
meters, which gives a mean distance error of 0.01
meters per scan-matching process cycle (for a
total number of 80 process cycles matching 81
scans). Judging from the shorter distance error, it
is evident that the line-based process that
incorporates the line feature-based alignment
correction algorithm with the improved ICP
algorithm performs better since the accumulated
estimation error is reduced.

The result of a real-time process of line-
based localization and mapping is illustrated in
Fig. 21. An infrared precision position tracker
(PPT) [30] was utilized to measure the position of
the system concurrently throughout the
experiment to verify the estimation accuracy of
the process. The overall root mean square (RMS)
error in the PPT measurements was reported to be
in centimeters (that is 6.68 cm, to be exact),
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which is sufficiently small for considering such
measurements to act as the ground truth. Fig. 22
shows such an experiment comparing the
trajectories obtained by the process proposed in
this study and the PPT. The comparison verifies
the estimation accuracy of the proposed process
since the trajectories coincide closely. The RMS
error of the trajectory estimated by conducting the
proposed process is approximately 0.07 (meters)
with respect to the one measured by the PPT. It is
worth mentioning that the moments in time at
which the sensor data were collected for both
techniques were different because they were
processed independently. For this reason, the two
sets of data points describing the two trajectories
will never sit exactly on top of each other.
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Fig. 20. A process of line-based localization and
mapping that incorporates the line feature-
based alignment correction algorithm with
the improved ICP algorithm (The group of
colored line segments illustrating the outline
of the surrounding environment represents
the map, and the sequence of red points
describes the trajectory of the system that
takes scans. The map was constructed by
aligning and merging 81 individual scans. It
consists of 648 line segments. The real initial
position and final position are both (0,0),
while the estimated ones are (0,0) and
(—0.327111495504, —0.533314961374),

respectively.)
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Fig. 21. Areal-time process of line-based localization
and mapping that incorporates the line
feature-based alignment correction algorithm
with the improved ICP algorithm (The group
of colored line segments represents the map,
and the points in red describe the trajectory
of the system. The map was constructed by
aligning and merging 106 individual scans
and consists of 846 line segments. The real
initial position and final position are both at
(0,0). The estimated ones are at (0,0) and

(—0.348965542645,—-0.071385533758) ,
respectively.)

V. LOCAL MINIMUM
AVOIDANCE MECHANISM

The ICP algorithm guarantees a local
minimum for aligning one scan towards the other.
Most of the time, such a local minimum is also
the global minimum. It is observed that
neglecting a part of outliers may resolve the local
minimum issue to some degree. However, such
an issue may occasionally occur even when the
outlier neglecting mechanism is applied. As
illustrated in Fig. 23, when the process has fallen
into one of the local minima, the two scans will

never converge regardless of how many iterations
are conducted.
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Various techniques approaching the problem
of optimization (i.e., either minimization or
maximization) have been proposed in the
literature. Most of the studies face a similar issue,
the local optimum. For example, one of the
greedy-based algorithms, the hill-climbing search,
is a technique for mathematical optimization [31].
It starts with an arbitrary solution and tries to find
a better one iteratively by applying a small
modification to its solution incrementally. The
ICP algorithm can be classified as a greedy-based
algorithm. This type of algorithm is fairly
efficient and always guarantees to reach one of
the local optima. Simulated annealing (SA) is
another technique searching for optimization [32].
The insight into this problem was gained from the
process of annealing in metallurgy. It is intended
for determining an adequate approximation to the
global optimum in a specified amount of time.
Such a technique provides the process with a
means to escaping a local optimum by allowing
some solutions not better than the current one.
The probability of allowing these solutions is
gradually decreased as the process moves
towards the finish time.
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Fig. 22. An experiment comparing the trajectories
obtained by the process proposed in this
study (in red) and the infrared precision
position tracker (PPT) (in blue) (The RMS
error of the trajectory estimated by the
proposed process is approximately 0.07
(meters) with respect to the one by the PPT.)
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Fig. 23. An ICP process that has fallen into a local
minimum (Two individual scans are
shown in the upper figure. The process
iterations for the convergence of the line
scan towards the point scan are shown in
the middle figure. The result is shown in
the lower figure.)

The greedy-based algorithm may also be
able to escape local optima by some means.
Generally, there are two approaches:

1) Restarting the process with a random

initial condition.

2) Applying a random amount of sideway

move.

Both approaches are suitable for being
incorporated into the ICP process. A user-
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specified or random rotation that serves as the
integration of the two approaches can be used to
avoid the currently encountered local minimum.
The local minimum avoidance mechanism
proposed in this study completes the following
steps:

1) Carry out the iterations of the ICP scan-
matching process until reaching the
threshold.

2) Examine the mean distance between
pairs of corresponding points to
distinguish whether the process has fallen
into one of the local minima.

3) If the process has fallen into one of the
local minima, apply a user-specified or
random rotation to the scan to be aligned
towards the other one. Its direction may
be kept the same as that in the previous
process iteration.

4) Re-conduct the ICP iterations until
reaching the threshold.

Fig. 24 shows the result of the process

incorporating the mechanism for aligning the
same scans in Fig. 23.
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Fig. 24. The result of the ICP process incorporating
the local minimum avoidance mechanism
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VI. CONCLUSION

This study presented a real-time ranging
sensor-based localization and mapping algorithm
that combines an improved ICP algorithm, an
alignment correction algorithm wusing line
features, and a mechanism avoiding local minima.
It began with an examination of the point-based
process using the ICP algorithm. One of the main
issues associated with the ICP algorithm is that
the process may get trapped in a local minimum.
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Such an issue is often caused by outliers. To
resolve this, a mechanism neglecting a part of
outliers with high leverage was incorporated in
each process iteration. For processing in real time,
a down-sampling mechanism and a tree-search
technique were incorporated for the search of
correspondence to reduce processing time.

Although the point-based localization and
mapping process produces acceptable results,
there still exist issues associated with efficiency
and accuracy that must be coped with. A line-
based description for maps was adopted to reduce
processing time, and an alignment correction
algorithm using line features was built to correct
the error in the alignment between two scans. The
proposed line-based process produces better
results than the original process.

Although the issue due to local minima may
be resolved to some degree by neglecting a part
of high-leverage outliers, it may still occur
occasionally. To further resolve such an issue, a
local minimum avoidance mechanism was
incorporated.

6.1 Contributions

The major contribution presented by this
study is the development of a real-time ranging
sensor-based localization and mapping algorithm
that includes:

1) an improved ICP algorithm,

2) a line-feature based alignment correction
algorithm for reducing the scan matching
error, and

3) a local minimum avoidance mechanism
for coping with the local minimum
situations so as to improve the scan
matching result.

6.2 Limitations

The ranging sensor-based localization and
mapping algorithm is based on the following
assumptions and conditions:

1) Sufficient overlap between every two
consecutive scans iS necessary to
guarantee successful scan matching. This
makes certain that enough information of
correspondence between them can be
provided. In other words, the
transformation in between is assumed
small. For instance, a rotation less than 45
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degrees and a displacement less than 10
meters in magnitude are recommended.

2) Partly following the previous assumption,
the velocity is required to be as slow as
the natural walking speed of humans for
keeping the transformation relatively
small. Besides, some duration of time is
taken to measure the distances
counterclockwise from its environment.
Measuring (i.e., scanning) during system
movements may skew the resulting scan.
It is recommended to keep the velocity
slow to reduce the effect of skewness.

3) The  maximum dimensions of
environments suitable for this algorithm
depend on the effective sensing range of
the sensor system. Proper sensor devices
need to be adopted for different
conditions. For example, in an open
space with its boundaries far beyond the
maximum sensing range, there may be
little or no correspondence between scans.
Such an environment is not suitable for
utilizing this algorithm.

6.3 Considerations for Future Works

The ranging sensor-based localization and
mapping algorithm is expected to be capable of
coping with 3D environmental models since the
data representation and the mathematical
operations are all 3-dimensional. However, a 2D
laser ranging sensor was adopted in this study. A
major consideration for such adoption is that 2D
sensor units are generally significantly less
expensive (both financially and computationally)
than 3D units. For future development, the
adoption of 3D sensors and the applications on
3D models may also be taken into consideration.

Future studies may also focus on refining the
localization and mapping algorithm by
investigating different sensing techniques and
determining the optimal representations and scan
matching algorithms that complement the
adopted techniques.

A further consideration for future work may
be to quantitatively compare the performance of
different approaches (e.g., different algorithms,
sensing techniques, etc.) and to determine the
preferred approaches for different conditions of
environments.
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