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ABSTRACT 

This study presented a real-time localization and mapping algorithm that integrates an improved 
iterative closest point (ICP) algorithm, a feature-based alignment correction algorithm, and a local 
minimum avoidance mechanism. It started with an investigation of the ICP algorithm. Such a point-
based algorithm guarantees a local minimum for the process matching two scans (i.e., maps). However, 
the local minimum often has a large difference from the desired global minimum. Such an issue is often 
induced by outliers. A mechanism neglecting some high-leverage outliers was incorporated in every ICP 
iteration to resolve this issue. Although this process produces an acceptable result, the efficiency and 
accuracy issues must be addressed. A line-based representation for scans is able to reduce processing 
time and was therefore adopted in this study. Also, an alignment correction algorithm utilizing line 
features was proposed to reduce the error of alignment between two matched scans. The derived line-
based process produces better results than the original one. Finally, the methods to avoid local minima 
were described. Although it may be resolved to some degree by neglecting a part of outliers, the process 
may still converge to a local minimum occasionally. Accordingly, a mechanism for avoiding local 
minima was integrated into the process to further cope with this issue. The feasibility of the presented 
algorithm was verified through various experiments. 
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I. INTRODUCTION 

Localization and mapping is a technique 
utilized in the research of autonomous robots. It 
provides a robot with a means to incrementally 
building the map of its environment while 
simultaneously estimating its pose (i.e., 
orientation and position) on this map [1-4]. The 
single consistent map being built can be described 
as the global map, with respect to a sequence of 
local maps created at different locations. 

A local map is often referred to as a local 
scan. The local scan may be represented in any 
format, as long as the created scan is consistent in 
illustrating the environment surrounding the 
robot at every scanning location. For example, the 
point-based and the line-based representations 
were adopted in this study for particular uses. For 
building a local map, the robot uses its onboard 
sensors (e.g., ultrasonic and laser ranging devices) 
to collect information regarding the environment 
relative to its current location. 

The general concept of localization and 
mapping is straightforward. Supposing that the 
robot's transformation (i.e., a rotation and a 
displacement) at the time of taking the current 
scan relative to the one at the time of taking the 
previous scan is determined, the mapping process 
can be carried out by directly applying such a 
transformation to either scan and thus allowing it 
to be matched and aligned with the other. That is 
to say, the transformation converting one pose of 
the robot to the other is the same one aligning one 
scan with the other. Therefore, on the premise that 
the localization problem is solved (i.e., the 
transformation is known), the mapping problem 
will be solved as well. However, the 
transformation that drives the robot toward its 
new pose is often inaccurate due to the odometry 
errors accumulated over time. In consideration of 
this situation, solving the localization problem 
beforehand may be infeasible, and the 
transformation may need to be determined from 
the other perspective, that is by solving the 
mapping problem (i.e., how to match and align 
one scan with the other). This approach will 
require determining the correspondence between 
two scans being matched. Since the two problems 
(namely, the localization and the mapping 
problems) are tightly coupled, they can be 
combined and regarded as one single study—
localization and mapping. 

The procedure following the mapping 
process that matches and aligns two scans is 
merging them into a single one. Such a single 
scan represents the environment of the robot 
better than either of the local scans. As the robot 
takes scans along its path while moving, its 
trajectory and the global map are constructed 
incrementally. 

Without regard to the merge of the two 
matched scans, localization and mapping can be 
simply regarded as the scan matching study in 
this context. However, while the localization and 
mapping concept is straightforward, coping with 
the issues regarding the process of scan matching 
is much more complex. For instance, a majority 
of proposed algorithms in the literature 
determining the transformation that matches two 
scans are fairly difficult and their results greatly 
depend on the conditions of the environments. An 
algorithm that is suited to the particular 
requirement of an environment may not 
necessarily be suited to others. Another issue to 
consider is that there is almost always an 
efficiency-accuracy tradeoff in any algorithm, 
especially the ones being aimed at real-time 
operations. For the scan matching process, it is 
the tradeoff between the process efficiency and 
scan matching accuracy, and it depends on 
different conditions and requirements. 

The primary task of this study is to develop 
a real-time ranging sensor-based localization and 
mapping algorithm that addresses the two 
common issues: 

1) resolving the local minimum issue of 
scan matching, and 

2) improving accuracy and efficiency. 
A scan matching technique, namely, the 

iterative closest point (ICP) algorithm, is 
considered to be a benchmark for the algorithms 
and mechanisms to be developed in this study. 
Although such a technique is fairly old, it is still 
worth investigating because of its great efficiency 
for use in real time. 

The laser ranging system used in this study 
is a UTM-30LX. Such a system was reported to 
produce stable measurements with little influence 
from the reflectance and colors of objects. It 
utilizes the 905-nanometer infrared laser. For 
every scanning cycle, it scans counterclockwise 
in a 270-degree fan-shaped area. Fig. 1 illustrates 
a notional representation of the scanning area. 
The guaranteed scanning range covers from 0.1 

to 30 meters. The maximum range is 60 meters 
(by degrading its performance). The system 
estimates the distances between objects and itself 
for 1080 angular steps (with a total of 1081 
measurements) covering the 270-degree area. By 
processing the distance measurements, the 
environment information around the system can 
be obtained. The time needed to complete the 
scanning cycle once is 25 milliseconds 
(approximately 24 milliseconds to scan and 1 
millisecond to synchronize the data) without 
regard to that to transmit and to process the data 
[5]. 

 
Fig. 1. The UTM-30LX scanning area [5] 

 
The rest of this paper is organized as follows. 

Section 2 describes the related studies in the 
literature that sought improvements in either 
efficiency or accuracy, and in adapting to 
different environment conditions. Section 3 
investigates the ICP algorithm and improves it for 
real-time processing of localization and mapping. 
Section 4 presents a feature-based alignment 
correction algorithm to cope with the issue of 
large accumulated estimation errors associated 
with localization and mapping using the ICP 
algorithm. Section 5 proposes a local minimum 
avoidance mechanism. The final section provides 
a summary of the contributions of this study and 
also discusses some limitations and 
considerations for future work. 

Ⅱ. RELATED WORKS 

Some localization and mapping studies, that 
sought improvements in either efficiency or 
accuracy, and in adapting to different 
environment conditions, are introduced as 
follows. 

In the studies by Amigoni, Gasparini, and 

Gini [6, 7], a local scan is a collection of line 
segments obtained by processing the distance 
measurements of a two-dimensional (2D) laser 
sensor. The resulting global map is a 2D line-
based geometric map built by post-processing the 
local scans (i.e., not processing in real time). The 
integration of the two scans will be based on the 
geometrical information within the scans. 
Specifically, the angle between each pair of line 
segments is regarded as a geometrical landmark 
(i.e., feature). The integration process is thus 
characterized by the comparison between such 
geometrical landmarks of the two scans being 
matched. When the difference between two 
angles is less than a specified threshold, they are 
considered equal. Similarly, when the distance 
between two points is short enough, they are 
considered to coincide. 

A sonar-based algorithm was presented for a 
robot operating in an unknown and unstructured 
environment [8]. The algorithm utilizes the sonar 
measurements to construct a multileveled 
description for the environment, where the local 
scans are described using the probability profiles 
to discriminate between the occupied and empty 
areas. The global map is built by integrating 
multiple local scans from different points of view 
and is used for navigation and path planning. 

Similarly, a probabilistic approach was 
adopted [9]. The distance measurements are 
converted by a sensor model into a sequence of 
grid statuses forming a local scan. The global map 
is then updated by using the Bayes’ theorem. As 
for the robot's pose, it is estimated by utilizing the 
incremental maximum likelihood (ML) scan 
matching. By integrating the distance 
measurements gathered from the laser and sonar 
sensors, both mapping accuracy and obstacle 
detection were reported to be improved. 

A map optimization algorithm was 
developed [10] to cope with the initially poor 
estimate of the map. It utilizes a variant of the 
stochastic gradient descent (SGD) on an 
alternative representation of the state space. The 
algorithm was reported to have good stability and 
computational properties. 

An approach combining two existing 
algorithms, namely, the polar scan matching 
(PSM) algorithm and the point-to-line iterative 
closest point (PLICP) algorithm, was proposed 
[11] to resolve the issue due to low-quality 
distance estimates from a small ranging device 
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matching. By integrating the distance 
measurements gathered from the laser and sonar 
sensors, both mapping accuracy and obstacle 
detection were reported to be improved. 

A map optimization algorithm was 
developed [10] to cope with the initially poor 
estimate of the map. It utilizes a variant of the 
stochastic gradient descent (SGD) on an 
alternative representation of the state space. The 
algorithm was reported to have good stability and 
computational properties. 

An approach combining two existing 
algorithms, namely, the polar scan matching 
(PSM) algorithm and the point-to-line iterative 
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distance estimates from a small ranging device 
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and to offer robust scan matching results in 
different types of environments that are human-
made. 

A design focusing on feature matching was 
developed for map building [12]. Such a design 
uses an improved linear binary relation algorithm 
to determine the similarity in the line features 
between two adjacent maps and to establish a 
matching degree matrix of line features. After a 
rough match between two maps is performed, a 
region search optimization algorithm and a 
random-walk method are used to improve the 
orientation and position estimates, respectively. 

A method that uses progressive scan 
matching was proposed to promote the pose 
tracking performance [13]. The orientation and 
position estimates are generated separately to 
enhance the process efficiency and accuracy. It 
was reported that applying progressive iteration 
in pose estimation is able to ensure achieving a 
certain precision. 

An adaptive perception system was 
developed [14] to adapt to different types of 
environments, namely, the outdoor and indoor 
environments. Such a system classifies the 
operational environments before applying 
corresponding systems to conduct localization 
and mapping. The classification of operational 
environments is conducted by utilizing image 
classification techniques. The features in the 
images are extracted from video imagery and are 
utilized for training a classification function built 
by adopting the supervised learning techniques. 
When operating outdoors, a terrain map utilizing 
the data collected by the global positioning 
system (GPS) and the inertial measurement unit 
(IMU) is used. On the other hand, when operating 
indoors, a 2D laser-based technique is used for 
conducting localization and mapping. The indoor 
local map is first transformed and represented in 
the global reference frame and then is combined 
with the outdoor map to generate a global map. 

Some studies also focused on reducing 
memory consumption. For example, a method 
based on a particle filter was proposed [15] to 
perform scan matching and to generate a grid map 
online. Such a method maintains only one single 
grid map so that the memory being consumed can 
be limited to a certain degree. Both accuracy and 
memory consumption were reported to be 
improved. 

Ⅲ. IMPROVED ITERATIVE 
CLOSEST POINT (ICP) 

ALGORITHM 

In this section, a scan matching technique, 
the iterative closest point (ICP) algorithm [16], is 
investigated and further improved for real-time 
processing of localization and mapping. 

3.1 Point-based Maps 

Various types of representations were 
adopted in the literature to illustrate a 2D map of 
the environment. Considering the outline of the 
operating environment and the characteristics of 
the utilized ranging system, some may adopt a 
representation utilizing features (e.g., shapes, line 
segments, and points) to illustrate the corners and 
walls in indoor environments, while others may 
adopt one utilizing the occupancy grids to 
indicate whether a set of square spaces are vacant 
or occupied in indoor or outdoor environments 
[17-20]. 

The information collected by a ranging 
system (e.g., a laser scanner) typically consists of 
a series of distance measurements (or estimates). 
Each of such measurements may be represented 
by a 2D/3D point (in the Cartesian or polar form) 
since its direction is known. Considering this fact, 
it is straightforward to use a point-based map for 
representing the distance measurements. The map 
that geometrically describes the outline of an 
environment of the ranging system (i.e., scanner) 
is also called a scan. Fig. 2 shows an example of 
the 2D point-based map (or scan). Fig. 3 shows 
the actual environment for this particular example. 

3.2 The Original ICP Algorithm 

As the ranging system (mounted on the 
mobile robot) consecutively scans the 
environment during level movements, the 
localization and mapping process can be 
conducted by incrementally matching and 
merging the map with each new scan acquired. 
The iterative closest point (ICP) algorithm is one 
of the techniques for matching two point-based 
scans (or maps). It was presented by Besl and 
McKay (1992) [16]. 

Assuming that there are two separate scans, 
each of which consists of a series of points, the 

scan matching process is to find a transformation 
best aligning one scan with the other. However, to 
obtain an optimized transformation, the 
correspondence between the two scans should be 
determined beforehand. Such a correspondence 
represents the way that the points of one scan are 
related to the points of the other scan. The 
transformation and the correspondence are 
therefore the two major subjects in the study of 
scan matching [21]. 

 
Fig. 2. A point-based map (The map consists of 1081 

points. The ranging system is located at (0, 0).) 
 

 
Fig. 3. The environment scanned by the ranging 

system for the example in Fig. 2 
 

It often seems fairly simple to determine the 
correspondence between two scans by visual 
inspection of humans based on prior knowledge 
and experience regarding the general features of 
an environment in which the scans were taken. 

However, it turns into a whole new situation for 
an automated system. In other words, finding the 
correspondence between two point-based scans is 
a complicated task because both of the scans 
consist of a set of points appearing randomly 
positioned. It is usually the most difficult part 
when conducting scan matching. Furthermore, 
due to a certain amount of sensing error in most 
cases, two sets of points from two separate scans 
cannot be aligned perfectly, even if the system 
that takes scans stays stationary. This means that 
real correspondence may never exist. Certain 
assumptions need to be made to resolve this issue. 
As a result, some kind of correspondence close to 
the truth will be defined. For the ICP algorithm 
that matches two sets of points, the 
correspondence of every point within one set is 
defined as its closest point within the other. Due 
to the fact that this assumption is often not 
accurate, the transformation calculated may not 
be accurate either. The ICP algorithm copes with 
this situation by alternating between determining 
the correspondence and estimating the 
transformation until the two scans are aligned 
closely under a specified threshold. 

Given scans A and B, the following steps are 
to be carried out by the ICP algorithm to match 
(or to align) A with B: 

1) For each of the points in A, search for its 
closest point in B and assign this point as 
its corresponding point, 

2) Determine a transformation (i.e., a 
composite of a rotation and a 
displacement) minimizing the sum of all 
squared distances between pairs of points 
that correspond to each other, 

3) Apply the determined transformation to 
A, and 

4) Repeat steps 1 through 3 until A is closely 
aligned with B or some threshold is 
reached. 

Fig. 4 shows a notional ICP process. As 
described in the upper left and lower left parts of 
the figure, the closest points are assumed to be the 
corresponding points although this may not be 
true. Despite this, it almost always brings two 
scans closer after each of the process iterations. 
More precisely, the ICP algorithm guarantees 
reaching one of the local minima for minimizing 
the sum of all squared distances between pairs of 
points that correspond to each other. In a few 
cases, such a local minimum achieved is 
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coincidentally global, and the two scans can be 
tightly matched. However, the process often falls 
into a local minimum that is not global and gets 
trapped. 

 
Fig. 4. An ICP process matching scan A and scan B 

(In subfigures 1 and 3, a search for A's 
corresponding points in B is conducted, while 
in subfigures 2 and 4, a transformation is 
determined and applied to A to bring it closer 
to B.) 
 

As mentioned earlier, the transformation to 
be determined is to minimize the sum of all 
squared distances between pairs of points 
corresponding to each other. The following 
summarizes the algorithm for such a 
transformation [22]. 

Given two corresponding sets of points,  
and , they can be described as follows. 

, 
  ,                 (1) 

where   and   are 3D points, and  
corresponds with  for . 

, 
               (2) 

A transformation consisting of a rotation and a 
displacement is required to best align   with  
(i.e.,   with  ). The terms   and   represent 
the centroids of  and , respectively. 

,     .          (3) 
The terms  and  represent the sets of points 
obtained by referring  and  to their centroids. 

 
, 

 
                                   (4) 

 is a  matrix. Its elements represent the 
sums of products of elements in  and elements 
in . 

,       (5) 

where 
,  ,  (6) 

and so on.  represents a  real symmetric 
matrix. Its 16 elements are determined by the 
mathematical operations of the 9 elements in the 

 matrix . 
 

 

(7) 
The desired rotation represented by a unit 
quaternion  is the eigenvector corresponding to 
the most positive eigenvalue  of the matrix 

. 
.               (8) 

The desired displacement  is the vector from the 
rotated centroid of  to the centroid of . 

.                (9) 
The determined transformation  is then 
applied to . Ideally, the transformed  is able to 
be closely aligned with . 

Fig. 5 shows a scan matching process 
utilizing the ICP algorithm. In this example, the 
process took 10 iterations to achieve the threshold. 
Such a threshold was defined as the improvement 
of decreasing the mean squared distance between 
pairs of points corresponding to each other in the 
latest iteration. Its value was set to 0.001. The 
process was terminated as soon as the 
improvement went below this value. The result 
shows that the two scans are closely matched. 

This example was set up to reduce 
variability caused by some high-leverage outliers 
that will be defined later in this study, but not to 
excessively idealize the condition. The system 
stayed stationary when the two scans were taken. 
This made them similar to each other but still 
different because there existed the random 
sensing error. Furthermore, the scan in blue was 
rotated by 10 degrees about the origin and then 
translated by +1 meter and +2 meters in the x-axis 
and y-axis, respectively. Even though they may 
be aligned closely with each other, there may still 
be some small error in the result, which is 
expected. It is worth mentioning that when taking 
only one scan and transforming it to make up the 
other, the result will show that the two scans are 

aligned completely without any error because 
there exists a perfect correspondence between 
them in such a specific case. 

 

 

 
Fig. 5. A process of scan matching utilizing the ICP 

(The two point scans in blue and in red are 
shown in the upper figure. Both scans consist 
of 1081 points. The process iterations for 
converging (or aligning) the scan in blue 
towards the scan in red are shown in the 
middle figure. The result is shown in the 
lower figure.) 

3.3 Outlier Neglecting when Using the ICP 
Algorithm 

When matching two scans, the features (i.e. 
points) existing within either but having no real 
correspondence within the other may be regarded 

as outliers. Fig. 6 illustrates the concept of 
outliers used in this study. In the illustration, it is 
assumed that the way two scans are aligned is 
known, although such an assumption may not 
always be true. It is merely intended for providing 
a clearer concept. 

 
Fig. 6. The concept of outliers (The features existing 

within one scan but not having a real 
correspondence within the other may be 
considered to be outliers.) 
 

Before describing the means of identifying 
and neglecting outliers, it is essential to realize 
the effect introduced by outliers and the reason to 
incorporate a mechanism for neglecting outliers 
in the process. As shown in Fig. 7, the most 
apparent effect introduced by outliers is that the 
process falls into one of the local minima. 

As previously mentioned, by adopting the 
assumption of closest-point correspondence in 
each process iteration, the ICP algorithm 
calculates a transformation minimizing the sum 
of squared distances between pairs of points 
corresponding to each other. When the process 
reaches one of the local minima, any other 
transformation calculated in the neighborhood in 
the following iterations will further increase the 
sum of squared distances. Under this 
circumstance, the process is considered falling 
into a local minimum and being "trapped". Taking 
more process iterations is not useful for two scans 
to converge. As the example shown in Fig. 7, the 
long tail in the blue scan contains a large part of 
high-leverage outliers and will inevitably cause 
the local-minimum issue. The reason is that the 
squared distances between the points on this tail 
and their designated correspondence within the 
other scan will only get larger whenever the two 
scans try to converge and thus prevent the actual 
convergence from proceeding. This observation 
suggests that the issue of local minima may be 
resolved to some degree by neglecting a part of 
outliers. 
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of squared distances between pairs of points 
corresponding to each other. When the process 
reaches one of the local minima, any other 
transformation calculated in the neighborhood in 
the following iterations will further increase the 
sum of squared distances. Under this 
circumstance, the process is considered falling 
into a local minimum and being "trapped". Taking 
more process iterations is not useful for two scans 
to converge. As the example shown in Fig. 7, the 
long tail in the blue scan contains a large part of 
high-leverage outliers and will inevitably cause 
the local-minimum issue. The reason is that the 
squared distances between the points on this tail 
and their designated correspondence within the 
other scan will only get larger whenever the two 
scans try to converge and thus prevent the actual 
convergence from proceeding. This observation 
suggests that the issue of local minima may be 
resolved to some degree by neglecting a part of 
outliers. 
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Fig. 7. ICP scan matching without neglecting outliers 

(Two scans are shown in the upper figure. The 
scans in blue and in red consist of 1047 points 
and 1081 points, respectively. The process 
iterations for the convergence are shown in the 
middle figure. The result is shown in the lower 
figure.) 
 

Various techniques were proposed in the 
literature to cope with the issue caused by outliers. 

For example, a measure utilizing a distance value 
was developed and named the fractional root 
mean squared distance (FRMSD) by Phillips, Liu, 
and Tomasi (2007) [23]. By minimizing the 
FRMSD between two scans, the determined 
transformation was reported to be less affected by 
outliers. This assumes that the two scans being 
matched are fairly similar and that a clear 
correspondence exists between them. Specifically, 
the transformation of one scan relative to the 
other must be small, so as to limit the part 
containing outliers. As the part containing 
outliers gets larger, some neglecting mechanism 
may be needed to guarantee an acceptable scan 
matching result. 

A research study conducted by 
Rusinkiewicz and Levoy (2001) addressed the 
outlier identifying issue by justifying the 
distances between pairs of corresponding points 
[24]. Similarly, assuming that the relative 
transformation is small, points in one scan and 
their corresponding points in the other shall be 
within some specified distance apart. The points 
that are outside a specified distance from their 
correspondence are considered to be outliers and 
neglected. The same technique was initially 
tested in our study to approach the outlier issue. 
However, the effect provided is limited, and the 
process may eventually fall into one of the local 
minima and get trapped. A more tangible 
technique is needed to better resolve this issue. 

A frustum culling approach was proposed in 
the studies by May, Droeschel, Holz, Fuchs, and 
Nuchter (2009) [25] and by Holz and Behnke 
(2010) [26]. The term, frustum, represents the 
field of view from a certain perspective. The 
points outside the specified frustum are 
considered to be outliers and neglected. 

By adopting an approach similar to frustum 
culling, the mechanism for identifying and 
neglecting outliers developed in our study 
specifies the angular range of the scan being 
aligned with from the ranging system's 
perspective as the frustum. As shown in Fig. 8, 
when the process is to converge scan A towards 
scan B, the part of A falling outside of the angular 
range of B will be considered to be the part 
consisting of outliers. This part will be identified 
and neglected in every ICP iteration before 
assigning the correspondence. To better illustrate 
the concept of the identifying mechanism, the 
figure is showing the final stage of scan matching 

(i.e. the last iteration of the process) at which the 
two scans being matched almost converge and the 
majority of outliers are able to be identified and 
neglected. On the other hand, at the beginning 
stage, since the two scans have not converged, the 
process will only identify a small part of the 
outliers. As it proceeds, the outliers identified will 
increase incrementally. Also, outlier neglecting is 
only used to find the correspondence and to 
calculate the optimized transformation in every 
ICP iteration. None of the points is actually 
removed. The transformation will be utilized to 
transform all of the points in the original scan. 

Fig. 9 shows the result of the ICP process 
integrated with the outlier neglecting mechanism 
for the same scans shown in Fig. 7. By this means, 
the two scans are closely matched with each other. 

 
Fig. 8.  Notional illustration of the part of a scan 

being identified as outliers (The part of 
scan A falling outside of the angular 
range of scan B from the sensor's 
perspective will be identified as outliers 
and neglected. The sensor (origin) point 
is the ranging system's location.) 
 

 
Fig. 9. The result of the ICP process integrated 

with the outlier neglecting mechanism 

3.4 Mergence of the Matched Point Scans 

Localization and mapping conducted in this 
study is characterized by a process of scan 
matching that converges the old scan towards a 
scan that is newly acquired. The old scan 
represents either one single scan or the 
combination of a sequence of scans taken so far. 

After completing scan matching, a certain 
process needs to be carried out for merging the 
two separate scans being matched into a single 
one. The process for mergence will depend on the 
requirements specified, such as the nature of the 
implementation (i.e., post or real-time 
processing), and the map's intended use. 

Since there usually exists a fairly large 
overlapped region between any two scans being 
matched in a consecutive process of scanning, to 
keep all points of two scans after merging them 
into one single scan may not be efficient. The 
number of redundant points will keep growing 
and thus will reduce the efficiency of the 
subsequent process of scan matching 
considerably. This situation will prevent the 
process from being conducted in real time. A 
method characterized by the concept of sparse 
point maps was proposed to resolve this issue 
[26]. Its purpose is to avoid storing duplicate 
points by carrying out one additional search of 
correspondence and rejecting those points of one 
scan with corresponding points identical to 
themselves existing within the other scan. An 
issue associated with this method is that the time 
consumption for the additional search of 
correspondence may considerably slow down the 
process since it is applied to all of the points 
within the scan, not merely a down-sampled 
subset as frequently adopted in every ICP 
iteration. (It is noted that the time consumption of 
each ICP iteration can be effectively reduced by 
down-sampling the scan points for 
correspondence searches.) 

For our study, the method for mergence 
consists of the following steps. Fig. 10 illustrates 
such a merging process. 

1) Keep all points in the new scan. The 
newer scan is intuitively more accurate in 
comparison with the older one that 
contains a relatively larger accumulated 
error. 

2) Discard those old scan points lying inside 
of the overlapped region of the two 
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(i.e. the last iteration of the process) at which the 
two scans being matched almost converge and the 
majority of outliers are able to be identified and 
neglected. On the other hand, at the beginning 
stage, since the two scans have not converged, the 
process will only identify a small part of the 
outliers. As it proceeds, the outliers identified will 
increase incrementally. Also, outlier neglecting is 
only used to find the correspondence and to 
calculate the optimized transformation in every 
ICP iteration. None of the points is actually 
removed. The transformation will be utilized to 
transform all of the points in the original scan. 

Fig. 9 shows the result of the ICP process 
integrated with the outlier neglecting mechanism 
for the same scans shown in Fig. 7. By this means, 
the two scans are closely matched with each other. 

 
Fig. 8.  Notional illustration of the part of a scan 

being identified as outliers (The part of 
scan A falling outside of the angular 
range of scan B from the sensor's 
perspective will be identified as outliers 
and neglected. The sensor (origin) point 
is the ranging system's location.) 
 

 
Fig. 9. The result of the ICP process integrated 

with the outlier neglecting mechanism 

3.4 Mergence of the Matched Point Scans 

Localization and mapping conducted in this 
study is characterized by a process of scan 
matching that converges the old scan towards a 
scan that is newly acquired. The old scan 
represents either one single scan or the 
combination of a sequence of scans taken so far. 

After completing scan matching, a certain 
process needs to be carried out for merging the 
two separate scans being matched into a single 
one. The process for mergence will depend on the 
requirements specified, such as the nature of the 
implementation (i.e., post or real-time 
processing), and the map's intended use. 

Since there usually exists a fairly large 
overlapped region between any two scans being 
matched in a consecutive process of scanning, to 
keep all points of two scans after merging them 
into one single scan may not be efficient. The 
number of redundant points will keep growing 
and thus will reduce the efficiency of the 
subsequent process of scan matching 
considerably. This situation will prevent the 
process from being conducted in real time. A 
method characterized by the concept of sparse 
point maps was proposed to resolve this issue 
[26]. Its purpose is to avoid storing duplicate 
points by carrying out one additional search of 
correspondence and rejecting those points of one 
scan with corresponding points identical to 
themselves existing within the other scan. An 
issue associated with this method is that the time 
consumption for the additional search of 
correspondence may considerably slow down the 
process since it is applied to all of the points 
within the scan, not merely a down-sampled 
subset as frequently adopted in every ICP 
iteration. (It is noted that the time consumption of 
each ICP iteration can be effectively reduced by 
down-sampling the scan points for 
correspondence searches.) 

For our study, the method for mergence 
consists of the following steps. Fig. 10 illustrates 
such a merging process. 

1) Keep all points in the new scan. The 
newer scan is intuitively more accurate in 
comparison with the older one that 
contains a relatively larger accumulated 
error. 

2) Discard those old scan points lying inside 
of the overlapped region of the two 
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matched scans (i.e., within the new scan's 
angular range). This removes a part of old 
and duplicate information to avoid 
unlimited data growth. 

3) Following the previous step, keep those 
points lying outside of the overlapped 
region of the two matched scans. 

 
Fig. 10.  Notional illustration for the process of 

mergence (The upper figure shows two 
matched point scans to be merged. The 
lower figure shows the result.) 

3.5 Real-time Localization and Mapping 

The incremental process for localization and 
mapping begins with one scan taken by the 
ranging system at a certain location. Such a scan 
is considered to be the original old scan. Note that 
a scan taken earlier or a known map constructed 
by matching multiple scans beforehand may also 
be used, on the condition that it adopts a 
representation the same as the one used in the 
process. For every newly acquired scan, the 
process cycle conducts the following two tasks: 

1) The ICP scan matching process aligning 
the old scan with the new one. (The 
process includes the outlier neglecting 
mechanism.) 

2) The merging process combining the two 
scans being matched into one. (The 
resulting scan is in turn regarded as the 
updated old scan.) 

The transformation used to align the old scan 
with the new one is calculated during each scan 
matching process cycle. Such a transformation at 
the end of the  cycle consists of a rotation  
described by a unit quaternion and a displacement 

 described by a 3-dimensional (3D) vector. The 
system's orientation   and position   relative 

to the initial values,  and , after completing 
the   process cycle are determined in the 
following equations. 

, 
.        (10) 

The orientation   is represented by a unit 
quaternion, while the position   is represented 
by a 3D vector. The superscript   indicates the 
complex conjugate of the quaternion, and the 
subscript  indicates the  cycle of the process. 
Quaternion multiplication is the operation used in 
the equations. The initial orientation   and 
position  are as the following. 

, 
.                (11) 

The absolute initial values of orientation and 
position can be adopted instead. In such a case, 

  and   will be represented by the absolute 
values as well. 

A general concept of real-time processing 
often indicates that the algorithm is able to 
process inputs (e.g., sensor data) as soon as they 
are present without requiring any buffering 
mechanism. For every process cycle, the 
presented process in our study takes one new scan 
over the environment and matches (and also 
merges) the older one built from the previous 
cycle with the new one just acquired. It is 
considered to be a real-time process if it can be 
conducted continuously as the ranging system 
moves. A speed as slow as humans’ natural 
walking speed may be set for the system. 
Therefore, it is acceptable for allowing the real-
time process to take 1 to 2 seconds on average to 
complete each process cycle. Note that the time 
for taking a new scan (which is reported to be in 
tens of milliseconds) is trivial and negligible in 
comparison to the time for matching and merging 
scans. 

For real-time localization and mapping, 
efficiency is a major issue to be coped with. 
Specifically, the time required for every process 
cycle must be reduced so that it is able to operate 
reasonably fast in real time. The most time-
consuming operation during a process cycle is the 
search for correspondence between two scans in 
each ICP iteration. 

When adopting a brute-force approach, the 
correspondence search for each closest point is 
completed by calculating and comparing all 
squared distances between all points of the new 
scan and each point of the old scan. Therefore, 

assuming the numbers of points in the old and 
new scans are   and  , respectively, such a 
search in each ICP iteration of each process cycle 
has a complexity of  , which is 
computationally expensive. 

To resolve the complexity issue, 
Maneewongvatana and Mount (1999) proposed 
an approach that utilizes a tree-search technique 
(named the K-D tree) [27]. By incorporating this 
method, conducting a search among a series of 
points for the closest one is more efficient. The 
concept of the K-D tree is to build a binary tree 
for the data points. Each node of the tree defines 
one axis and divides the points along this axis 
according to their coordinates. In this way, for 
every new scan acquired, the structure of a K-D 
tree is constructed. In each ICP iteration, the 
closest point to each point in the old scan will be 
searched within this K-D tree. The complexity for 
such a search is  if there are  points in 
the new scan. For the complete correspondence 
search with   points in the old scan, the 
complexity will be  , which is less 
complex and more efficient than the brute-force 
approach. Note that building a K-D tree has a 
complexity of . During each process 
cycle, the K-D tree structure is only built once. 

Although there is an improvement in 
efficiency gained by utilizing the K-D tree search 
method, completing each process cycle may still 
be too time-consuming, especially when the two 
scans being matched are large in size (i.e., 
containing large numbers of points). Certain 
means may be needed to ease the computational 
load on the search for correspondence. Our study 
adopts an approach that down-samples the old 
scan by a specified number. Such down-sampling 
is applied at the start in each of the ICP iterations 
to decrease the number of old scan points 
partaking in search for correspondence. The 
process efficiency may be improved to a degree. 
However, it may also be possible to affect 
accuracy if the sampled point features are not 
sufficient to offer enough information for the 
process. This is one situation in which an 
accuracy-efficiency trade-off needs to be 
determined. 

An example of one localization and mapping 
process cycle is shown in Fig. 11. In such an 
example, a comparison of the time consumption 
of the process using different correspondence 
search methods and different ICP setups is shown 

in Table 1. It is noted that the process is more 
efficient by applying down-sampling and 
incorporating the K-D tree search method so that 
it can be conducted in real time. Although 
specifying a larger value for the threshold can 
reduce the processing time as well, this usually 
decreases the accuracy directly and is not 
emphasized in our study. 

 

 
Fig. 11.  An example of one localization and mapping 

process cycle (Two separate scans are shown 
in the upper figure. The scans in red and blue 
are the old and new ones consisting of 1081 
points and 1047 points, respectively. The 
resulting scan consisting of 1242 points is 
shown in the lower figure.) 
 

Table 1. Comparison of time consumption 
Methods Incorporated Time (seconds) # Iterations 

Brute-force 127.49573576200 19 

K-D tree  10.70492927460 19 
Down-sampling by 20  
+ K-D tree 1.13340847026 20 

Threshold ( ):  
Reduction in the mean squared distance  

This table shows the comparison in process time when applying 
different correspondence search methods and different ICP setups 
(for the same example in Fig. 11). The program was executed on a 
computer equipped with an Intel Core i7 2.20 GHz processor. It 
was implemented by the Python scripting language and was not 
optimized. The result is only for an approximate comparison. 

 
Fig. 12 shows a process of real-time point-

based localization and mapping that adopts the 
improved ICP algorithm (i.e., the ICP algorithm 
integrated with the outlier neglecting mechanism). 

22

Chuan-Hao Yang
Localization and Mapping by an Improved ICP Algorithm and a Feature-based Alignment Correction Algorithm



assuming the numbers of points in the old and 
new scans are   and  , respectively, such a 
search in each ICP iteration of each process cycle 
has a complexity of  , which is 
computationally expensive. 

To resolve the complexity issue, 
Maneewongvatana and Mount (1999) proposed 
an approach that utilizes a tree-search technique 
(named the K-D tree) [27]. By incorporating this 
method, conducting a search among a series of 
points for the closest one is more efficient. The 
concept of the K-D tree is to build a binary tree 
for the data points. Each node of the tree defines 
one axis and divides the points along this axis 
according to their coordinates. In this way, for 
every new scan acquired, the structure of a K-D 
tree is constructed. In each ICP iteration, the 
closest point to each point in the old scan will be 
searched within this K-D tree. The complexity for 
such a search is  if there are  points in 
the new scan. For the complete correspondence 
search with   points in the old scan, the 
complexity will be  , which is less 
complex and more efficient than the brute-force 
approach. Note that building a K-D tree has a 
complexity of . During each process 
cycle, the K-D tree structure is only built once. 

Although there is an improvement in 
efficiency gained by utilizing the K-D tree search 
method, completing each process cycle may still 
be too time-consuming, especially when the two 
scans being matched are large in size (i.e., 
containing large numbers of points). Certain 
means may be needed to ease the computational 
load on the search for correspondence. Our study 
adopts an approach that down-samples the old 
scan by a specified number. Such down-sampling 
is applied at the start in each of the ICP iterations 
to decrease the number of old scan points 
partaking in search for correspondence. The 
process efficiency may be improved to a degree. 
However, it may also be possible to affect 
accuracy if the sampled point features are not 
sufficient to offer enough information for the 
process. This is one situation in which an 
accuracy-efficiency trade-off needs to be 
determined. 

An example of one localization and mapping 
process cycle is shown in Fig. 11. In such an 
example, a comparison of the time consumption 
of the process using different correspondence 
search methods and different ICP setups is shown 

in Table 1. It is noted that the process is more 
efficient by applying down-sampling and 
incorporating the K-D tree search method so that 
it can be conducted in real time. Although 
specifying a larger value for the threshold can 
reduce the processing time as well, this usually 
decreases the accuracy directly and is not 
emphasized in our study. 

 

 
Fig. 11.  An example of one localization and mapping 

process cycle (Two separate scans are shown 
in the upper figure. The scans in red and blue 
are the old and new ones consisting of 1081 
points and 1047 points, respectively. The 
resulting scan consisting of 1242 points is 
shown in the lower figure.) 
 

Table 1. Comparison of time consumption 
Methods Incorporated Time (seconds) # Iterations 

Brute-force 127.49573576200 19 

K-D tree  10.70492927460 19 
Down-sampling by 20  
+ K-D tree 1.13340847026 20 

Threshold ( ):  
Reduction in the mean squared distance  

This table shows the comparison in process time when applying 
different correspondence search methods and different ICP setups 
(for the same example in Fig. 11). The program was executed on a 
computer equipped with an Intel Core i7 2.20 GHz processor. It 
was implemented by the Python scripting language and was not 
optimized. The result is only for an approximate comparison. 

 
Fig. 12 shows a process of real-time point-

based localization and mapping that adopts the 
improved ICP algorithm (i.e., the ICP algorithm 
integrated with the outlier neglecting mechanism). 
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In this example, the ranging system alternated 
between moving straight forward and making a 
left turn until arriving at its initial location (i.e., 
moved approximately in a rectangular loop). The 
point set in blue describes the map, while the one 
in red represents the system's trajectory. The map 
was constructed consecutively by matching and 
merging scans taken during the movements of the 
system. The system's coordinates are represented 
in the north-east-down (NED) coordinates 
relative to its initial position and orientation. For 
our specific case, a 2D map is represented. Only 
the north and east coordinates (i.e., the x and y 
axes) are adopted. Fig. 13 shows an image of the 
real environment taken from the relative location 
at the lower-right corner on the map. As observed 
in Fig. 12, it may not be easy to identify the error 
of the estimated transformation by examining the 
final map. Alternatively, it may be reflected in the 
trajectory being estimated. Although the real 
initial and final locations were perfectly the same, 
the estimated values may still show a large 
difference in between. This is caused by the error 
accumulated in every scan matching process 
cycle. The distance error of the estimated final 
location from the real one is approximately 1.45 
meters, which gives a mean distance error of 0.02 
meters per scan-matching process cycle (for a 
total number of 80 process cycles matching 81 
scans). Certain means may be needed to 
effectively reduce such an error to some degree. 

Ⅳ. IMPROVED ICP 
ALGORITHM COMBINED WITH 

A FEATURE-BASED 
ALIGNMENT CORRECTION 

ALGORITHM 

In this section, a feature-based alignment 
correction algorithm is presented to resolve the 
issue of accumulated errors associated with 
localization and mapping using the ICP algorithm. 

4.1 Line-based Description for Point Maps 

The point-based representation is sufficient 
for describing the outlines of general 
environments. However, to cope with the 
accumulated error, some other representation will 
be worth investigating in a sense that it may offer 
better features for correcting the alignment error. 

 
Fig. 12. A process of real-time point-based localization 

and mapping (The point set in blue represents 
the map, while the one in red shows the 
trajectory. The map was constructed by 
incrementally matching and merging 81 scans. 
It consists of 1473 points. The coordinates are 
relative to the system's initial position and 
orientation. The real initial and final positions 
are both . The estimated ones are  
and  , 
respectively.) 

 

 
Fig. 13.  The actual environment for the process 

shown in Fig. 12 
 

The representation utilizing line segments is 
adopted for the following reasons: 

1) The outline of a general environment can 
usually be illustrated by a series of 2D 
line segments from the top view. 

2) Line segments describe the boundaries 
(e.g., obstacles and walls) better than 
points. In a point map, it is often difficult 

to tell whether the space is occupied or 
not between any two adjacent points. 

3) Using line segments is more 
computationally efficient since every 
single line segment can represent all 
points on it. 

4) When conducting ICP scan matching, 
instead of adopting all points in the 
original point scan for the 
correspondence search, utilizing the start 
and end points on the line segments may 
be more efficient, since it systematically 
down-samples the original scan. 

5) An algorithm analyzing line features 
may be used to correct the alignment 
error after each ICP localization and 
mapping process cycle. 

Hough transform is one technique utilizing 
line features [28]. As illustrated in Fig. 14, one 
straight line in the 2D coordinates is described by 
the following equation. 

,                        (12) 
  and   are the slope and intercept parameters, 

respectively. Therefore, the line can be 
represented by ( , ). One issue associated with 
this representation is its instability. When the line 
gets vertical (or horizontal), the value of  (or ) 
becomes infinite. 

 

 

 
Fig. 14. One straight line represented in the Cartesian 

coordinates (upper and middle) and the  -  
coordinates (lower) 

The same line may be defined by utilizing 
the range   and bearing   as well. The range  
represents the distance of the line from the origin, 
and the bearing   represents the angle of the 
vector from the origin to the closest point of the 
line. 

.                (13) 
Given two points (  ,  ) and (  ,  ) on a 
straight line,  and  can be calculated as follows 
[29]. 

 

(14) 
 
.             (15) 

The line is therefore described by one 
particular point in the  -   coordinates by 
performing the Hough transform. A useful 
concept is that if the distances between multiple 
points in the  -   coordinates are short enough, 
these points can be represented approximately by 
one single line in the -  coordinates. 

Given a point map, the procedure to convert 
it into a line map is described in the following 
steps. (Fig. 15 shows a notional illustration of 
such a conversion.) 

1) Connect every two adjacent points by one 
line segment if the distance between them 
is short enough to form a part of the 
boundary. A threshold value for the 
distance needs to be specified. Each line 
segment has 5 features: the start point, the 
end point, the bearing , the range , and 
the length. 

2) Examine every two adjacent line 
segments to decide if the two points 
representing them in the -  coordinates 
are close enough for them to be combined, 
and keep a record of these combined 
points. A threshold value for the distance 
needs to be specified. Any cluster of 
points with distances in between shorter 
than the distance threshold in the  -  
coordinates represents one group of line 
segments being approximated by a single 
one. 

3) For each group of line segments being 
combined and approximated by one 
single line segment, extract all of the 
points originally associated with these 
segments and determine a segment of the 
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to tell whether the space is occupied or 
not between any two adjacent points. 

3) Using line segments is more 
computationally efficient since every 
single line segment can represent all 
points on it. 

4) When conducting ICP scan matching, 
instead of adopting all points in the 
original point scan for the 
correspondence search, utilizing the start 
and end points on the line segments may 
be more efficient, since it systematically 
down-samples the original scan. 

5) An algorithm analyzing line features 
may be used to correct the alignment 
error after each ICP localization and 
mapping process cycle. 

Hough transform is one technique utilizing 
line features [28]. As illustrated in Fig. 14, one 
straight line in the 2D coordinates is described by 
the following equation. 

,                        (12) 
  and   are the slope and intercept parameters, 

respectively. Therefore, the line can be 
represented by ( , ). One issue associated with 
this representation is its instability. When the line 
gets vertical (or horizontal), the value of  (or ) 
becomes infinite. 

 

 

 
Fig. 14. One straight line represented in the Cartesian 

coordinates (upper and middle) and the  -  
coordinates (lower) 

The same line may be defined by utilizing 
the range   and bearing   as well. The range  
represents the distance of the line from the origin, 
and the bearing   represents the angle of the 
vector from the origin to the closest point of the 
line. 

.                (13) 
Given two points (  ,  ) and (  ,  ) on a 
straight line,  and  can be calculated as follows 
[29]. 
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The line is therefore described by one 
particular point in the  -   coordinates by 
performing the Hough transform. A useful 
concept is that if the distances between multiple 
points in the  -   coordinates are short enough, 
these points can be represented approximately by 
one single line in the -  coordinates. 

Given a point map, the procedure to convert 
it into a line map is described in the following 
steps. (Fig. 15 shows a notional illustration of 
such a conversion.) 

1) Connect every two adjacent points by one 
line segment if the distance between them 
is short enough to form a part of the 
boundary. A threshold value for the 
distance needs to be specified. Each line 
segment has 5 features: the start point, the 
end point, the bearing , the range , and 
the length. 

2) Examine every two adjacent line 
segments to decide if the two points 
representing them in the -  coordinates 
are close enough for them to be combined, 
and keep a record of these combined 
points. A threshold value for the distance 
needs to be specified. Any cluster of 
points with distances in between shorter 
than the distance threshold in the  -  
coordinates represents one group of line 
segments being approximated by a single 
one. 

3) For each group of line segments being 
combined and approximated by one 
single line segment, extract all of the 
points originally associated with these 
segments and determine a segment of the 

25

中正嶺學報  第五十卷  第二期  民國 110.11
JOURNAL OF C.C.I.T., VOL.50, NO.2, NOV., 2021



least square line fitting those points. All 
of such line segments being determined 
are to take the place of the original line 
segments for describing the line map. 

Fig. 16 shows the result of a conversion 
process from points into line segments. The 
number of line segments and their lengths in the 
result may depend on the value of the threshold 
specified for combining the original shorter line 
segments. In our study, the threshold value 
represents the upper bound distance between 
points in the -  coordinates. It was set to 1.0 for 
this example. Distances between multiple points 
below this threshold will be regarded short 
enough for these points to be approximated by a 
single one. These points will also be represented 
by one single line in the  -   coordinates. 
Intuitively, adopting line segments to describe the 
map is expected to reduce the required space for 
maintaining it, since a large number of points in 
the original map are to be replaced by fewer line 
segments. 

4.2 Scan Matching for Aligning a Line 
Map Towards a Point Map 

The line-based localization and mapping 
process is to estimate the transformation and to 
incrementally build a line map simultaneously in 
the meantime of conducting scan matching. Since 
every new scan just acquired is still in the form of 
a point map, it will be straightforward to match 
the maintained line map with the new one that is 
a point map. 

A line map consisting of line segments may 
be directly decomposed into points by drawing 
out the start point and the end point from every 
line segment. Therefore, the ICP algorithm may 
still apply to aligning a line map towards a point 
map. In this way, the process will be more 
efficient than originally to match two point maps 
because the number of points is significantly 
reduced. For aligning a line map towards a point 
map, here are several steps to follow: 

1) Draw out the start point and the end point 
from every line segment in the line map 
to form a group of points. 

2) Align the group of points with the point 
map by utilizing the improved ICP 
algorithm discussed in this study. 

3) Apply the calculated transformation to 
the line map. 

 
Fig. 15.  A notional illustration of the conversion 

from a point map to a line map 

 
Fig. 16.  The result of a conversion process from 

points into line segments (The original 
point map consists of 1047 points. The 
resulting line map consists of 175 line 
segments.) 
 

Fig. 17 shows a process example that aligns 
a line map towards a point map. Adopting the 
same sensor measurements, Table 2 shows a 
comparison of time consumed when conducting 
scan matching for different types of maps. One 
case was aligning between point maps, and the 
other case was aligning a line map towards a point 
map. In either case, the process was conducted 
without down-sampling the points in the map 
beforehand for each search of correspondence. It 
is observed that conducting the alignment of a 

line map towards a point map achieved greater 
efficiency. To process in real time, the consumed 
time for either case may be reduced further by 
appropriately conducting down-sampling for the 
search of correspondence in every ICP iteration. 

 

 
Fig. 17.  A process example showing the alignment of 

a line map towards a newly acquired point 
map (The point map consists of 1047 points. 
It is illustrated in blue. The line map consists 
of 316 line segments and is illustrated in red. 
The initial two separate maps are shown in the 
upper figure. The result is shown in the lower 
figure.) 

 
Table 2. Comparison of time consumption 

Types of Maps Time (seconds) # Iterations 

point map / point map 10.7217815053 19 
line map / point map 7.81693578522 23 

Threshold ( ):  
Reduction in the mean squared distance  

This is a comparison of processing time consumption between 
aligning a point map and a line map towards a point map 
respectively. Both were conducted without down-sampling the 
points beforehand for the search of correspondence. The raw 
measurements are the same as used in Fig. 17. The program was 
executed on a computer equipped with an Intel Core i7 2.20 GHz 
processor. It was implemented by the Python scripting language and 
was not optimized. The result is only for an approximate comparison. 

4.3 The Line Feature-based Alignment 
Correction Algorithm 

The issue associated with the point-based 
process of localization and mapping is the 
cumulative estimation error. Such an issue still 
exists for the line-based process because the same 
technique (i.e., the ICP) is adopted. It is observed 
that by adjusting the threshold value for taking 
more iterations, the scan matching accuracy may 
be enhanced to some degree. However, more 
iterations may require more processing time but 
only offer a limited improvement. Some other 
measures still need to be investigated. 

An algorithm utilizing line features (e.g., the 
range   and the bearing  ) is presented in this 
study to adjust the alignment between two line 
maps. 

Assuming that two line segments   and  
(as shown in Fig. 18) are corresponding to each 
other, to align the straight line extending  
towards that extending , complete the following 
two steps: 

1) Rotate  by an angle of  about 
the origin. 

2) Translate  by , where 
 , 
.                (16) 

The unit quaternion for performing the rotation is 
calculated by 

. 
(17) 

 
Fig. 18.  Two line segments corresponding to each 

other in the -  coordinates 
 

To fix the error in the alignment between two 
maps (or scans), the line feature-based alignment 
correction algorithm aligns a pair of 
corresponding line segments, each of which is 
extracted from each of the two maps (or scans). 
For better convergence, such a process may be 
conducted several times by adopting different 
pairs of corresponding line segments that are not 
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line map towards a point map achieved greater 
efficiency. To process in real time, the consumed 
time for either case may be reduced further by 
appropriately conducting down-sampling for the 
search of correspondence in every ICP iteration. 

 

 
Fig. 17.  A process example showing the alignment of 

a line map towards a newly acquired point 
map (The point map consists of 1047 points. 
It is illustrated in blue. The line map consists 
of 316 line segments and is illustrated in red. 
The initial two separate maps are shown in the 
upper figure. The result is shown in the lower 
figure.) 

 
Table 2. Comparison of time consumption 

Types of Maps Time (seconds) # Iterations 

point map / point map 10.7217815053 19 
line map / point map 7.81693578522 23 

Threshold ( ):  
Reduction in the mean squared distance  

This is a comparison of processing time consumption between 
aligning a point map and a line map towards a point map 
respectively. Both were conducted without down-sampling the 
points beforehand for the search of correspondence. The raw 
measurements are the same as used in Fig. 17. The program was 
executed on a computer equipped with an Intel Core i7 2.20 GHz 
processor. It was implemented by the Python scripting language and 
was not optimized. The result is only for an approximate comparison. 

4.3 The Line Feature-based Alignment 
Correction Algorithm 

The issue associated with the point-based 
process of localization and mapping is the 
cumulative estimation error. Such an issue still 
exists for the line-based process because the same 
technique (i.e., the ICP) is adopted. It is observed 
that by adjusting the threshold value for taking 
more iterations, the scan matching accuracy may 
be enhanced to some degree. However, more 
iterations may require more processing time but 
only offer a limited improvement. Some other 
measures still need to be investigated. 

An algorithm utilizing line features (e.g., the 
range   and the bearing  ) is presented in this 
study to adjust the alignment between two line 
maps. 

Assuming that two line segments   and  
(as shown in Fig. 18) are corresponding to each 
other, to align the straight line extending  
towards that extending , complete the following 
two steps: 

1) Rotate  by an angle of  about 
the origin. 

2) Translate  by , where 
 , 
.                (16) 

The unit quaternion for performing the rotation is 
calculated by 

. 
(17) 

 
Fig. 18.  Two line segments corresponding to each 

other in the -  coordinates 
 

To fix the error in the alignment between two 
maps (or scans), the line feature-based alignment 
correction algorithm aligns a pair of 
corresponding line segments, each of which is 
extracted from each of the two maps (or scans). 
For better convergence, such a process may be 
conducted several times by adopting different 
pairs of corresponding line segments that are not 
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in parallel with the pairs already used. This is 
assuming that the pair of line segments 
corresponding to each other in the two scans are 
able to be determined. However, correctly 
determining the correspondence may not be a 
simple task, and any incorrect determination will 
only increase the error of aligning two scans. 
Therefore, the correction algorithm was 
developed as an extension based on the ICP 
algorithm. When the two scans being matched are 
nearly aligned with each other after completing 
the iterations of ICP, the pairs of corresponding 
line segments are to be extracted by comparing 
the line features of the segments in the two scans 
(e.g., lengths, ranges, bearings, and positions of 
mid-points). 

The determination of pairs of corresponding 
line segments between two line scans (e.g.,  and 

 ) accomplished by the line feature-based 
alignment correction algorithm is to complete the 
following steps: 

1) Select the longest 10 line segments in . 
2) For each of the 10 segments in , select 

the one in  with the smallest difference 
in length as its correspondence. 

3) Verify each of the 10 pairs of 
corresponding line segments by 
checking if the conditions as follows are 
satisfied. 
3.1) The lengths of the two segments 

are both greater than 2 (meters). 
3.2) The difference in length is less than 

1 (meter). 
3.3) The difference in range (i.e., the 

difference between  and  in Fig. 
18) is less than 1 (meter). 

3.4) The difference in bearing (i.e., the 
difference between  and  in Fig. 
18) is less than 0.4 (radians). 

3.5) The mid-point distance between the 
two segments is less than 0.5 
(meters). 

It may also be possible that none of the line 
segments corresponding to each other is 
determined in some cases. The specified number 
of segments being selected and the values of 
thresholds are adjustable for satisfying the 
requirements in different conditions. The values 
in this study are solely adopted to examine the 
feasibility of the algorithm and are not necessarily 
optimal. 

An example of incorporating the algorithm 

is shown in Fig. 19. The results before and after 
applying the algorithm are shown in the upper 
and lower figures, respectively. One 
corresponding pair between the two maps is 
determined. A small error in the alignment 
between the two maps (in red and in blue) in the 
upper figure is corrected as shown in the lower 
figure. Note that before such a correction is made, 
the point map must be converted into a line map 
beforehand. The alignment of a line map towards 
a point map rather than towards a converted line 
map in the lower figure is meant for providing a 
better comparison to that in the upper figure. 

 

 
Fig. 19.  An example of integrating the improved ICP 

algorithm with the alignment correction 
algorithm using line features (The results 
before and after incorporating the alignment 
correction algorithm are shown in the upper 
and lower figures, respectively.) 

4.4 Real-time Processing 

The process starts with the first point scan 
acquired. Such a scan is transformed into a line 
scan and considered to be the initial old scan. It is 
worth mentioning that a previously constructed 

map is also acceptable, on the condition that such 
a map is able to be described by or transformed 
into a series of line segments. For each 
subsequently acquired new point scan, the 
following steps are carried out by the process 
cycle. 

1) Align the old line scan towards the most 
recently acquired new point scan by 
utilizing the improved ICP algorithm 
proposed in this study. 

2) Convert the point scan into a series of line 
segments (i.e., a line scan). 

3) If the corresponding line segments 
between the old line scan and the new line 
scan are able to be determined, apply the 
line feature-based alignment correction 
algorithm to correct the error in the 
alignment between the two scans. 

4) Merge the two closely aligned line scans 
into one by adopting the same concept of 
merging two point scans discussed in 
Section 3. The resulting scan is 
considered to be the newer representation 
of the old scan for the subsequent process 
cycle. 

Fig. 20 illustrates the result of a post-
processed experiment of line-based localization 
and mapping. It was intended for comparing the 
performance of the line-based process in 
estimation accuracy with that of the point-based 
process illustrated in Fig. 12. The same raw 
sensor data was fed to the line-based process. The 
overall distance error between the estimated final 
position and the real one is approximately 0.63 
meters, which gives a mean distance error of 0.01 
meters per scan-matching process cycle (for a 
total number of 80 process cycles matching 81 
scans). Judging from the shorter distance error, it 
is evident that the line-based process that 
incorporates the line feature-based alignment 
correction algorithm with the improved ICP 
algorithm performs better since the accumulated 
estimation error is reduced. 

The result of a real-time process of line-
based localization and mapping is illustrated in 
Fig. 21. An infrared precision position tracker 
(PPT) [30] was utilized to measure the position of 
the system concurrently throughout the 
experiment to verify the estimation accuracy of 
the process. The overall root mean square (RMS) 
error in the PPT measurements was reported to be 
in centimeters (that is 6.68 cm, to be exact), 

which is sufficiently small for considering such 
measurements to act as the ground truth. Fig. 22 
shows such an experiment comparing the 
trajectories obtained by the process proposed in 
this study and the PPT. The comparison verifies 
the estimation accuracy of the proposed process 
since the trajectories coincide closely. The RMS 
error of the trajectory estimated by conducting the 
proposed process is approximately 0.07 (meters) 
with respect to the one measured by the PPT. It is 
worth mentioning that the moments in time at 
which the sensor data were collected for both 
techniques were different because they were 
processed independently. For this reason, the two 
sets of data points describing the two trajectories 
will never sit exactly on top of each other. 

 
Fig. 20. A process of line-based localization and 

mapping that incorporates the line feature-
based alignment correction algorithm with 
the improved ICP algorithm (The group of 
colored line segments illustrating the outline 
of the surrounding environment represents 
the map, and the sequence of red points 
describes the trajectory of the system that 
takes scans. The map was constructed by 
aligning and merging 81 individual scans. It 
consists of 648 line segments. The real initial 
position and final position are both  , 
while the estimated ones are   and 

 , 
respectively.) 
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map is also acceptable, on the condition that such 
a map is able to be described by or transformed 
into a series of line segments. For each 
subsequently acquired new point scan, the 
following steps are carried out by the process 
cycle. 

1) Align the old line scan towards the most 
recently acquired new point scan by 
utilizing the improved ICP algorithm 
proposed in this study. 

2) Convert the point scan into a series of line 
segments (i.e., a line scan). 

3) If the corresponding line segments 
between the old line scan and the new line 
scan are able to be determined, apply the 
line feature-based alignment correction 
algorithm to correct the error in the 
alignment between the two scans. 

4) Merge the two closely aligned line scans 
into one by adopting the same concept of 
merging two point scans discussed in 
Section 3. The resulting scan is 
considered to be the newer representation 
of the old scan for the subsequent process 
cycle. 

Fig. 20 illustrates the result of a post-
processed experiment of line-based localization 
and mapping. It was intended for comparing the 
performance of the line-based process in 
estimation accuracy with that of the point-based 
process illustrated in Fig. 12. The same raw 
sensor data was fed to the line-based process. The 
overall distance error between the estimated final 
position and the real one is approximately 0.63 
meters, which gives a mean distance error of 0.01 
meters per scan-matching process cycle (for a 
total number of 80 process cycles matching 81 
scans). Judging from the shorter distance error, it 
is evident that the line-based process that 
incorporates the line feature-based alignment 
correction algorithm with the improved ICP 
algorithm performs better since the accumulated 
estimation error is reduced. 

The result of a real-time process of line-
based localization and mapping is illustrated in 
Fig. 21. An infrared precision position tracker 
(PPT) [30] was utilized to measure the position of 
the system concurrently throughout the 
experiment to verify the estimation accuracy of 
the process. The overall root mean square (RMS) 
error in the PPT measurements was reported to be 
in centimeters (that is 6.68 cm, to be exact), 

which is sufficiently small for considering such 
measurements to act as the ground truth. Fig. 22 
shows such an experiment comparing the 
trajectories obtained by the process proposed in 
this study and the PPT. The comparison verifies 
the estimation accuracy of the proposed process 
since the trajectories coincide closely. The RMS 
error of the trajectory estimated by conducting the 
proposed process is approximately 0.07 (meters) 
with respect to the one measured by the PPT. It is 
worth mentioning that the moments in time at 
which the sensor data were collected for both 
techniques were different because they were 
processed independently. For this reason, the two 
sets of data points describing the two trajectories 
will never sit exactly on top of each other. 

 
Fig. 20. A process of line-based localization and 

mapping that incorporates the line feature-
based alignment correction algorithm with 
the improved ICP algorithm (The group of 
colored line segments illustrating the outline 
of the surrounding environment represents 
the map, and the sequence of red points 
describes the trajectory of the system that 
takes scans. The map was constructed by 
aligning and merging 81 individual scans. It 
consists of 648 line segments. The real initial 
position and final position are both  , 
while the estimated ones are   and 

 , 
respectively.) 
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Fig. 21.  A real-time process of line-based localization 

and mapping that incorporates the line 
feature-based alignment correction algorithm 
with the improved ICP algorithm (The group 
of colored line segments represents the map, 
and the points in red describe the trajectory 
of the system. The map was constructed by 
aligning and merging 106 individual scans 
and consists of 846 line segments. The real 
initial position and final position are both at 

 . The estimated ones are at   and 
 , 

respectively.) 

V. LOCAL MINIMUM 
AVOIDANCE MECHANISM 

The ICP algorithm guarantees a local 
minimum for aligning one scan towards the other. 
Most of the time, such a local minimum is also 
the global minimum. It is observed that 
neglecting a part of outliers may resolve the local 
minimum issue to some degree. However, such 
an issue may occasionally occur even when the 
outlier neglecting mechanism is applied. As 
illustrated in Fig. 23, when the process has fallen 
into one of the local minima, the two scans will 
never converge regardless of how many iterations 
are conducted. 

Various techniques approaching the problem 
of optimization (i.e., either minimization or 
maximization) have been proposed in the 
literature. Most of the studies face a similar issue, 
the local optimum. For example, one of the 
greedy-based algorithms, the hill-climbing search, 
is a technique for mathematical optimization [31]. 
It starts with an arbitrary solution and tries to find 
a better one iteratively by applying a small 
modification to its solution incrementally. The 
ICP algorithm can be classified as a greedy-based 
algorithm. This type of algorithm is fairly 
efficient and always guarantees to reach one of 
the local optima. Simulated annealing (SA) is 
another technique searching for optimization [32]. 
The insight into this problem was gained from the 
process of annealing in metallurgy. It is intended 
for determining an adequate approximation to the 
global optimum in a specified amount of time. 
Such a technique provides the process with a 
means to escaping a local optimum by allowing 
some solutions not better than the current one. 
The probability of allowing these solutions is 
gradually decreased as the process moves 
towards the finish time. 

 
Fig. 22.  An experiment comparing the trajectories 

obtained by the process proposed in this 
study (in red) and the infrared precision 
position tracker (PPT) (in blue) (The RMS 
error of the trajectory estimated by the 
proposed process is approximately 0.07 
(meters) with respect to the one by the PPT.) 
 

 

 

 
Fig. 23.  An ICP process that has fallen into a local 

minimum (Two individual scans are 
shown in the upper figure. The process 
iterations for the convergence of the line 
scan towards the point scan are shown in 
the middle figure. The result is shown in 
the lower figure.) 

 
The greedy-based algorithm may also be 

able to escape local optima by some means. 
Generally, there are two approaches: 

1) Restarting the process with a random 
initial condition. 

2) Applying a random amount of sideway 
move. 

Both approaches are suitable for being 
incorporated into the ICP process. A user-

specified or random rotation that serves as the 
integration of the two approaches can be used to 
avoid the currently encountered local minimum. 
The local minimum avoidance mechanism 
proposed in this study completes the following 
steps: 

1) Carry out the iterations of the ICP scan-
matching process until reaching the 
threshold. 

2) Examine the mean distance between 
pairs of corresponding points to 
distinguish whether the process has fallen 
into one of the local minima. 

3) If the process has fallen into one of the 
local minima, apply a user-specified or 
random rotation to the scan to be aligned 
towards the other one. Its direction may 
be kept the same as that in the previous 
process iteration. 

4) Re-conduct the ICP iterations until 
reaching the threshold. 

Fig. 24 shows the result of the process 
incorporating the mechanism for aligning the 
same scans in Fig. 23. 

 
Fig. 24.  The result of the ICP process incorporating 

the local minimum avoidance mechanism 

. CONCLUSION 

This study presented a real-time ranging 
sensor-based localization and mapping algorithm 
that combines an improved ICP algorithm, an 
alignment correction algorithm using line 
features, and a mechanism avoiding local minima. 
It began with an examination of the point-based 
process using the ICP algorithm. One of the main 
issues associated with the ICP algorithm is that 
the process may get trapped in a local minimum. 
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Fig. 23.  An ICP process that has fallen into a local 

minimum (Two individual scans are 
shown in the upper figure. The process 
iterations for the convergence of the line 
scan towards the point scan are shown in 
the middle figure. The result is shown in 
the lower figure.) 

 
The greedy-based algorithm may also be 

able to escape local optima by some means. 
Generally, there are two approaches: 

1) Restarting the process with a random 
initial condition. 

2) Applying a random amount of sideway 
move. 

Both approaches are suitable for being 
incorporated into the ICP process. A user-

specified or random rotation that serves as the 
integration of the two approaches can be used to 
avoid the currently encountered local minimum. 
The local minimum avoidance mechanism 
proposed in this study completes the following 
steps: 

1) Carry out the iterations of the ICP scan-
matching process until reaching the 
threshold. 

2) Examine the mean distance between 
pairs of corresponding points to 
distinguish whether the process has fallen 
into one of the local minima. 

3) If the process has fallen into one of the 
local minima, apply a user-specified or 
random rotation to the scan to be aligned 
towards the other one. Its direction may 
be kept the same as that in the previous 
process iteration. 

4) Re-conduct the ICP iterations until 
reaching the threshold. 

Fig. 24 shows the result of the process 
incorporating the mechanism for aligning the 
same scans in Fig. 23. 

 
Fig. 24.  The result of the ICP process incorporating 

the local minimum avoidance mechanism 

. CONCLUSION 

This study presented a real-time ranging 
sensor-based localization and mapping algorithm 
that combines an improved ICP algorithm, an 
alignment correction algorithm using line 
features, and a mechanism avoiding local minima. 
It began with an examination of the point-based 
process using the ICP algorithm. One of the main 
issues associated with the ICP algorithm is that 
the process may get trapped in a local minimum. 
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Such an issue is often caused by outliers. To 
resolve this, a mechanism neglecting a part of 
outliers with high leverage was incorporated in 
each process iteration. For processing in real time, 
a down-sampling mechanism and a tree-search 
technique were incorporated for the search of 
correspondence to reduce processing time. 

Although the point-based localization and 
mapping process produces acceptable results, 
there still exist issues associated with efficiency 
and accuracy that must be coped with. A line-
based description for maps was adopted to reduce 
processing time, and an alignment correction 
algorithm using line features was built to correct 
the error in the alignment between two scans. The 
proposed line-based process produces better 
results than the original process. 

Although the issue due to local minima may 
be resolved to some degree by neglecting a part 
of high-leverage outliers, it may still occur 
occasionally. To further resolve such an issue, a 
local minimum avoidance mechanism was 
incorporated. 

6.1 Contributions 

The major contribution presented by this 
study is the development of a real-time ranging 
sensor-based localization and mapping algorithm 
that includes: 

1) an improved ICP algorithm, 
2) a line-feature based alignment correction 

algorithm for reducing the scan matching 
error, and 

3) a local minimum avoidance mechanism 
for coping with the local minimum 
situations so as to improve the scan 
matching result. 

6.2 Limitations 

The ranging sensor-based localization and 
mapping algorithm is based on the following 
assumptions and conditions: 

1) Sufficient overlap between every two 
consecutive scans is necessary to 
guarantee successful scan matching. This 
makes certain that enough information of 
correspondence between them can be 
provided. In other words, the 
transformation in between is assumed 
small. For instance, a rotation less than 45 

degrees and a displacement less than 10 
meters in magnitude are recommended. 

2) Partly following the previous assumption, 
the velocity is required to be as slow as 
the natural walking speed of humans for 
keeping the transformation relatively 
small. Besides, some duration of time is 
taken to measure the distances 
counterclockwise from its environment. 
Measuring (i.e., scanning) during system 
movements may skew the resulting scan. 
It is recommended to keep the velocity 
slow to reduce the effect of skewness. 

3) The maximum dimensions of 
environments suitable for this algorithm 
depend on the effective sensing range of 
the sensor system. Proper sensor devices 
need to be adopted for different 
conditions. For example, in an open 
space with its boundaries far beyond the 
maximum sensing range, there may be 
little or no correspondence between scans. 
Such an environment is not suitable for 
utilizing this algorithm. 

6.3 Considerations for Future Works 

The ranging sensor-based localization and 
mapping algorithm is expected to be capable of 
coping with 3D environmental models since the 
data representation and the mathematical 
operations are all 3-dimensional. However, a 2D 
laser ranging sensor was adopted in this study. A 
major consideration for such adoption is that 2D 
sensor units are generally significantly less 
expensive (both financially and computationally) 
than 3D units. For future development, the 
adoption of 3D sensors and the applications on 
3D models may also be taken into consideration. 

Future studies may also focus on refining the 
localization and mapping algorithm by 
investigating different sensing techniques and 
determining the optimal representations and scan 
matching algorithms that complement the 
adopted techniques. 

A further consideration for future work may 
be to quantitatively compare the performance of 
different approaches (e.g., different algorithms, 
sensing techniques, etc.) and to determine the 
preferred approaches for different conditions of 
environments. 

REFERENCES 

[1] Leonard, J. J., and Durrant-Whyte, H. F., 
“Simultaneous Map Building and 
Localization for an Autonomous Mobile 
Robot,” IEEE/RSJ International Workshop 
on Intelligent Robots and Systems IROS, 
Osaka, pp. 1442-1447, 1991. 

[2] Smith, C. M., Leonard, J. J., Bennett, A. A., 
and Shaw, C., “Feature-based Concurrent 
Mapping and Localization for AUVs,” 
Proceedings of the MTS/IEEE Conference 
on Oceans, Halifax, pp. 896-901, 1997. 

[3] Durrant-Whyte, H., and Bailey, T., 
“Simultaneous Localization and Mapping: 
Part I,” IEEE Robotics and Automation 
Magazine, Vol. 13, pp. 99-108, 2006. 

[4] Durrant-Whyte, H., and Bailey, T., 
“Simultaneous Localization and Mapping 
(SLAM): Part II,” IEEE Robotics and 
Automation Magazine, Vol. 13, pp. 108-117, 
2006. 

[5] Hokuyo Automatic, Scanning Laser Range 
Finder UTM-30LX-EW Specification, 
Osaka, Japan, 2011. 

[6] Amigoni, F., Gasparini, S., and Gini, M., 
“Building Segment-based Maps Without 
Pose Information,” Proceedings of the IEEE, 
Vol. 94, No. 7, pp. 1340-1359, 2006. 

[7] Amigoni, F., Gasparini, S., and Gini, M., 
“Good Experimental Methodologies for 
Robotic Mapping: A Proposal,” Proceedings 
of the 2007 IEEE International Conference 
on Robotics and Automation, Rome, pp. 
4176-4181, 2007. 

[8] Elfes, A., “Sonar-based Real-world Mapping 
and Navigation,” IEEE Journal of Robotics 
and Automation, Vol. RA-3, No. 3, pp. 249-
265, 1987. 

[9] Lai, X., Kong, C., Ge, S. S., and Mamun, A. 
A., “Online Map Building for Autonomous 
Mobile Robots by Fusing Laser and Sonar 
Data,” Proceedings of the IEEE International 
Conference on Mechatronics & Automation, 
Niagara Falls, pp. 993-996, 2005. 

[10] Olson, E., Leonard, J., and Teller, S., “Fast 
Iterative Alignment of Pose Graphs with 
Poor Initial Estimates,” Proceedings of the 
2006 IEEE International Conference on 
Robotics and Automation, Orlando, pp. 
2262-2269, 2006. 

[11] Skrzypczynski, P., “Laser Scan Matching for 

Self-localization of a Walking Robot in Man-
made Environments,” Industrial Robot, Vol. 
39, No. 3, pp. 242-250, 2012. 

[12] Zhang, K., Gui, H., Luo, Z., and Li, D., 
“Matching for Navigation Map Building for 
Automated Guided Robot Based on Laser 
Navigation Without a Reflector,” Industrial 
Robot, Vol. 46, No. 1, pp. 17-30, 2019. 

[13] Yuan, R., Zhang, F., Qu, J., Li, G., and Fu, Y., 
“An Enhanced Pose Tracking Method Using 
Progressive Scan Matching,” Industrial 
Robot, Vol. 46, No. 2, pp. 235-246, 2019. 

[14] Collier, J., and Ramirez-Serrano, A., 
“Environment Classification for 
Indoor/outdoor Robotic Mapping,” 
Proceedings of the 2009 Canadian 
Conference on Computer and Robot Vision, 
Kelowna, pp. 276-283, 2009. 

[15] Xiong, H., Chen, Y., Li, X., Chen, B., and 
Zhang, J., “A Scan Matching Simultaneous 
Localization and Mapping Algorithm Based 
on Particle Filter,” Industrial Robot, Vol. 43, 
No. 6, pp. 607-616, 2016. 

[16] Besl, P. J., and McKay, N. D., “A Method for 
Registration of 3-D Shapes,” IEEE 
Transaction on Pattern Analysis and 
Machine Intelligence, Vol. 14, No. 2, pp. 
239-256, 1992. 

[17] Danescu, R. G., “Obstacle Detection Using 
Dynamic Particle-based Occupancy Grids,” 
IEEE International Conference on Digital 
Image Computing: Techniques and 
Applications, Noosa, pp. 585-590, 2011. 

[18] Konrad, M., Nuss, D., and Dietmayer, K., 
“Localization in Digital Maps for Road 
Course Estimation Using Grid Maps,” IEEE 
Intelligent Vehicles Symposium, Madrid, pp. 
87-92, 2012. 

[19] Rakotovao, T., Mottin, J., Puschini, D., and 
Laugier, C., “Integration of Multi-sensor 
Occupancy Grids into Automotive ECUs,” 
Proceedings of the 53rd Annual Design 
Automation Conference, Austin, pp. 1-6, 
2016. 

[20] Ferri, G., Tesei, A., Stinco, P., and LePage, K. 
D., “A Bayesian Occupancy Grid Mapping 
Methods for the Control of Passive Sonar 
Robotics Surveillance Networks,” OCEANS 
2019, Marseille, pp. 1-9, 2019. 

[21] Chui, H., and Rangarajan, A., “A New Point 
Matching Algorithm for Non-rigid 
Registration,” Computer Vision and Image 

32

Chuan-Hao Yang
Localization and Mapping by an Improved ICP Algorithm and a Feature-based Alignment Correction Algorithm



REFERENCES 

[1] Leonard, J. J., and Durrant-Whyte, H. F., 
“Simultaneous Map Building and 
Localization for an Autonomous Mobile 
Robot,” IEEE/RSJ International Workshop 
on Intelligent Robots and Systems IROS, 
Osaka, pp. 1442-1447, 1991. 

[2] Smith, C. M., Leonard, J. J., Bennett, A. A., 
and Shaw, C., “Feature-based Concurrent 
Mapping and Localization for AUVs,” 
Proceedings of the MTS/IEEE Conference 
on Oceans, Halifax, pp. 896-901, 1997. 

[3] Durrant-Whyte, H., and Bailey, T., 
“Simultaneous Localization and Mapping: 
Part I,” IEEE Robotics and Automation 
Magazine, Vol. 13, pp. 99-108, 2006. 

[4] Durrant-Whyte, H., and Bailey, T., 
“Simultaneous Localization and Mapping 
(SLAM): Part II,” IEEE Robotics and 
Automation Magazine, Vol. 13, pp. 108-117, 
2006. 

[5] Hokuyo Automatic, Scanning Laser Range 
Finder UTM-30LX-EW Specification, 
Osaka, Japan, 2011. 

[6] Amigoni, F., Gasparini, S., and Gini, M., 
“Building Segment-based Maps Without 
Pose Information,” Proceedings of the IEEE, 
Vol. 94, No. 7, pp. 1340-1359, 2006. 

[7] Amigoni, F., Gasparini, S., and Gini, M., 
“Good Experimental Methodologies for 
Robotic Mapping: A Proposal,” Proceedings 
of the 2007 IEEE International Conference 
on Robotics and Automation, Rome, pp. 
4176-4181, 2007. 

[8] Elfes, A., “Sonar-based Real-world Mapping 
and Navigation,” IEEE Journal of Robotics 
and Automation, Vol. RA-3, No. 3, pp. 249-
265, 1987. 

[9] Lai, X., Kong, C., Ge, S. S., and Mamun, A. 
A., “Online Map Building for Autonomous 
Mobile Robots by Fusing Laser and Sonar 
Data,” Proceedings of the IEEE International 
Conference on Mechatronics & Automation, 
Niagara Falls, pp. 993-996, 2005. 

[10] Olson, E., Leonard, J., and Teller, S., “Fast 
Iterative Alignment of Pose Graphs with 
Poor Initial Estimates,” Proceedings of the 
2006 IEEE International Conference on 
Robotics and Automation, Orlando, pp. 
2262-2269, 2006. 

[11] Skrzypczynski, P., “Laser Scan Matching for 

Self-localization of a Walking Robot in Man-
made Environments,” Industrial Robot, Vol. 
39, No. 3, pp. 242-250, 2012. 

[12] Zhang, K., Gui, H., Luo, Z., and Li, D., 
“Matching for Navigation Map Building for 
Automated Guided Robot Based on Laser 
Navigation Without a Reflector,” Industrial 
Robot, Vol. 46, No. 1, pp. 17-30, 2019. 

[13] Yuan, R., Zhang, F., Qu, J., Li, G., and Fu, Y., 
“An Enhanced Pose Tracking Method Using 
Progressive Scan Matching,” Industrial 
Robot, Vol. 46, No. 2, pp. 235-246, 2019. 

[14] Collier, J., and Ramirez-Serrano, A., 
“Environment Classification for 
Indoor/outdoor Robotic Mapping,” 
Proceedings of the 2009 Canadian 
Conference on Computer and Robot Vision, 
Kelowna, pp. 276-283, 2009. 

[15] Xiong, H., Chen, Y., Li, X., Chen, B., and 
Zhang, J., “A Scan Matching Simultaneous 
Localization and Mapping Algorithm Based 
on Particle Filter,” Industrial Robot, Vol. 43, 
No. 6, pp. 607-616, 2016. 

[16] Besl, P. J., and McKay, N. D., “A Method for 
Registration of 3-D Shapes,” IEEE 
Transaction on Pattern Analysis and 
Machine Intelligence, Vol. 14, No. 2, pp. 
239-256, 1992. 

[17] Danescu, R. G., “Obstacle Detection Using 
Dynamic Particle-based Occupancy Grids,” 
IEEE International Conference on Digital 
Image Computing: Techniques and 
Applications, Noosa, pp. 585-590, 2011. 

[18] Konrad, M., Nuss, D., and Dietmayer, K., 
“Localization in Digital Maps for Road 
Course Estimation Using Grid Maps,” IEEE 
Intelligent Vehicles Symposium, Madrid, pp. 
87-92, 2012. 

[19] Rakotovao, T., Mottin, J., Puschini, D., and 
Laugier, C., “Integration of Multi-sensor 
Occupancy Grids into Automotive ECUs,” 
Proceedings of the 53rd Annual Design 
Automation Conference, Austin, pp. 1-6, 
2016. 

[20] Ferri, G., Tesei, A., Stinco, P., and LePage, K. 
D., “A Bayesian Occupancy Grid Mapping 
Methods for the Control of Passive Sonar 
Robotics Surveillance Networks,” OCEANS 
2019, Marseille, pp. 1-9, 2019. 

[21] Chui, H., and Rangarajan, A., “A New Point 
Matching Algorithm for Non-rigid 
Registration,” Computer Vision and Image 

33

中正嶺學報  第五十卷  第二期  民國 110.11
JOURNAL OF C.C.I.T., VOL.50, NO.2, NOV., 2021



Understanding - Special Issue on Nonrigid 
Image Registration, Vol. 89, No. 2-3, pp. 
114-141, 2003. 

[22] Horn, B. K. P., “Closed-form Solution of 
Absolute Orientation Using Unit 
Quaternions,” Journal of the Optical Society 
of America A, Vol. 4, No. 4, pp. 629-642, 
1987. 

[23] Phillips, J. M., Liu, R., and Tomasi, C., 
“Outlier Robust ICP for Minimizing 
Fractional RMSD,” Proceedings of the IEEE 
International Conference on 3-D Digital 
Imaging and Modeling, Montreal, pp. 427-
434, 2007. 

[24] Rusinkiewicz, S., and Levoy, M., “Efficient 
Variants of the ICP Algorithm,” Proceedings 
of the IEEE International Conference on 3-D 
Digital Imaging and Modeling, Quebec City, 
pp. 145-152, 2001. 

[25] May, S., Droeschel, D., Holz, D., Fuchs, S., 
and Nuchter, A., “Robust 3D-Mapping with 
Time-of-flight Cameras,” Proceedings of the 
IEEE/RSJ International Conference on 
Intelligent Robots and Systems, St. Louis, pp. 
1673-1678, 2009. 

[26] Holz, D., and Behnke, S., “Sancta 
Simplicitas–on the Efficiency and 
Achievable Results of SLAM Using ICP-
based Incremental Registration,” 
Proceedings of the 2010 IEEE International 
Conference on Robotics and Automation, 
Anchorage, pp. 1380–1387, 2010. 

[27] Maneewongvatana, S., and Mount, D. M., 
“It’s Ok to be Skinny, if Your Friends are Fat,” 
Center for Geometric Computing 4th Annual 
Workshop on Computational Geometry, 
Baltimore, pp. 1-8, 1999. 

[28] Haidekker, M. A., “The Hough Transform,” 
in Advanced Biomedical Image Analysis, 
John Wiley & Sons, Chap. 7, pp. 211-235, 
2011. 

[29] Yun, X., Latt, K., and Glennon, J. S., 
“Mobile Robot Localization Using the 
Hough Transform and Neural Networks,” 
Proceedings of the IEEE ISIC/CIRA/ISAS 
Joint Conference, Gaithersburg, pp. 393-400, 
1998. 

[30] Waller, D., Bachmann, E., Hodgson, E., and 
Beall A. C., “The HIVE: A Huge Immersive 
Virtual Environment for Research in Spatial 
Cognition,” Behavior Research Methods, 
Vol. 39, No. 4, pp. 835-843, 2007. 

[31] Russell, S. J., and Norvig, P., “Hill-climbing 
Search,” in Artificial Intelligence: A Modern 
Approach, 3rd Ed., New Jersey, Pearson 
Education, Chap. 4, Sec. 1, pp. 122-125, 
2010. 

[32] Russell, S. J., and Norvig, P., “Simulated 
Annealing,” in Artificial Intelligence: A 
Modern Approach, 3rd Ed., New Jersey, 
Pearson Education, Chap. 4, Sec. 1, pp. 125, 
2010. 

 

Study on Dust Explosion Characteristics and Flame 
Propagation of Nano-Sized Aluminum Powders 
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 National Defense University 

ABSTRACT 
This study is mainly to explore the dust explosion characteristics and flame propagation of 

nano-sized aluminum (Al) powder. First of all, three kinds of Al powders with average particle sizes of 
35, 75 and 100 nm were examined by scanning electron microscopy (SEM) and X-ray diffraction 
(XRD) to confirm the particle size and purity. An environment operation box was used to avoid the 
oxidation of nano-sized Al powder samples during the weighing process. Afterward, the 20-L 
explosion sphere apparatus was used to determine the dust explosion characteristics, including the 
maximum explosion pressure (Pmax), maximum rate of pressure rise [(dP/dt)max], minimum explosion 
concentration (MEC) and deflagration index (KSt), and the modified Hartmann tube was used to 
evaluate the minimum ignition energy (MIE) and flame propagation velocity (FPV). The experimental 
results indicated that the maximum Pmax, (dP/dt)max and KSt values increased with decreasing average 
particle size of nano-sized Al powder, and the MEC and MIE values increased with increasing average 
particle size of nano-sized Al powder. In addition, the maximum flame propagation velocity (FPV) of 
nano-sized Al powder increased with decreasing particle size, and decreased with increasing ignition 
energy used. According to the dust explosion class, these three nano-sized Al powders were classified 
as Class 3, which means that they have very strong explosive power. 

Keywords: nano-sized aluminum powder, dust explosion characteristics, flame propagation 
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