TETRA無線電介接異質系統 於軍事應用之研究

指導老師/李建鵬 作者/曾聖文

提響

除軍事作戰之外,憲兵尚肩負司法警察權與情報機關之職責,自民國80年代起即以中繼式無線電系統作為通資整備主軸,以指通力確保平、戰時可支援多樣任務,遂行軍事作戰目的。TETRA中繼式無線電現於各國受到公共安全等部門廣泛運用,我國憲兵自2006年換裝此型系統迄今,於執行各項任務時均屬不可或缺之工具,惟隨著行動通信技術進步神速,面對新穎通信技術及服務,探討其未來發展趨勢與整合應用實屬必要。本文藉由探究新一代通資技術發展、應用實務及其未來趨勢,分析異質系統間介接之能力與限制,提出TETRA整合通資系統於軍事應用之策略,期可確保通資能量足以面對日益嚴峻的挑戰,做好萬全準備。

關鍵詞:TETRA無線電、中繼式通信、異質系統、介接整合

壹、前言

「中繼式無線電系統」(Trunking Radio System)早期稱為「陸地行動無線電」(Land Mobile Radio),所謂的中繼式無線電是指運用無線電多重接取技術,使多人可以同時共用無線電頻譜資源,頻率使用效益較傳統通信高,與現今行動電話通訊原理相近。其主要應用於公務緊急應變部門如警察、消防或救護等單位使用,或是用於計程車派遣、運輸公司的車輛調度管制等商務領域1。由於此類型無線電系統,並未提供一

般民眾於日常使用,且應用領域多屬公務部門或特定業務使用,所以亦可稱為「專業行動無線電」(Professional Mobile Radio)。到了1995年歐洲電信標準協會(European Telecommunications Standards Institute, ETSI)對此發表了專用電信技術標準,稱為「地面中繼式無線電」(Terrestrial Trunked Radio, TETRA),自此TETRA中繼式無線電通信系統開始受到世界各國廣泛運用,舉凡公共安全、緊急救難、警政消防、邊境守衛、交通運輸、能源產業及國防軍事應用等領域皆然2。在我國交通部電信規範下,中繼式無線電系

¹ 陳國弘,〈專用無線電類比與數位技術之演進〉《NCCNEWS》(臺北市),第11卷第5期,國家通訊傳播委員會,2017年9月,頁21。

² 同註1,頁19。

統屬於專用電信範疇,除國軍單位外,更廣泛運 用於警察、消防局、林務局、海巡署、高鐵、臺 鐵及捷運等單位,建立穩定可靠之關鍵任務通信 (Mission-Critical Communication)語音涌聯及數據 傳遞,藉以確保各項公(任)務執行順遂。

然就軍事應用範疇,各類型涌信系統係依軍 事作戰任務需求結合無線電電波特性、通信技 術、性能要求及限制所開發建置,例如高頻、特 高頻及超高頻通信、微波通信及衛星通信等系統 所構成之通信指揮鏈。惟無任何單一頻段無線電 系統及其通信技術,足可支撐軍事作戰所需之完 整C⁴ISR(Command、Control、Communications、 Computers · Intelligence · Surveillance · Reconnaissance, C⁴ISR)系統,且隨著行動通訊、 整合通訊系統(Integrated Communication System, ICS)及軟體定義無線電(Software Defined Radio, SDR)等技術進步,可依任務需求與限制跨系 統異質介接與整合運用,並可彈性調整裝備部 署,蔚為將來通資電發展之趨勢。本文藉由探討 TETRA技術標準發展及跨異質系統介接與整合 之能力評估,研析國軍地面部隊作戰(含災害防 救)任務之通資需求,並參考國內外單位案例, 結合憲兵任務經驗,提出軍事應用策略之建議, 期可確保通資能量足以面對未來日益嚴峻的挑 戰,進而做好萬全準備。

貳、中繼式無線電現況與趨勢

早期無線電通信以裝備主機之間的通聯為 主,未能有效率的運用頻譜、管理用戶功能及周 邊應用(如圖資定位)。隨著資通訊科技進步,

逐漸有系統核心之設計概念,而發展出中繼式無 線電架構,藉以滿足執行任務各種需求。此外, 公共安全部門因應日益嚴峻的天然災害挑戰,無 線電涌信除了基本要求的語音涌信外,對於即時 影像與數據資料傳輸以提供多元情資的需求越顯 重視,而民用行動通訊的成熟發展,恰能滿足無 線傳輸所需寬頻要求,兩者之間有整合發展之趨 勢。

一、通信標準探討

中繼式無線電系統於2018年全球產業市場產 值已達48億美元,並預估將於2023年可上看68 億美元³,目前在國際上常見的電信標準協定計 有TETRA、P25、DMR等三類,其中TETRA系 統主要為歐洲多國警察、憲兵與軍隊所使用, 在我國則以TETRA系統運用規模最大,幾乎所 有軌道業(高鐵、臺鐵與捷運)及國軍憲兵均 採用該系統。隨著各國公共安全與災防(Public Protection and Disaster Relief, PPDR)部門對於即 時影像與數據資傳的需求提升,僅提供語音與文 字簡訊之窄頻中繼式無線電逐漸無法滿足任務需 求,遂朝向已臻成熟之行動通訊(4G LTE/5G)尋 求創新技術與解決方案4。

行動通訊標準制定之組織為「第三代合作 夥伴計畫」(3rd Generation Partnership Project, 3GPP),配合公共安全與災防需要,3GPP於行動 通訊標準規範「Release 11」起,逐步檢討相關 標準納入⁵,首先在2016年釋出的「Release 13」 標準加入「任務關鍵一按通」(Mission Critical Push-To-Talk)語音介面標準,而後在「Release 14」標準加入任務關鍵影像(MC Video)與數據資

Omdia, "LMR Infrastructure & System Integration Report-2019", 2020/4, p.6. 3

⁴ 同註1,頁22。

國家通訊傳播委員會,〈建置基站資安檢測環境計畫(第1期)委託研究案期末報告〉,2016年8月,頁26。

料(MC Data)傳輸標準⁶。前述通信標準,一般通稱為MCPTT,使用者可在智慧型行動裝置安裝相關應用程式後,透過行動通訊(4G LTE)網路,實施語音、影像、數據即時通聯⁷。以下茲針對前述四類通信標準比較如表1⁸。

二、系統運用現況與發展趨勢

憲兵建置TETRA中繼式無線電系統迄今,

尚可滿足執行反恐制變、協力警備治安、維安特種勤務、警衛勤務、護運押解、安全巡邏暨刑案 偵辦、支援三軍作戰及災害防救等任務,所需機 動與靈活指揮之需求。尤以近年配合支援三軍任 務執行,專案支援無線電機供友軍操演、重砲射 擊、營區開放、道路機動或專案任務運用,竭力 達成戰備支援通信需求。茲就系統運用現況及未

表1 TETRA/P25/DMR/MCPTT通信標準協定比較表

	TETRA	P25	DMR	MCPTT
名稱	Terrestrial Trunked Radio	Association of Public Safety Communication Officials 25	Digital Mobile Radio	Mission Critical Push-To-Talk
頻寬		窄頻(小於1MB)		寬頻(可大於20MB)
技術	採用TDMA技術將 25KHz頻寬分成4 個時槽傳輸		採用TDMA技術將 12.5KHz頻寬分成2 個時槽傳輸	使用4G LTE/5G行動通 訊架構,3GPP持續精進 修訂
使用运域	主洲美為部道桃運鐵海用要、洲國、業園、、上開洲國部園臺運雄鐵力區、家憲機北、輕)發過中,兵場捷高高風域中,兵場捷高軌及電域中,兵場捷高軌及電域中,與指軌、建雄與彰場歐及內揮軌、捷臺化使	美洲及部分大洋洲 國家,國內為海洋 委員會海巡署、臺	高速公路警察局及 部分各縣市警察局	運用於PPDR公務部門,其 電常開國家主等方式混 實通頻網路、這一個 等一點,式混 等一點,式混 等一點, 等一點, 等一點, 等一點, 等一點, 等一點, 等一數 等一數 等一數 等一數 等 等 等 等 等 等 等 等 等 。 。 。 。 。 。 。 。 。 。

資料來源:作者自行整理。

64 憲兵半年刊 第92期 2021年6月

⁶ 財團法人資訊工業策進會,〈配合5G、IoT等技術研發測試與導入之專用電信法規制度研究期末報告〉, 2018年1月,頁33-46。

^{7 &}quot;Public Safety Land Mobile Radio (LMR) Interoperability with LTE Mission Critical Push to Talk", NPSTC, 2018/1/8, pp.2-13.

⁸ 賴明豐,〈聚焦安全智慧城市新商機:優化關鍵任務第一線人員溝通互動機制〉,https://portal.stpi.narl.org.tw/index/article/10286,檢索日期:2021年1月25日。

⁹ 財團法人中技社,「智能時代台灣5G推動與相關產業發展策略建議」專題報告,2019年6月,頁200-201。

¹⁰ 董奕君,財團法人資訊工業策進會「國際PPDR應用發展動態」簡報,2016年8月,頁11-12。

¹¹ James Atkinson, "US public safety LTE networks", Critical Communications Today (UK), 2020/3, pp.22-26 •

來發展等分別探討如下:

(一)系統運用現況

TETRA無線電以超高頻(UHF)頻段為主, 天線長度較短為其優點,且電波對建築物穿透力 佳,相較於特高頻(VHF)頻段於室內、外通達率 更高,已於臺灣本島廣布中繼站臺,多數都市鄉 鎮、郊區及國道、省道等重要道路均在訊號涵蓋 範圍內,且可視任務需求,指派通信中繼車強化 特定區域訊號強度。

1.系統組成

系統組成核心為交換機與中繼站臺(固定 式或機動式),兩者間主要以有線電路建立鏈 結,始能發揮訊號長距離中繼功能。系統重要組 成計有「網管臺」負責系統監控與設定;「調度 派遣臺」負責無線電調度、告警處理、權限調整 與通話群組管理;「人員車輛定位系統」可顯示 人、車無線電機於地圖上定位資訊,並可發送文字簡訊,預先規劃勤務區域及路線,如有超出任務範圍即產生警示,移動軌跡均紀錄備查(如圖1)。

交換機如人體之大腦為系統之核心,控制系統內所有指令,有別於傳統交換機係按各種功能模組,所組成的大型硬體設備,隨晶片效能提升,TETRA系統朝向整合式的小型伺服器設計,除具備相同功能外,裝備體積大幅縮小,有利於機動架設。

中繼站臺負責將有線電訊號轉為無線電訊號傳遞,天線型式按預想涵蓋區域設計,使用全向(Omni)天線或指向(Panel及Yagi)天線,以達最佳訊號傳遞效果。中繼站臺電波輻射最遠可達58公里¹²,站臺採蜂巢式架構部署,使訊號複式配置涵蓋,確保多數任務無線電通達無虞。以往

圖1 憲兵指揮部人員車輛定位系統(AVLS)

資料來源:作者自行整理。

^{12 〈}TETRA Release 2〉《TCCA》,https://tcca.info/tetra/for-tetra-specialist/tetra-release-2/,檢索日期:2021年 1月8日。

站臺受限電源供應器或射頻耦合器等組件而體 積較大,近年隨技術發展,已有人員可攜式的 微型中繼站臺,安裝於強固型攜行箱提供機動 架設。

終端設備一般有固定台、車裝台及手持式 對講機等3型設備,固定台與重裝台主機構型相 同,係搭配不同周邊配件以不同形式使用,3型 設備之操作介面均相同,並能在500毫秒(ms)內 建立通話13,系統訊號強度隨時於螢幕顯示;另 外在歐洲國家開發直升機專用之航空台,可供地 空無線通聯使用(如圖2)。

手持式對講機具有體積小重量輕、多樣功 能與豐富配件等特色,為使用數量最多的終端設 備,無線電機之間透過GPS定位,發話時可於螢 幕顯示出相對方向與距離,供掌握部隊人員動態 參考(如圖3)。緊急按鈕在遭遇危急情況時, 或手持式對講機偵測到人員傾倒狀態時,將發送

告警信號,使調度派遣臺(或指定終端設備)立 即對該無線電實施監聽,協助狀況處置,確保人 員在外值勤安全。

2. 涌話模式

TETRA系統提供許多通話模式可選擇, 交換機經與有線電總機完成整合,終端設備即可 撥打國軍六碼軍線、自動線或手機號碼,滿足單 位與任務需求,主要通話模式說明如表2。

3.保密能力

在軍用通訊系統中,安全的加解密機 制是必要條件,依據TETRA標準協定,加密 區分兩類,第一類為空中加密(Air Interface Encryption, AIE),第二類為點對點加密(End To End Encryption, E2EE)。空中加密(AIE)是指終端 設備與中繼站臺之間傳輸的無線電波加密,加密 可分為三級,憲兵使用最高第三等級(AIE 3)防 護加密,確保無線電電波不受外界一般人員擷取

直升機用TETRA航空台 圖2

資料來源:參考https://www.cobham.com/antennasystems,檢索日期:2020年12月1日,由作者彙整製圖。

66 憲兵半年刊

^{13 〈}TETRA A Pocket Guide〉,http://www.tetra-na.org/documents/Pocket-TETRA-Guide.pdf,檢索日期:2020 年11月20日。

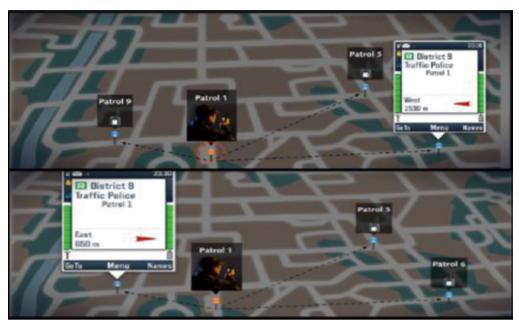


圖3 以手持式對講機掌握通話相對方位與距離示意圖

資料來源:參考https://www.securelandcommunications.com,檢索日期:2020年12月1日,由作者彙整製圖。

表2 TETRA通話模式說明表

通話模式	說明		
群組呼叫	群組呼叫(半雙工)提供一呼百諾的功能,並提供更佳控管方式,例如終端權限管理、通話群組優先等級設定、發話順序、忙線排序、發話禁止、緊急呼叫、群組掃描、動態群組派接、環境監聽及漫遊等管控功能,並輔以調派臺後端監控與操作,提供靈活彈性的通話運用。		
直接呼叫	使用者鍵入或由無線電機的「電話簿」內選擇了呼叫對象之無線電機用戶號碼後,直接按下PTT立即發話,此時被呼對象無線電機不會響鈴,系統已經直接建立了通信波道,被呼者只要應答即可,這種型態又稱之為內線呼叫或是快速呼叫。		
個別呼叫	需要與特定對象進行呼叫而又無須讓他人知悉時,可使用個別呼叫,即使是同一通話郡組內的其他成員都無法截聽通話內容。其方式如同撥接一般行動電話,無線電終端只需鍵入欲通話對象的用戶號碼撥號,對方設備響鈴後,按下接聽按鈕,即可實施全雙工應答。		
緊急呼叫	在直通模式下按下緊急呼叫時,無線電機會自動轉換至中繼模式發送緊急呼叫,當使用 者按下「緊急呼叫」鍵後卻未按下 PTT 鍵時,無線電機依然可以持續發送信號,將週 遭聲音傳達至指定接收者,此一功能保障了值勤人員的人身安全。		
簡訊服務	所有無線電終端裝置與調派臺,均可以編輯收發或查看簡訊,同一般語音呼叫使用無線電序號指定對象,可同時對多位使用者發出簡訊,縮短勤務命令下達時間,並確保命令清晰、安全、迅速及正確的傳達至值勤單位,不因語音發音不清、短暫干擾等因素,造成誤解命令的失誤情形。		

資料來源:作者自行整理。

竊聽;點對點加密(E2EE)是指終端設備與終端設備之間,均透過晶片將通話內容完整加密,如未安裝相同晶片,則無法解密通話內容,採用AES-256作為加密標準演算法。憲兵TETRA系統除具備上述加密技術外,為達多重與強化加密機制,業已完成外掛式保密器開發使用,並符合「政府機關密碼統合辦法」,確保機密資訊傳輸安全。

4.其他運用

除透過無線電機終端設備傳輸數據資料外,另可應用TETRA MODEM數據機,以歐洲AIRBUS的TW1m為例¹⁴,以客製化開發,協助南韓電力公司(Kepco)建立電力監控網路,透過107個中繼站臺,將電網數據回傳中控管理。我國臺鐵局透過數據機開發「行車調度無線電話系統」(TDRS)¹⁵,整合列車之廣播系統、緊急對講機系統及旅客資訊系統¹⁶,旅客如觸發緊急按鈕與對講機,可透過TDRS傳送緊急訊息(含車次與車廂編號)至列車長手持式對講機¹⁷。

(二)未來發展方向

TETRA標準協定自1995年由ETSI制定公布,後續成立The Critical Communication Association協會負責整合測試與技術發展,其官方文件「TETRA to 2035 and beyond」指出關於未來發展方向計有3點¹⁸:

1.持續整合TETRA與LTE之間互通作業,允

許兩個系統之間實施個別呼叫及群組呼叫等通話模式、短數據或簡訊互通等應用,預計於2021年完成整合互通技術規範。

2.持續精進優化技術,確保系統至少可用 至2030年之後,並增強規範認證,如電磁相容 (Electromagnetic Compatibility, EMC)和電磁頻譜 (Radio Spectrum Matters, ERM)等,並減少測試 時間,使系統製造商可提供更加優質的設備。

3.因應未來通信保密安全威脅更甚以往,如量子技術的發展,電腦將有能力以更快速測試大量金鑰,導致密碼遭受暴力破解。因此,強化安全架構與更強的加密演算法,為未來系統發展主軸。

參、異質系統介接與整合研析

異質系統區分為「TETRA標準協定整合」、「MCPTT APP與雙模機」、「ICS及語音閘道整合」、「傳輸鏈結介接」等四項議題探討,目的在使系統功能擴充、克服障礙延伸訊號、縮短架設時間、跨通訊技術與介面整合及提高存活度等正面效益,俾利憲兵TETRA系統運用越臻完善,確保任務執行遂行。

一、TETRA標準協定整合認證

ETSI制訂的TETRA公開標準協定,近20年來廣泛受到各國軍公民營單位使用。國際上無線電製造商投入預算研發與產製,提供最新技術及

^{14 〈}Transferring voice and data securely〉《AIRBUS》,https://www.securelandcommunications.com/tw1mmodem,檢索日期:2020年11月14日。

^{15 〈}Nationwide network for special data applications〉《AIRBUS》,https://www.securelandcommunications.com/customerstories/kepco-power-utility-network,檢索日期:2020年11月14日。

¹⁶ 楊振宗、蘇水波,〈無線電通訊應用於鐵道列車行駛之相關技術、測試程序及標準出國報告〉,交通部鐵路改建工程局,2015年12月。

¹⁷ 傅義鴻,〈臺鐵行車調度無線電話系統沿革〉《NCCNEWS》(臺北市),第11卷第5期,國家通訊傳播委員會,2017年9月,頁14-18。

^{18 〈}TETRA the Future〉《TCCA》,https://tcca.info/tetra/tetra-in-future/,檢索日期:2021年1月1日。

功能,來面對日益嚴苛的勤務環境。原則上,凡 符合TETRA標準協定之系統與終端設備,經逐 項功能測試或參數調整後,雖屬不同廠牌仍可兼 容使用;上述工作由TCCA協會負責,稱為相容 性認證(Interoperability Certification)作業19。截至 2020年12月止,計有17家廠商參加該協會的認證 作業,並完成179份認證報告20,提供各國需求 單位作為建置參考。

以北歐的挪威、瑞典及芬蘭等三個國家為 例,其國內公共安全通信網均使用TETRA中繼 式無線電系統,於2019年成為世界上第一個完成 跨國境系統整合的案例,跨國的警察、消防救 援、海關、國防軍及邊境警衛任務均受益良多 21。另於英國倫敦地鐵營運已超過150年,屬世 界上歷史最悠久及繁忙的鐵道系統之一,由於各 條營運路線啟用時間不同,無線電系統採用的廠 牌型號亦相異,但均由倫敦地鐵公司經營,為利 於營運及安全管理,遂推動各條線路系統整合 作業,通訊系統統一採用TETRA無線電系統, 主要作業項目包含:整合11條營運路線無線電系 統,涵蓋5個區域,至少1,400個車用臺、290個 基地臺、纜線長度達740公里及一併整合後續保 養維護22。

個別TETRA系統整合不易,以我國高鐵、 臺鐵與臺北捷運為例,雖均屬TETRA系統,惟 須先確認有無通過相容性認證作業, 並考量各單 位任務差異、擴增開發系統不同、通訊參數及波 道容量之差異,整合實屬不易。基此,TETRA 標準協定撰擬之初,即將終端設備「漫遊功能」 設計在內,與手機於國外使用漫遊,可保持涌 話及上網服務功能相似。故將設備預先於其他 TETRA系統註冊,使用者可依所在區域,選擇 系統訊號來源,保持通聯,確保執行任務順遂, 亦為彈性便利之解決方案。

二、MCPTT APP與雙模機

以歐洲空中巴士(AIRBUS)公司的MCPTT APP軟體Tactilon Agnet²³ (如圖4)及TETRA/ 智慧型手機雙模機DABAT²⁴為例說明。Agnet可 安裝於智慧型手機及平板電腦等裝置,其伺服器 透過防火牆與交換機連接整合,內容以點對點加 密方式傳輸,智慧型裝置在基地台訊號範圍內, 透過Agnet能與TETRA無線電終端設備實施通 聯,一樣可選擇通話群組及簡訊服務,讓智慧型 手機有如一具無線電機般使用。

DABAT雙模機為TETRA無線電手持式對 講機,同時也是一具智慧型手機,為軟體/韌 體/硬體全般整合之裝置,同樣透過Agnet APP 操作,最大的優勢在於訊號模式的切換,當 TETRA系統模式訊號強度不足時,將自動切換 為4G LTE行動通信訊號傳輸,反之亦然,切換 過程無縫接軌,無須人員手動操作,避免影響勤 務人員任務執行,並確保通聯內容通達。

[〈]Critical Communication for all professional users〉《TCCA》, https://tcca.info/,檢索日期:2021年1月2日。 19

[⟨]TETRA Interoperability Certificaes⟩ 《TCCA》 , https://tcca.info/interoperability/tetra-interoperability-20 certificates/,檢索日期:2021年1月2日。

Barry Mansfield, "Northern Powerhouse", Critical Communications Today(UK), 2020/3, pp.10-13. 21

同註16。 22

[〈]Tactilon Agnet〉《AIRBUS》, https://www.securelandcommunications.com/tactilon-agnet#01e80d8f, 檢索 日期:2021年1月5日。

[〈]Tactilon Dabat〉《AIRBUS》,https://www.securelandcommunications.com/tactilon-dabat#01e80d8f,檢索 日期:2021年1月5日。

圖4 AIRBUS MCPTT APP - Agnet操作架構示意圖

資料來源: 參考https://www.securelandcommunications.com/tactilon-agnet#01e80d8f, 檢索日期: 2021年1月5日,由作者彙整製圖。

三、整合通信系統及語音閘道整合

整合通信系統(ICS)為現今公共安全、災害防救、軍事通訊發展主流趨勢之一,透過標準通用的IP(Internet Protocol)封包網路為核心技術,將各種有線電與無線電之介面整合,提供傳統類比電話、視訊影像、數位電路、乙太網路或光纖等類別整合運用。內政部消防署負責我國防救災緊急通訊系統建置,於民國91至94年期間推動「防救災緊急通訊系統整合建置計畫」,包含防救災「專用微波通訊系統、「專用衛星通訊系統」、「直升機傳輸影像系統」、「攜帶式衛星/微波通訊系統」及「救災指揮通信平台車」等項目建置。其中「救災指揮通信平台車」等項目建置。其中「救災指揮通信平台車」將通信整合納入,全國共配置12輛平台車²⁵,以統合災

區現場各項救援行動²⁶。

國家中山科學研究院亦有研製軍規整合通信系統,具有整合機動通信車、艦艇、指揮中心各種有線電、無線電、視訊、衛星電話及機動寬頻無線傳輸之語音、視訊、數據通信能力,可使作業人力精簡,系統易操作、裝備模組化易於擴充。席位操作手具有下列能力:電話對講、會談及錄音等、配接不同有線電話與無線電機、可連結視訊、衛星電話及機動寬頻無線傳輸達成遠距機動通信²⁷。透由廣布席位工作站給予作戰、情報等中心參謀運用,減少以往裝備架設與線路之布線,增進指管效率。

就無線電角度分析整合通信作法,係擷取各 別無線電機語音介面的收發訊號,透過語音閘道

²⁵ 張志新,國家災害防救科技中心〈現有救災通訊裝備建置探討〉簡報,2011年3月28日,頁3-33。

²⁶ 張嘉呈,〈救災指揮通信平台車使用之成效評估〉,2014,東南科技大學營建與空間設計研究所碩士論文,新北市,頁2-29。

^{27 〈}通信整合系統〉《國家中山科學研究院》, https://www.ncsist.org.tw/csistdup/products/product. aspx?product Id=80&catalog=11, 檢索日期: 2021年1月5日。

器收容,達到有線電及無線電語音串聯涌話效 果。以憲兵為例,因應衛戍作戰任務,已成功 將TETRA車裝台整合至雲豹甲車車內通話系統 中,可確保專案任務涌聯順隊。一般而言,上 述整合滿足大部分使用需求,但無線電頻道與 參數調整等設定,除非取得設備應用程式介面 (API),方能達到全般整合控制效果。

四、傳輸鏈接介接

為維持TETRA中繼式無線電系統穩定運 作,以支持任務執行順利,中繼站臺與交換機之 間的穩定連線至關重要。失去交換機的核心控制 訊號,站臺布建再多也無法發揮中繼之效,兩者 間的傳輸鏈結類型,亦有多種選擇供彈性靈活運 用。以下針對「衛星系統」及「民用通信」兩類 分析, 並以國內、外實例予以探討。

(一)衛星系統

衛星系統於民間與軍事部門運用由來已 久,特性為電波涵蓋區內通信不受地理環境限 制、地面站擴充便利迅速、適合點對多點或多點 對多點之廣播誦信,不易受天然災變破壞,適合 作為備援通信手段,或其他通信系統的機動傳輸 方式,以下茲就國內外運用實務案例說明。

英國的緊急公共安全網路「Airwave」是 世界規模最大的TETRA中繼式無線電系統之一 28, 訊號涵蓋範圍包含99%的國土面積, 提供消 防、警察、救難、醫護及保安等單位使用,為達 高密度訊號涵蓋且對於偏遠或交通不便區域,

選用小型衛星地面終端裝置(Very Small Aperture Terminal, VSAT)作為解決方案。自2005年以來, 完成至少100個VSAT站點架設,供中繼站臺與交 換機間穩定傳輸鏈結。Airwave亦設計機動涌信 中繼車,將TETRA與VSAT高度整合,架設時效 從原先2小時,縮減至15分鐘即可完成部署²⁹。 海地於2010年1月12日發生芮氏規模7.0的毀滅性 大地震,造成至少30餘萬人喪生、80多萬人傷 殘及100餘萬人無家可歸。委內瑞拉在參與救難 任務時即為運用TETRA系統於當地救災30,透過 VSAT裝置連結中繼站臺與位於委國國內加拉加 斯(Caracas)的交換機建立穩定連線,提供海地當 地 教 災 人 員 與 委 國 境 內 政 府 組 織 涌 訊 暢 涌 , 增 淮 救災的效率。

我國內衛星服務主要由中華電信股份有 限公司(簡稱中華電信)提供,稱為「iDirect VAST網路」31,透過中新二號(ST-2)建立衛星通 信服務,依據客戶指定及需求,提供「ST-2衛 星C頻段」及「ST-2衛星Ku頻段」服務,各頻段 轉頻器及涵蓋區域如圖5。中華電信的「iDirect VAST網路」服務,內容包含數據、傳真、語音 或視訊會議使用,適用於偏僻、離島或電信基礎 建設落後地區,並可滿足工商界海內外、各據點 間之通信需求。憲兵TETRA系統於民國106年經 實測驗證,運用中繼通信車介接中科院之衛星系 統,可建立與系統交換機傳輸鏈結穩定連線,成 功延伸TETRA系統網路訊號,有效提升憲兵任

²⁸ ⟨COMMUNICATIONS ANY TIME, ANYWHERE⟩ 《AIRWAVE》, https://www.airwavesolutions.co.uk/ home/,檢索日期:2020年12月6日。

[⟨] Providing satellite solutions for the Airwave Network Case study ⟩ 《DATASAT COMMUNICATION》, https://www.datasat.com,檢索日期:2018年12月1日。

[〈]A first for TETRA helps aid efforts in Haiti〉《TCCA》, https://tcca.info/a-first-for-tetra-helps-aid-efforts-inhaiti/,檢索日期:2020年12月6日。

[〈]小型衛星地面站 (Very Small Aperture Terminal, VSAT) 通訊網路服務〉《中華電信股份有限公司》, https://www.cht.com.tw/home/campaign/gxc/c5/vsat/index.html,檢索日期:2020年12月7日。

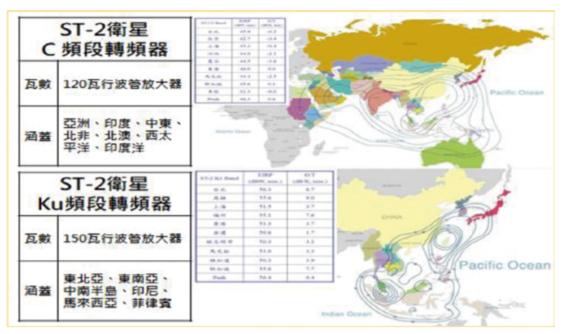


圖5 中新二號(ST-2)衛星涵蓋區域示意圖

資料來源:參考https://www.cht.com.tw/home/campaign/gxc/c5/vsat/index.html,檢索日期: 2020年12月7日,由作者彙整製圖。

(勤)務無線電系統之部署需求。

除透過中新二號(ST-2)提供衛星通信服務之外,另有舒拉雅(Thuraya)衛星系統可供介接選擇,此為區域衛星通信系統,自2001年開始營運,總部位於阿拉伯聯合大公國,現有2顆高軌同步衛星提供服務,訊號涵蓋區域如圖6³²。常見的舒拉雅終端裝置為手持式衛星電話,如XT-Lite、XT-Pro或Satsleeve+等型號衛星電話,可提供語音通信及短訊(SMS)服務,另為滿足數據連網等需求,舒拉雅系統也提供衛星上網功能,如Thuraya IP+、Thuraya IP Voyager等裝置,最高連網速率為444kbps³³,各類型裝置如圖7所示,而其連網裝置亦能支援TETRA系統介接運用³⁴。

(二)民用通信

早期TETRA中繼站臺與交換機之間傳輸鏈結係使用T1/E1專線電路,隨著IP介面標準普及數據處理設備提升之影響,運用IP傳輸已成為較佳選項,民用通信近年來蓬勃發展,第四代(4G LTE)行動通信基地台已廣泛建置提供涵蓋外,第五代(5G)行動通信亦於2020年起於我國正式開台服務。基此,運用民用通信作為傳輸骨幹,增進系統及中繼站臺部署之彈性與存活度,對TETRA系統實具有重要的應用效益。軍事通信運用民用電信業者提供的服務可區分兩類,第一類為有線固網、第二類為無線行動通信,說明如後。

第一類有線固網部分即為軍租專線,固網

^{32 〈}Thuraya衛星電話〉《中華電信股份有限公司》,https://www.cht.com.tw/home/campaign/gxc/c6/thuraya/index.html,檢索日期:2020年12月7日。

³³ 同註33。

³⁴ 同註33。

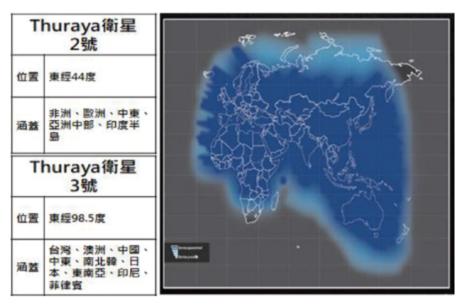


圖6 舒拉雅(Thuraya)衛星涵蓋示意圖

資料來源: 參考https://www.cht.com.tw/home/campaign/gxc/c6/thuraya/index. html,檢索日期: 2020年12月7日,由作者彙整製圖。

圖7 各型舒拉雅(Thuraya)衛星裝置

資料來源:參考https://www.cht.com.tw/home/campaign/gxc/c6/thuraya/index. html,檢索日期:2020年12月7日,由作者彙整製圖。

業者(Internet Service Provider, ISP)配合任務需求 提供不同訊號格式電路,一般用於營區無軍用 電路投落點,通常是偏遠地區與分散據點,給 予租用單位國軍網路或軍線等特定服務³⁵。於緊急情況或任務區域因軍用電路無法延伸抵達, TETRA系統亦可利用臨時軍租專線建立傳輸鏈

³⁵ 王廣義,〈民用行動通信於軍事運用之研究〉《陸軍通資半年刊》(桃園市),第134期,陸軍通信電子 資訊訓練中心,2020年10月,頁130-153。

結,滿足機動彈性架設需求。

第二類無線行動通信從原2G通信僅提供語音及簡訊服務發展至3、4G通信的行動上網服務,於未來進入5G通信後,其高速數據傳輸、低延遲及巨量資料接取的三大特性,將對社會各行各業帶來革命性的變化。以中華電信為例,在4G LTE階段已推出專網服務,稱為「MDVPN行動數據群組企業網路」³⁶;在進入5G通信後,亦推出「5G企業專網」,透過高速率、低延遲、大連結之特性,於醫療業、製造業及交通等產業應用上,提供安全高品質的VPN專屬網路服務,於企業內網傳遞進行,可確保資料安全、避免機敏外流,提升企業管理效能與競爭力。我國首例即為中華電信與日月光、高通聯手合作,打造臺灣首座5G智慧工廠³⁷。

中華電信為全台電信業者中基地台數量第一名³⁸,透過全島各處遍佈之基地台可確保無線行動通訊涵蓋及通達³⁹,且備有機動基地台載具,以因應特定區域或緊急突發事件如救災,投入特定區域開設俾維持通信正常(如圖8)⁴⁰。 TETRA機動中繼站臺可透過無線行動通信基地台與交換機鏈結,對執行任務效益高,因擺脫有線電路的線路束縛、衛星通信的昂貴成本、微波系統的地域限制,實現全天候機動架設、強化訊號涵蓋效果。

圖8 電信業者防救災行動基地台通信車 資料來源:參考https://www.cna.com.tw/news/ aie/201811270125.aspx,檢索日期:2020 年12月7日,由作者彙整製圖。

肆、軍事應用芻議

國軍聯合作戰C⁴ISR指管系統係透過雷達的 感測偵知,建構出我國周邊海、空共同作戰圖 像,並由各類型無線電通信網路,對國軍作戰單 位下達指管命令進而完成戰術作為,達成作戰目 標。然而,我國現無專屬軍事通信衛星可用且 遭敵初期作戰之導彈精準攻擊及特工破壞下,國 軍主要資傳節點及相關雷達、通信站台設施受毀 損機率高,將造成國軍指通能力受阻,進而影響 海空整體戰力。同理,地面部隊於作戰時指管通 聯能力亦受部分毀損,通信要點之軍用無線電中

^{36 〈}MDVPN行動數據群組企業網路〉《中華電信股份有限公司》,https://www.cht.com.tw/home/enterprise/mobile/enterprise-data/mdvpn,檢索日期:2020年12月7日。

^{37 〈}中華電信、日月光、高通聯手導入台廠基地台,打造台灣首座5G mmWave智慧工廠〉《中華電信股份有限公司》,https://www.cht.com.tw/zh-tw/home/cht/messages/2020/msg-200818-140000,檢索日期:2020年12月7日。

^{38 〈}大4G優勢〉《中華電信股份有限公司》, http://emcrm.hinet.net/events/28b56b3d-829c-e811-a24d-00155dc8c07d/, 檢索日期:2020年12月7日。

^{39 〈}網路涵蓋率查詢〉《中華電信股份有限公司》,https://www.emome.net/internet_coverage,檢索日期: 2020年12月7日。

^{40 〈26}台行動救災通訊車啟用,災區通訊不中斷〉《中央通訊社》,https://www.cna.com.tw/news/aie/201811270125.aspx,檢索日期:2020年12月7日。

繼台等設施受破壞時,將導致各作戰區內各戰鬥 及支援部隊之通聯受阻,需建構多重通資備援手 段,俾使作戰指管順遂。地面作戰中另有後備動 員部隊、警察與民防組織等單位, 在全民共同防 衛作戰構想下,地面作戰指管通聯更應具備多元 **彈性、結合公民營機構各項涌資資源,系統相互** 整合運用,俾以全面發揮我國土防衛守勢作戰優 勢。經分析TETRA系統特點、投入國軍作戰、 救災與勤務實務經驗與前述異質系統介接應用案 例,歸納提出軍事應用建議如後:

一、作戰運用建議

(一)支援常後部隊使用,增進防衛作戰效益

現行國軍地面部隊以配備37系列無線電機 為聯戰指管運用,其中繼型設備可供中繼轉發能 力有限,故於指揮所常見同時架設數套設備使 用,以確保作戰區域內各作戰網路通聯暢通, 相對耗費空間、設備與維持所需人力;而後備 動員部隊大多以使用舊式通裝為主,如AN/PRC-77、VRC-46系列、多波道FM-200與CTM-218等 設備,相關裝備隨時間越久,通信效能越差,亦 缺乏保密強度。常備與後備部隊間通聯如無法暢 通,則能否達成國軍防衛作戰「常備打擊、後備 守土」之戰略目標實有待商権。

TETRA單一中繼站臺可提供7個涌話群組 同時通聯,並允許擴充至31個群組,可提升頻譜 資源運用效率,免除同一站臺空間架設多套通信 設備之困擾,通話群組依據單位、階層或任務預 先燒錄,無須設定通信諸元,不同對象透由切換 群組即達成通聯要件,據此建立常備與後備部隊 間通聯管道,滿足各類型部隊橫向、縱向及跨單 位涌聯需求,有效增進我防衛作戰效益。

(二)各型設施掩蔽於民,有利於城鎮戰運用

TETRA中繼站臺與終端設備天線外觀與 常見軍規天線不同,而與電信業者基地台天線相 似,但使用不同頻率,可與之併排同時運作,不 致受到電磁干擾影響。利用電信業者基地台全台 遍布,融入市民生活顯而易見之特性,於市區建 築物頂樓架設TETRA中繼站臺,使訊號滲透都 會與近郊。將各型設施藏於民間,使敵人難以辨 別天線用處,藉此發揮涌資不對稱戰力之特點, 強化通資系統戰時存活度。

民國108年國防報告書中揭橥憲兵部隊建 軍方向朝向「特戰化、快速反應化」編組⁴¹,城 鎮戰中限制空間作戰(Close Quarter Battle, CQB) 早已為憲兵部隊核心訓練之一,戰法注重單兵、 小隊間戰鬥技能及通信聯絡。TETRA無線電體 積小易配戴,搭配多元周邊配件,舉凡透明軟管 耳機、外接式或喉結式麥克風對講機、藍芽耳 機、多樣背帶與皮套型式、及高容量電池等,適 合小部隊於城鎮間執行作戰與機動、特種勤務隊 執行任務及特勤人員執行安維使用,確保隊員間 横向涌聯暢涌。

(三)發展核心傳輸技術,支援指管系統建構

C⁴ISR系統未來朝向軟體定義無線電 (SDR)發展⁴²,運用新式天線、分頻多工及隨建 即連網路(Mobile Ad Hoc Network, MANET)等技 術,建立抗干擾、高頻寬及無核心節點的指管鏈 路系統,主要強化部隊影像及數據資傳能力。數 位戰士所需核心無線電網路傳輸有兩種,一是透 過軟體定義無線電、二是透過電信業者MDVPN

^{41 〈108}年國防報告書〉,2019年9月1日,頁63。

⁴² 鄭南宏、焦興也,〈淺談國防通信系統未來發展趨勢-以軟體定義無線電為例〉《陸軍通資半年刊》(桃園 市),第130期,陸軍通信電子資訊訓練中心,107年9月,頁4-15。

無線網路(4G LTE/5G) ⁴³,其中軟體無線電機造價成本較高,如欲全面達成地面部隊共通指管,勢必所費不貲。

而中繼式無線電為成熟穩定之通信系統,透過語音閘道與軟體無線電整合,可擴增其語音通聯效能,雖僅有語音及窄頻數據,但歷經長年於公共安全部門實務經驗改良,並透過多元、迅速的手段完成中繼站臺架設,滿足平、戰時國土防衛部隊所需之「關鍵語音」通信,並支援建構地面部隊C⁴ISR指管系統。

(四)群組配合階層建立,機動增強系統存活

TETRA系統通話群組設計之彈性,允許 註冊許多通話群組,略同通信諸元表建立之通信 網路,例如指揮官網、勤務網及行政網等,優點 可免除定期諸元設計、分發通信諸元表,透過調 度派遣臺可將任兩個(含)以上通話群組串接, 使原在不同通話群組的人員,無須切換群組即可 與另一群組人員通聯;或建立臨時動態群組,將 相關人員無線電加入立即通聯,適合用於跨區增 援任務。原本三個階層以上的指揮鏈組織,透由 中繼式無線電通信平台通話群組的扁平化設計, 消彌層層的命令傳遞,供高階決策長官即時獲得 前線部隊或勤務人員訊息,下達決心處置,確保 任務執行順隊。

隨著交換機與中繼站臺間鏈結方式可採有 線電路或無線傳輸,允許兩者均得以機動部署, 無論交換機或中繼站臺,透過固定式與機動式搭 配複式配置,有線電路預先以戰備電路設置,無 線傳輸預設多重IP路由,可有效增進TETRA系 統存活度。在國土防衛守勢作戰下,廣泛建設固定式中繼站臺,機動中繼站臺視戰況臨機投入接替開臺,交換機網狀配置多重路由,確保作戰區域內指管涌信暢涌。

二、救災運用建議

(一)語音闡道連線整合,憲警中繼誦信互通

憲兵與警政單位合作由來已久,例如刑案 共同偵辦、協力治安巡邏、聯合特種勤務及災害 防救等,可謂軍警一家親之體現。現行警用無線 電自建置完成迄今,已逾17年,面臨設備老化導 致通信品質不良、不具保密性、無法跨縣市區域 通聯及功能過時等問題,影響員警值勤效率。 基此,內政部警政署計畫於民國109至113年(5 年)投入38億5千萬餘元,汰換全國警察機關無 線電,提升其值勤效率,達成維護治安之目標 44,未來將建立全國性之中繼式無線電系統,全 台部署至少200餘處之中繼站臺,訊號涵蓋之廣 度與密度佳⁴⁵。建議將來雙方部門可預設通話群 組,區分地域或任務設計,利用語音閘道器整 合,使警察與憲兵之間通聯無礙,俾利各項勤務 及災害防救任務執行順遂。

(二)同質系統註冊漫遊,終端設備通聯備便

國內使用TETRA中繼式無線電系統的機構,多以軌道運輸單位為主。以臺鐵局為例,全臺軌道區分山線、海線與支線,穿越海濱、郊區、山區與城鎮地區,連結各縣市重要交通樞紐。臺北衛戍區中捷運軌道的四通八達,透過地下隧道縱橫連結各行政區,建立出良好的運輸網路,以上軌道運輸系統均為高乘客載運量交通,

⁴³ 徐方鴻,〈單兵戰鬥系統發展之研究-以美軍數位化戰士為例〉《陸軍通資半年刊》(桃園市),第131期, 陸軍通信電子資訊訓練中心,108年4月,頁93-101。

^{44 〈109-113}年警用無線電汰換更新中程計畫〉《內政部警政署》, https://www.npta.gov.tw/cht2009/08public/download/Cost2019.pdf,檢索日期: 2021年1月3日。

⁴⁵ 同註45。

如發生災害將致嚴重恐慌,國內外公共安全部門 均重視站內空間與軌道之安全維護。憲兵亦於部 分高鐵站,成立車站服務台,除對國軍官兵開放 服務外,同時具備反恐緊急應變功能;另就戰術 觀點下,軌道運輸路線有其軍事運用價值,是 以,如將TETRA無線電預先註冊於高鐵、臺鐵 與捷運等單位之系統,建立系統漫遊功能,確保 緊急事件發生時,憲兵部隊進入站體軌道範圍 後,可與相關單位及部隊通聯,以有效執行反恐 仟務或災害搶救。

(三) 國家災防通訊基礎,消防軍方共享互惠

由國家通訊傳播委員會主導、內政部消防 署主要執行,於民國106年9月至109年12月辦理 「強化防救災行動通訊基礎建置計畫」46,目的 針對95年度「防救災緊急通訊系統整合建置計 書」所建置系統更新,串聯中央至地方防救災三 級體系(中央、縣市與鄉鎮),強化國家基礎災 防設施。具體結果為更新現有微波、衛星及無線 電通訊系統及中央災害應變中心電話交換機系 統,強化「災防告警細胞廣播訊息」及「112全 球行動通信系統緊急救援電話號碼服務」等。 國軍在前述建設基礎下,於緊急災防需求時得 向我國內政部消防署,申請災防系統設施開放 一定頻寬通資能量使用,提供國軍TETRA系統 建立額外鏈結47。另外,災防系統中「大規模無 線電系統」規劃整合各地「偏鄉無線電」,建 議後續憲兵TETRA系統亦可透由語音閘道與之 整合,俾利災害防救時,可跨部會無線電通聯 順遂。

(四)科研無人飛行裝置,中繼訊號立體涵蓋

無人飛行載具空中中繼臺,為沂年軍事 或民間發展研究議題之一。以中華電信與雷 虎科技共同合作之「中華電信空中基地台系 統」(Chunghwa Telecom Unmanned Air Systems, CHTUAS)(如圖9),由中華電信衛星行動搶修 車、雷虎科技無人機共同組成,該無人機採繫留 纜線提供電力與訊號傳輸,升空高度達100公尺 定點、10小時以上長滯空的飛行能力,最大起飛 重量為35公斤的高酬載能力,透過衛星行動搶修 車之衛星建立行動通信網路,通訊涵蓋達35平方 公里(仍需視地形地貌而定)48,克服災區人車 無法抵達之通訊孤島區域,快速提供救援單位及 災區民眾回報災情,掌握黃金救援72小時緊急通 訊需求。後續TETRA中繼站臺亦可比照開發, 透過縝密評估天線系統、酬載與無人機整合,克 服各種障礙阻通環境,以無人飛行載具空中中繼 臺提供任務所需訊號涵蓋。

(五)災害防救科技發展,公務部門訊息整合

我國負責災害防救專責機關為內政部消 防署,該署業已開發「應變管理資訊雲端服 務(Emergency Management Information Cloud, EMIC)」供政府各部門統一運用,並於2020年7 月份推出EMIC 2.0版本,大幅整合與精進系統 功能⁴⁹。建議可開發MCPTT (含Push To Video

[〈]強化防救災行動通訊基礎建置計書(審議編號:108-3001-03-20-01)〉《國家通訊傳播委員會》, 46 http://www.nfa.gov.tw/upload/pro/attachment/15e3c0c097dc85a9603e4565ea3264cd.pdf, 檢索日期: 2020年12 月2日。

⁴⁷ 同註47。

[〈]中華電信與雷虎科技合作展出「空中基地台系統」〉《中華電信股份有限公司》,https://www.cht.com. tw/zh-tw/home/cht/messages/2019/msg-180814-141500,檢索日期:2020年12月2日。

[〈]應變管理資訊雲端服務EMIC〉《內政部消防署》,https://portal2.emic.gov.tw/SSO2 Develop/,檢索日 期:2020年12月5日。

圖9 中華電信空中基地台系統(CHTUAS) 資料來源:參考https://www.facebook.com/ ThundertigerTaiwan/photos,檢索日期: 2020年12月2日,由作者彙整製圖。

與Data)APP作為其子系統,輔以通信整合系統(ICS)或語音閘道器,整合全國中央與地方縣市公務部門之無線電,並於必要時開啟通聯機制。結合中華電信MDVPN行動數據群組企業網路,透過中華電信衛星系統、空中基地台系統等豐富之機動基地台架設方案,建立專屬寬頻網路,將災害現場即時語音、圖片與影像回傳中央與地方災害應變中心掌握,以強化救災應處作為。

伍、結語

TETRA無線電系統藉由與各類軍公民營異質系統之彈性介接與整合,可提供穩定可靠的關鍵任務通信(Mission-Critical Communication)能力,確保各項任務通聯暢通,為多國軍隊普遍使用之通信裝備。其無線電機體積小、易操作及通達率高等特點,適合部隊平時一般任務與災害防救運用;結合軍規加密機制後,可作為地面部

隊軍事作戰良好的通信系統,而其系統架設靈 活彈性、便利及快速等特點,亦為通信不對稱 作戰運用之一環。現無任何單一頻段無線電系 統及其通信技術,足可支撐軍事作戰所需完整 C⁴ISR系統所需,在C⁴ISR系統中的指管語音通 聯,可以ICS整合各頻段無線電為之,而TETRA 中繼式無線電系統即為其中不可或缺之要素。 爰此,應持續建設與維護TETRA系統,尤以異 質系統介接整合為先,確保平時勤務、災害防 救及戰時作戰應用順遂,提高系統效益與價值 最大化運用。

在未來趨勢中,MCPTT應用程式或雙模機 於公共安全領域之使用將越加普及,能滿足平時 一般任務影像與數據資料傳輸之需求外,經由 MDVPN、5G網路切片等區隔與點對點等加密機 制下,亦可發揮良好軍事應用價值。如同我國民 國108年國防報告書中所述「運用民間資源與能 量,強化共同作戰圖像,提高戰場之透明度,使 各層級作戰人員透由載具同步掌握戰場動態」 ⁵⁰,在國土防衛作戰思維下,我方應全般檢視各 種通資手段整合運用,經營多元通資環境,俾供 國軍作戰運用。

作者簡介

李建鵬 中校

國防大學資訊工程研究所碩士,現職國防 大學管理學院國管中心中校教官

曾聖文 少校

國防大學電機系碩士,現職國防大學陸軍 指揮參謀學院學員

⁵⁰ 同註41,頁68。