中共海軍核動力潛艦永磁推進電機之研析

著者/沈達萬、賴璽互

國防大學理工學院 97 年班,國防大學海軍指揮參謀學院 109 年班、國防大學船研所碩士班 106 年班,現服務於海軍造船發展中心

海軍軍官學校 90 年班、國防大學海軍指揮參謀學院 102 年班、 國立臺灣大學國家發展研究所碩士,現服務於國防大學海軍指揮參謀學院

中共海軍的造艦技術不斷精進,尤其對於潛艦的性能要求,除依作戰需求須具備一定的打擊力及續航能力外,潛艦推進系統的低噪音、高效率及穩定性是重要性能指標,而中共近期研製的第三代核動力潛艦推進系統將採用永磁推進電機,其是以永久磁鐵替代傳統推進電機勵磁裝置的技術,且均可同時滿足上述所追求之性能指標。永磁推進電機的研發也表明:中共已成熟運用稀土資源於軍事領域的關鍵技術,且突破以往「技術外援」窠臼,進而領先其他先進國家核動力潛艦的發展水平。提高其軍事優勢!

運用 SWOT 分析永磁推進電機的優弱勢、可能創造的機會與未來面臨之威脅,所謂「以敵為師可以知興替」:為了防備中共海軍核動力潛艦降噪技術突進發展的威脅,我國應開始重視磁性偵測儀的運用效益,而非僅是應用聲紋截收之方式,俾使未來反潛戰術更趨靈活與多元,可使中共新一代的核動力潛艦喪失預期之隱蔽優勢,以提高我未來反潛偵蒐作為之效益。

壹、前言

核動力潛艦是重要海上威嚇力量,世界海軍 強國均已投入大量的資源研發其關鍵技術,特 別是推進系統的技術研發一直都是世界海軍強 國的重點。發展核動力潛艦的初衷是利用核反 應爐的大功率特性,使核動力潛艦潛航時能夠 獲得長時間的高航速優勢,且利用其不依賴空 氣潛航而獲得隱蔽性。但是隱蔽性僅是倚賴長 時間潛航是相當不足的,潛艦如要具備優異的 隱蔽效果,而不被敵方的聲納所偵測發現,其 潛航期間必須非常安靜,故噪音值才是潛艦隱 蔽性的重要評定指標。

1986年,德國西門子公司率先開發永磁推進 電機應用至海軍水面艦艇,發現能降低噪音, 並提高輸出功率。促使世界海軍強國潛艦陸續 研製永磁推進電機,先由日本蒼龍級潛艦及德國 214 型潛艦等常規動力潛艦應用案例,證實了永磁推進電機應用在潛艦的可行性。目前美、英、法等世界海軍強國都已經公開宣布:下一步的發展是開始在核動力潛艦上運用大功率永磁推進電機的研究。

美國海軍現役最新型的第四代戰略導彈核動力潛艦為俄亥俄級潛艦(Ohio-class submarine),該型潛艦首艘自 1976 年開始服役,迄今已近 40 餘年。考量現代對應的偵潛科技日益先進,且潛航時的輻射噪音特性為潛艦之重要戰力指標,美國海軍已於 2016 年與通用動力電船公司簽署《潛艇通用建造戰略》(Submarine Unified Build Strategy, SUBS),其主要目的是開發下一代「哥倫比亞級核動力潛艦」(Columbia-class submarine),以逐步取代俄亥俄級潛艦,因此該項計畫亦稱《俄亥俄級潛艦取代專案》(The new Ohio Replacement Program, ORP)。研發計畫提及:美國海軍的新一代核動力潛艦推進系統也將引入永磁推進電機的概念設計,以提高其作戰性

能,預計於 2021 至 2039 年間陸續產製 12 艘次。1

此項新的科技,中共也並未缺席。中共海軍 近年來投入大量成本於永磁推進電機的研製, ² 中共國家船舶動力與機電領域的著名專家馬偉 明教授帶領研發團隊,突破永磁推進電機的關 鍵技術奠定基礎,產製了 2 兆瓦級的陸基永磁 推進電機,並於 2016 年 1 月 8 日中共國家科學 技術獎勵大會上獲得國家科學技術進步獎及創 新團隊獎等殊榮。³ 因此研判中共對於核動力潛 艦永磁推進電機科技,已持續投入大量的研發 成本,⁴ 未來中共核動力潛艦是否能夠如同常規 動力潛艦般,呈現誇越式發展,值得持續關注。⁵

據 2017 年 10 月 23 日中船重工的官方發表指 出:中共海軍七一二所研發的首艘安裝永磁推 進電機之排水量 3000 噸潛艦已於海南三亞試 成功,惟相較於排水量高達 7000 噸的核動力潛 艦仍有相當大的發展空間,其軸馬力差距有 5 倍之多,故可研判中共海軍仍有部分關鍵技術 尚待突破。

本文章的研究目的:基於中共海軍核動力潛

¹ Dave Majumdar, "Beyond the Ohio-Class: Inside American's Next - Generation Missile Submarine, "The national interest, 2016/5/19, https://nationalinterest.org/feature (檢索日期:2020年2月25日)

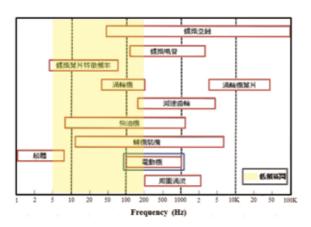
² 李亞旭, 〈永磁同步推進電機 - 潛艦新型推進系統〉, 《NAVAL FORCES》,第4期,1996年,頁49。

³ 熊蜂,〈中國全電化艦船技術世界領先_戰艦有"中國心"〉,《環球網》,2016年3月28日,〈https://mil_huanqiu.com/article/9CaKrnJUQnt〉(檢索日期:2020年5月12日)

⁴ 楊家鑫,〈中國大陸首台潛艇!永磁電機實挺試驗成功〉,《中時電子報》,2017 年 10 月 24 日,〈http://www.chinatimes.com/amp/realtimenews/20171024002904-260409〉(檢索日期: 2020 年 4 月 12 日)

⁵ 相關專有名詞說明:中共海軍對於核動力潛艦稱之「核潛艇」,並依用途區分為「彈道導彈核潛艇」及「攻擊型核潛艇」等兩種類型,國內文獻大致分別以「戰略彈道飛彈核潛艦」及「核攻擊潛艦」稱之;中國船舶重工集團公司,《人民海軍艦艇全譜》, (北京:現代船艦雜誌社,2017年),頁52。

艦「機械噪音過大」的問題,再探討永磁推進 電機的應用發展預期可達到的降躁效益分析, 再進一步研析永磁推進電機之優弱勢、可能創 造的機會與未來面臨之威脅。


貳、中共海軍核動力潛艦發展永 磁推進電機之需求

中共海軍核動力潛艦為中共相當重視的水下 戰略性載台,尤其具有發射巨浪二、三型導彈 的 094 型戰略彈道飛彈核潛艦,其二次核打擊 能力更令西方先進國家所關注,然而核動力潛艦 仍有許多問題迫使中共不得不加速發展永磁推進 電機,其主要需求有以下幾點:

一、解決核動力潛艦噪音過大之問題

近代水下反潛技術的迅速發展,以致核動力 潛艦的噪音限制愈趨嚴苛,因此核動力潛艦設 計的降噪技術也日益重視。核動力潛艦內部有 相當繁雜的輔機裝備及推進系統,推進系統一 般是由主機、推進電機、俥葉及控制調節設備 等機械單元所組成,6其中主推進推進電機的研 製為核心關鍵技術,它的運轉功率一般是在數 百至數千瓦之間,因此推進電機必須由獨立的 大功率發電機提供運轉電流,由此可知核動力 潛艦推進系統設計相當繁雜。"

核動力潛艦的噪音來源計有「機器噪音」、「葉噪音」及「流體噪音」等三大類,其中最主要來源是核反應爐及推進系統所產生「機器噪音」,偵潛的定位方式是藉由噪音特徵識別。噪音劃分為高、中及低頻帶等三類,而低頻噪音為5~200Hz區間:在物理特性上,低頻噪音傳播較不易衰減,故潛艦的低頻噪音較易被偵獲,而致使潛艦的方位暴露。8低頻噪音源為繁雜的機械元件構成之推進系統,而推進電機的噪音亦為來源之一(頻帶100至1000Hz區間,如圖1所示)。

資料來源:台灣國際造船股份有限公司,〈水下噪音量測館介〉,《台船專題報導》,頁5。

圖 1 船舶噪音頻率分布圖 資料來源:台灣國際浩船股份有限公司,〈水下噪音量測簡 目前中共海軍現役核動力攻擊潛艦的低頻帶噪音分析比較圖(如圖2所示),雖然第一、二代核動力潛艦的低頻噪音有降低之趨勢,⁹但仍超出140dB吵雜(Noisy)等級指標以上,且相較於美軍現役的維吉尼亞級核動力潛艦,仍然有相當大的差距。在海洋環境中除了載具自身所產生出的噪音外,主要還有海洋背景噪音的90分貝(如圖3所示),如果能夠將潛艦的低頻噪音值減至海洋背景噪音值以下,則將難以藉由聲納裝備偵知潛艦的水下方位及距離,美軍的維吉尼亞級核動力潛艦目前噪音值95分貝已相當接近水下背景噪音。因此,相較於中共在水下靜音部分仍取得相當之優勢。

中共 093B 型核攻擊潛艦於 2018 年 1 月 12 日 曾遭受水下聲波監聽系統的壓制,被迫在東海浮出水面,可顯見噪音過大的問題已限制其作戰運用。¹⁰

中共海軍 094 型戰略彈道飛彈核潛艦自 2007 年服役迄今,目前仍然有核反應爐及推進裝置 噪音過大的問題,尤其在高速航行時,噪音過 大的現象更為明顯易被聲納偵知,11 此問題間接 影響了中共海軍核動力潛艦戰術運動及艦載巨 浪戰略導彈的作戰效益。12 1998 年,梅瑞經於 〈船艦電力推進的發展方向〉提出世界先進國 家的核動力潛艦推進系統應用永磁推進電機之主要優勢是低噪音,且能夠提供高功率密度的穩定輸出。¹³因此,據聞中共海軍七一二所當局正積極研發永磁推進電機的技術,以解決中共海軍核動力潛艦長久以來噪音過大的問題。

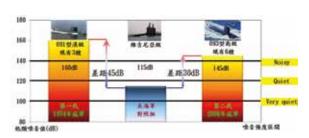


圖 2 中共海軍核動力潛艦低頻噪音分析比較圖

資料來源:Matt, "Submarine Noise", Submarine Matters, 2016/10/6, https://gentleseas.blogspot.com (檢索日期:2020年4月9日)

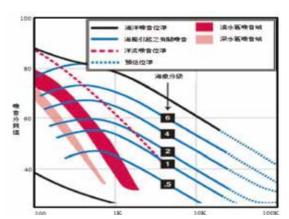


圖 3 海洋環境噪音主要聲源分布圖(Wenz 1962)

資料來源:Royal Institute of Technology, "Some statistical properties of the ambient noise in the Baltic Sea and its relation to passive sonar," 2015, pp. 5.

O1O 中共海軍核動力潛艦永磁推推雷機之研析 O11

⁶ 柯永澤, 〈最具威脅的海中武器〉, 《科學發展月刊》,第 523 期,2016 年 7 月,頁 60。

⁷ 梅瑞經,〈潛艦推進裝置〉,《NAVAL FORCES》,第 12 期,1996 年 4 月,頁 52。

⁸ 吳重雄、陸磐安、賴信忠、〈船上噪音問題之研究〉、《中船季刊》、1982 年 5 月,頁 9。

⁹ 錢曉南,《艦船螺旋槳噪聲》,(上海:上海交通大學出版社,2011年),頁92。

¹⁰ 軍武中心, 〈海底 SOSUS 系統全程監聽,解放軍被逼出水面?〉,《Ettoday 新聞雲》,2018 年 1 月 16 日,〈https://www.ettoday.net/news/20180116/1093744 htm〉(檢索日期:2020 年 5 月 12 日)

¹¹ India, "Understanding China's submarine capabilities: Undersea competition in the Indo-Pacific," 2019年6月,

¹² 平可夫,〈從 094 戰略核潛艇設計看 JL-2 核導彈〉,《漢和防衛評論》,2012 年 4 月,頁 28。

¹³ 梅瑞經, 〈船艦電力推進的發展方向〉, 《船電技術》, 第 5 期, 1998 年 6 月, 頁 48。

二、第三代核動力潛艦性能提升之迫切需求

核動力潛艦是極具有威嚇效果的戰略性武器, 世界先進國家已近代持續投入大量成本進行關 鍵技術研發。中共海軍長久以來亦將核動力潛 艦列為優先研製的載具,永磁推進電機為降噪 及推進系統性能提升的改善方案選項之一。中 共海軍核動力潛艦的戰略運用區分計有「戰略 彈道飛彈核潛艦」及「核攻擊潛艦」等兩個型 式,其中,核動力戰略導彈潛艦搭配巨浪系列 潛射飛彈之威嚇,對區域勢必造成極大的威脅, 另外核攻擊潛艦亦能擔任戰略巡航,尤其未來 可肩負航母戰鬥群水下護航兵力。

(一) 戰略彈道飛彈核潛艦方面

2019年10月19日時,中共094型戰略彈道 飛彈核潛艦在南海區域意外曝光蹤跡,首先揭示了中共勢必要確保在海上通道及補給線的暢 通,¹⁴另外也證實了中共有計畫提升核動力潛艦 的作戰性能,以在必要時刻反制敵軍的突襲。¹⁵

中共國防面對「印太戰略」的軍事脅迫壓力之下,中共於 2019 年 7 月發表「新時代的中國國防」白皮書強調,要求解放軍「著眼捍衛國家統一,加強以海上方向為重點的軍事鬥爭準備」,將在西太平洋阻絕美軍之反介入作戰為

首要目標,中共海軍勢必要積極投入新一代核動力潛艦之研製階段,提高中共在印太區域戰略佈局重點。¹⁶

戰略彈道飛彈核潛艦所裝配的「巨浪二型」 潛射戰略導彈射程高達 7,400 公里,足以威嚇 印太區域的台海、南海及印度國土等關鍵區域, 但中共海軍的南海艦隊現僅有四艘戰略彈道飛 彈核潛艦,仍不足應付印太區域的兵力部署。 且現役的 094 型戰略彈道飛彈核潛艦的輻射噪 音仍然過大,易被美軍所偵潛反制,因此中共 海軍對於第三代核動力潛艦的兵力需求實為迫 切,且降噪方面的研製需求更為重要。另外, 中共海軍於 2019 年 7 月 28 日至 8 月 2 日時,

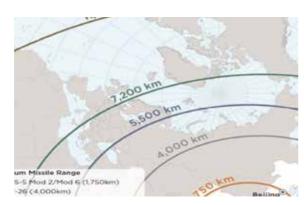


圖 4 中共導彈射程範圍說明圖

資料來源:Office of the Secretary of Defense, "Military and Security Developments Involving the People's Republic of China 2019," 2015/5, pp. 46.

在東海區域試射最遠射程可達 12,000 公里的「巨浪三型」潛射戰略導彈,17 足見中共海軍未來將部署戰略彈道飛彈核潛艦至相關區域,搭配潛射戰略導彈之威嚇,對其印太區域造成極大的威脅,更能夠對美國本土政經重點區域構成核威懾(射程範圍說明如圖 4 所示)。18

(二)核攻擊潛艦方面

核攻擊潛艦所擔負的任務除戰略巡航外,另 有各個任務編組的重要水下護航兵力,其中尤 以航母戰鬥群護航兵力為中共當前重要課題。

國防安全研究院所公布的「2019 中共政軍發展評估報告」提及:中共海軍計畫 2030 年將建立 4 個航空母艦戰鬥群,以中共海軍航母戰鬥群的任務需求而言,航母編隊需要具有相當的續航力及攻擊力的護衛。¹⁹一個航母機動編隊需要配置核攻擊潛艦至少 1 艘次,再以「三三制」替換計算(一艘值勤、一艘訓練及一艘維修之原則),²⁰一個航母機動編隊至少有 3 艘核攻擊潛艦之兵力需求,中共海軍為了滿足未來 4 個航空母艦機動編隊的發展計畫,應有 12 艘的核

攻擊潛艦的兵力建制預估量,對照中共現僅有 6 艘核攻擊潛艦, ²¹ 顯見中共核攻擊潛艦兵力已無 法滿足 2030 年航母戰鬥群建置需求, 足見其兵力需求確實甚迫!

中共核攻擊潛艦自 2006 年起以平均每 15 個 月之頻次產製 1 艘次,²² 並由衛星偵照情資顯示: 中共渤海造船廠的核動力潛艦生產線,自 2017 年起已暫緩核攻擊潛艦的產製,研判中共第二 代核動力潛艦有噪音過大等致命缺陷仍無法改善,研製重心應改為第三代核攻擊潛艦,續研 製第三代 095 型核攻擊潛艦擔任航母護航兵力。 23

三、自主發展新科技突破「技術外援」窠臼

中共在國防科技研製過程不想完全仰賴國外 採購的管道進行,主要是有兩個原因:第一, 中共有「國防自主」的目標要求;第二,中共 有時也對於國外採購進口的裝備不甚滿意。因 此,中共目前積極用進口或共同生產零組件, 自力組裝武器裝備,以突破先進裝備系統的關 鍵技術,進而主導整個研製過程,期能達到「成

中共海軍核動力潛艦永磁推進電機之研析 013

¹⁴ 林永鵬, 〈中共的南海策略與我國因應之道〉, 《海軍學術雙月刊》, 第 5 期, 2019 年, 頁 45。

¹⁵ 劉宜庭, 〈勾到越南漁網?中共核潛艦南海意外曝光〉,《自由時報新聞網》,2019 年 10 月 19 日,〈http://news_ltn.com_tw/news/world/paper/1325869〉(檢索日期:2020 年 4 月 12 日)

¹⁶ 中華人民共和國國防部,〈新時代的中國國防白皮書〉(法規文獻),頁 1-16,《中華人民共和國國防部》,〈http://news.mod.gov.cn/big5/regulatory/2019-07/24/content_4846424_16.htm〉(檢索日期:2020年4月17日)

¹⁷ 財團法人國防安全研究院,〈2019 印太區域安全情勢評估報告〉,2019 年 12 月,頁 23。

¹⁸ 同註 9, 頁次 15。

¹⁹ 財團法人國防安全研究院, 〈2019 中共政軍發展評估報告〉, 2019 年 12 月, 頁 100。

²⁰ 晃彥,〈官方首次明確「第二艘航母」消息 或已施工建造〉,《香港文匯網》,2015年2月1日,〈http://news.wenweipo.com/2015/02/01/IN1502010019.htm〉(檢索日期:2020年2月25日)

²¹ D-Mitch, 〈The People's Liberation Army Navy submarines today〉,《NavalAnalyses》,2018年4月22日,〈https://www.navalanalyses.com/2018/04/infographics-31-peoples-liberation-army.html?m=1〉(檢索日期:2020年2月25日)

²² Congressional Research Service, "China Naval Modernization: Implications for U.S. Navy Capabilities — Background and Issues for Congress," 2020.04.24, pp. 7.

²³ 平可夫,〈中國製造航空母艦〉,《漢和防衛評論》,2010年9月,頁30-31。

本節約」與「突破技術外援」等目的要求。24

中共核動力潛艦與常規動力潛艦發展歷程不同,早期無法獲得蘇聯援助,因此只能採取「自主研發」的途徑,在無外援狀況下,其核動力潛艦始終存有無法解決的問題。其發展核動力潛艦可追溯至1960年代,中共海軍於1967年6月在葫蘆島啟動第一代及第二代之兩階段的戰略彈道飛彈核潛艦計畫,但中共在當時對於核動力潛艦的關鍵技術及建造經驗相當不足。

(一)第一代 091 型核攻擊潛艦:研製的最後 階段仍需要法國的技術外援,才能夠在 1970 年 順利下水,但該艦仍存在著推進系統噪音過大 的致命缺點。

(二)第二代093型核攻擊潛艦:研製過程相 當緩慢,其原因是推進系統及戰系裝備等關鍵 技術難題無法克服,也是經由俄羅斯魯賓海洋 工程設計局(The Central Design Bureau for Marine Engineering "Rubin")的技術外援, 且構型在仿製俄羅斯勝利3型潛艦的基礎上進 行,直至2002年才順利下水。²⁵

綜觀中共海軍第一、二代核動力潛艦的發展 沿革,雖然建造過程均需要法國與俄羅斯等先 進國家技術外援,才能夠突破大量的關鍵技術 難題,如耐壓船殼、推進系統、靜音設計、戰 鬥系統、武器系統和匿蹤設備等項目。但是, 中共海軍在核動力潛艦的設計、建造及關鍵技 術,應累積相當多的研製基礎。

中共高層也深知國防科技研發一再依賴技術 外援及仿製等方式存在高風險,因此希望透過 自主研製方式突破關鍵技術,以穩定中共本身 的國防科技發展。中共海軍目前積極發展永磁 推進電機應用至核動力潛艦的推進系統,在控 制系統及大功率輸出仍然有控制問題及成本問 題等關鍵技術需要突破,2019年,唐任遠於《現 代永磁電機 - 理論與設計》書中論述永磁推進 電機確實具有相當多的優勢,且未來該技術的 應用領域遍及共軍各個軍事工業領域。²⁶ 如果能 夠將永磁推進電機裝備在第三代核動力潛艦推 進系統,除了能夠解決長久以來水下噪音的難 題,將不用再受限關鍵技術無法取得的困境。

參、中共海軍核動力潛艦永磁推 進電機之發展現況

中共海軍為了核動力潛艦推進系統降噪的問題付出許多研製成本,仍無法徹底解決核動力潛艦噪音過大的問題,其中推進系統的各個機械單元均是噪音源。而主推進馬達的降噪關鍵技術研發是噪音過大問題的必要解決手段之一。 ²⁷ 據悉,中共海軍於 90 年代已著手研製永磁電機裝配於第三代核動力潛艦的推進系統,以解決核動力潛艦長久以來噪音過大之問題。

推進電機建立內部磁場計有勵磁及永磁等兩種方式,勵磁推進電機是在勵磁繞組通以電流來產生磁場,而這種方式需增配勵磁繞組及對應的組件,在運轉過程中會有過多的能量損耗。

²⁸ 統核動力潛艦的主推進系統是採用勵磁電機,但卻有效率低及噪音過大等問題存在;另外永磁推進電機是利用永磁材料的特性,不再需要勵磁繞組就能建立磁場。

一、效益分析

永磁推進電機具有四個主要效益,詳細分析 (如表 1 説明)

第二代 093 型核攻擊潛艦的低頻噪音值 145dB,假設未來第三代核動力潛艦能夠順利應 用永磁推進電機,它的低頻噪音值研判可降至 約 125dB,雖然其噪音值尚未低於海洋環境噪音 90dB,但已相當接近美國現役維吉尼亞級核動力潛艦的 115dB 噪音等級。

由於,水中的噪音是藉由「水」介質來傳遞 聲波能量,而水下噪音計有音強、音頻及持續 時間等三個量測指標。一般常見的分貝量值是 聲音強度的表示單位:簡言之,在相同量測距 離下量測兩個相差 3dB 的聲源,其聲音強度相 差了兩倍;而相差 20dB 的聲源的強度實際上相 差了 100 倍,因此對於中共海軍應用永磁推進

表 1 效益分析表

優勢	體積	重量	輸出效率	噪音值
增益值	減少 60%	減少 40%	增加 4 ~ 13%	降低 20dB
藤用價值 替內部船艙空間有限的核動力潛艦,增加空間應用彈性,未來可提高彈藥酬載。 ²⁹	增加運動速率	輸出轉矩充裕,不需藉由減速 齒輪來提高軸馬力,故噪音量 可明顯降低約 20 分貝。 ³⁰		

資料來源:筆者自行綜整繪製

²⁴ Richard Fisher, "Military Sales to China: Going to Pieces, "China Brief, 2002/11/21, https://www.strategycenter.net/research/pubID.14/pub detail.asp (檢索日期: 2020 年 3 月 10 日)

²⁵ 牧仁,〈中共潛艦武力之發展〉,《青年日報》,2005年11月7日,版3。

²⁶ 唐任遠,《現代永磁電機 - 理論與設計》(北京:機械工業出版社 - 電工電子分社,2019),頁 122。

²⁷ 張延飛, 〈跨入 21 世紀的潛艇技術〉, 《現代軍事》, 2000 年 9 月, 頁 41。

²⁸ 吳海鷹, 〈潛艦永磁發電機〉, 《船電技術》, 第 2 期, 2001 年, 頁 60。

²⁹ 李亞旭, 〈永磁同步推進電機 - 潛艦新型推進系統〉, 《Naval Force-SUBCON》, 第 11 期, 1996 年, 頁 49。

³⁰ 翁存海,〈潛艦推進系統中的永磁推進電機和永磁發電機〉,《NAVAL FORCES》,第8期,1996年6月,頁37。

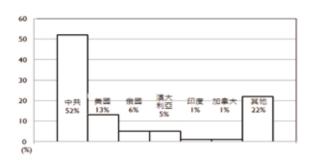


圖 5 世界各國稀土資源比例分布圖較圖

資料來源:邱林,〈稀土的軍事價值越來越重要〉,《中國 有色金屬報》,第4版,2017年10月,頁1。

電機降噪 20dB 的效益是相當大的,對於偵知距離能夠大幅減少,不可不慎!

二、關鍵優勢

中共在永磁推進電機的發展之所以能夠顯著 進步,這和中共國家天然資源及全國研製能量 大量挹注等兩個關鍵優勢有必然的關聯性存在, 這也確立了中共核動力潛艦未來應用永磁推進 電機的發展基礎。

(一)稀土存量世界最高

永磁推進電機的研製與稀土資源發展有密切關聯,由於中共國家本土的稀土儲量占世界總量 52%,次為美國僅有 13%(如圖 5 所示),大幅提高了中共發展永磁推進電機的資源優勢。

31 但是目前中共對於稀土的開發能量,相較美國及日本等先進國家較為不足,因此中共在稀土

開發能量方面仍有相當大的進展空間。

稀土除了能夠淬鍊成為永磁電機的磁性材料, 另可廣泛應用於航太零件、電子、雷射、核能 工業及超導體等尖端產業的範疇,故稀土資源 對於國家未來科技發展的應用價值是不容小覷。

(二)國家研製能量大量挹注

中共對於永磁推進電機的新式科技已投入大量研製成本,於 1963 年創立的中船重工七一二所,為中共國家的船艦電力推進系統及其附屬設備之研發基地。32 而在七一二所的組織當中,青島海西電機公司是最具有電力推進相關研發能量之核心結構。

隸屬於中船重工的渤海造船廠,是中共國家唯一具有產製核動力潛艦能力的造船廠,其具有三條核動力潛艦的生產線,可同時產製 6 艘次,³³相較於美國民間造船廠僅有一條核動力潛艦的生產線,僅可同時產製 2 艘次,故中共核動力潛艦產能目前已明顯領先世界各國。³⁴

三、尚待克服的限制因素

中共海軍現役的常規動力潛艦及核動力潛艦 均是沿用傳統勵磁推進電機推動,永磁推進電 機仍是處於研製的階段,而中共七一二所已先 後開發了 25kw、51.5kw 及 200kw 等規格的永磁

表 2 限制因素分析表

區分	主要因素		次要因素	
說明	熱穩定性不足	電機內部磁密度極高,有運轉溫度過 高的問題,易引發不可逆的退磁現 象。	經驗基 礎不足	由於中共過往對於永磁推進電機的經驗基礎不足,故 需要重新分析電機起動、運轉及停機過程的磁場變 化,尤以內部氣隙為重點,而完成最適化設計。 ³⁵
高光 475	機電尚未整合	永磁體與控制機電元件的結合為核心 技術,以調節控制電機的轉速及轉矩 等參數。 ³⁶	產製成 本過高	由於永磁原料目前的提煉成本過高,故稀土永磁推進電機的產製成本仍較傳統電勵磁推進電機大。
解決 途徑	要在短時間內突破,需循『仿製』或『技術外援』途徑。		在中共挹注大量國家研製成本之下,必能逐一克服。	

資料來源:筆者自行綜整繪製

圖 6 SWOT 分析說明圖 資料來源:筆者自行綜整繪製

推進電機實驗模型,為了達到核動力潛艦的推 進軸系高轉速及高轉矩等輸出標準,就目前文 獻資料顯示,大功率永磁推進電機的研製過程 中尚有四個主要及次要限制因素需克服(如表 2 所示)。

綜上所述:中共在永磁推進電機的研發、製

造和應用等方面起步相較於其他西方先進國家 較晚。但近年來,中共中船重工七一二所及海 軍工程大學等科研所在永磁推進電機領域已逐 步突破許多核心技術方面,在中共挹注大量研 製成本的發展條件之下,以上各個限制因素必 能逐一克服。

肆、綜合分析

面對中共海軍永磁推進電機應用於核動力潛 艦技術創新,本文運用「SWOT」分析方法(説明如圖 6 所示),³⁷ 先從中共海軍核動力潛艦的 視角思考:其本身具有的優劣勢;再研析近代 反潛偵蒐裝備所帶來之外部威脅,以及水下戰 場可利用的因應之道,最後再延伸探討潛艦推 進器之未來發展方向。

中共海軍核動力潛艦永磁推進電機之研析 **017**

³¹ 邱林, 〈稀土的軍事價值越來越重要〉, 《中國有色金屬報》, 第 4 版, 2017 年 10 月, 頁 1。

^{32 《}中國船舶第七一二研究所官網》, 〈http://www.csic712.com/〉(檢索日期:2020年6月14日)

³³ 每點新防務, 〈渤海造船廠承建我國全部核潛艇, 095、096 型建造工藝流程不輸歐美〉, 《KKNEWS 新聞網》, 2017 年 9 月 28 日, 〈https://kknews.cc/military/8bpl29l.html〉(檢索日期: 2020 年 6 月 14 日)

³⁴ 盧伯華,〈陸渤海集團生產線落成或造新 096 戰略核潛〉,《中時電子報》,2016 年 8 月 31 日,〈https://www.chinatimes.com/realtimenews/20160831003179-260417?chdtv〉(檢索日期:2020 年 6 月 14 日)

³⁵ 尹斌傳,〈艦船推進用永磁同步推進電機數學模型及控制系統研究〉,《船電技術》,第8期,1997年2月,頁7。

³⁶ 劉曉林,《潛艇永磁電力推進控制系統研究》〈哈爾濱工程大學碩士論文,2002年〉,頁3。

³⁷ 許如欽,《做好策略規劃之 SWOT 定量化分析手法》(台南:成大出版社,2017),頁75。

中共海軍核動力潛艦的永磁推進電機科技,就「降低自身噪音」及「提高運動速率」的顯著優勢而言,不論是就「潛艦作戰」或是「反制潛艦」的角度來看:增進自身聲納偵蒐效能、避免遭敵監偵的機率及降低被音響導引魚雷擊中的機率等三個應用價值。38 中共海軍未來具有遠距水下封鎖與隱蔽性良好的兵力投射能力,以威脅關鍵區域的主要海上交通航道,且我國周遭海域有高密集的商船往來,極易在水下環境造成大量背景雜訊,更增加了我反潛作戰的困難。

換言之,未來中共核動力潛艦的威脅將不容 小覷,因此需持續蒐集周遭海域的水温、背景、 噪音、變速及深度等水文環境資料,以提升我 聲納偵蒐的準確性。

一、永磁推進電機的優劣勢

在流場複雜的海域之中,中共海軍過往所研

製的第一、二代核動力潛艦推進系統所產生之低頻噪音,是容易遭被動式聲納所偵獲的主要來源。雖然,其應用永磁推進電機的使用模式與音頻特徵雖仍未知,但研判確實具有「大幅減少核動力潛艦的機械噪音」之主要優勢;並在輸出效率提升的效益之下,亦具有「提高運動速率」之次要優勢。

經由提高永磁推進電機內部的磁通量及磁密度,縱然能夠大幅提高輸出功率、降低工作温度及機械噪音的強度,³⁹但隨著近代研製的稀土永磁產生的磁密度逐漸增加(如表 3 所示),⁴⁰其中銣鐵硼稀土磁鐵磁密度竟高達 397.9(單位:J/m³),接續衍生了不利作戰因素:永磁推進電機所造成的磁場擾動,無法藉由潛艦之外殼遮掩而消除。

中共海軍核動力潛艦永磁推進電機,其內部 永久(稀土)磁鐵的磁性特質是永久存在的,

表 3 歷代稀十磁鐵磁密度說明

項次	稀土永磁材質	研製年代	磁密度(單位 J/m3)
1	RC05	1967	199
2	R2C017	1973	258. 6
3	銣鐵硼	1983	397. 9

資料來源:唐任遠,《現代永磁電機 - 理論與設計》(北京:機械工業出版社 - 電工電子分社,2019),頁32。

018

11 且不會因為推進電機停止輸出動力而造成磁性 衰減,因此可以研判中共海軍第三代核動力潛 艦的永磁推進電機之磁通量必然較高,會顯著 影響周遭環境磁場變化(潛艦周圍磁力線示意 如圖 7),容易遭受磁性偵測儀反制偵獲。因此 在磁場擾動之問題尚未改善以前,中共未來第 三代核動力潛艦仍是無法獲得隱蔽優勢。

二、永磁推進電機創造的機會

目美國為了防堵中共海軍核動力潛艦的威脅 兵力突破第一島鏈,長久以來和日本合作以科

海峽至菲律賓海域等關鍵節點通道。42

美國水下聲波監聽系統的發展背景:在冷戰時期為應對蘇聯潛艦威脅所建構的水下防衛線, 其建構概念是在適宜的聲波傳導深度架設水下 監控裝置,蒐集水中聲波和磁場的變化數據, 以監測潛艦行動。⁴³中共海軍核動力潛艦未來在 「大幅減少核動力潛艦的機械噪音」之主要優 勢下,研判極有可能突破水下聲波監聽系統之束 縛,而有機會對美國關鍵政經區域形成核威攝能 力。

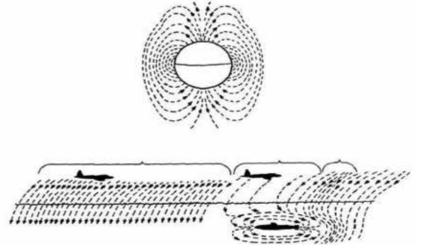


圖 7 潛艦周圍磁力線示意圖

資料來源: "Airman - Aviation theories and other practices", ASW SUMMARY, https://navyaviation.tpub.com/14014/css/Magnetic-Anomaly-Detection-Mad-172. htm>(檢索日期: 2020 年 4 月 9 日)

中共海軍核動力潛艦永磁推進電機之研析 **019**

³⁸ 陳企韶, 〈反潛作戰〉, 《海軍軍事參考譯著》, 第76期,2000年11月30日, 頁90。

³⁹ 楊耀民,《永磁式發電機磁通量及散熱效率改進之研究》(新竹:國立交通大學機械工程系碩士論文,2010年),頁79。

⁴⁰ 同註 23。

⁴¹ Cullity, B. D., " Introduction to Magnetic Materials." Wiley-IEEE, 2008.

⁴² 路西,〈日美部署最新水下監聽系統監視中國潛艇〉,《BBC News 新聞網》,2015 年 9 月 9 日,〈https://www.bbc.com/zhongwen/trad/world/2015/09/150909_japan_china_submarine〉(檢索日期:2020 年 5 月 12 日)

⁴³ The Australian National University, "Japan's ocean surveillance and coastal defence capabilities," 2015, pp. 51.

圖 8 水下聲波監聽系統示意圖

資料來源:The Australian National University, "Japan's ocean surveillance and coastal defence capabilities." 2015. pp 54

形成疏密對比現象的特性來 偵察潛艦的存在,且磁性偵 測儀幾乎不受戰場的水文環 境之影響。但因為只有飛機 才適合運用磁性偵測儀偵測, 且它的偵測涵蓋寬度通常, 且它的偵測涵蓋寬度通常, 於一千公尺,也説明了飛機 實施磁探清掃時,必需要却 較低的高度飛行,因此都 輕低的高度飛行,因此都 在其他探測裝備測得潛艦可 能位置後,再用磁性偵測儀 進行攻擊前的再確證或定位。

磁性偵測儀靈敏度會隨著 潛艦目標的磁性強度、位置 深度及飛行高度而訂定。在 深海域時,磁性偵測儀對核

三、永磁推進電機所面對的威脅

目前主要偵潛定位裝備計有主動式、被動式 聲標與磁性偵測儀,惟聲標裝置對於中共減噪 後核動力潛艦的偵蒐效益減少。44

(一) 主要威脅

磁性偵測儀(Magnetic anomaly detector, MAD)可視為一個效益較高的偵潛裝置,它是利用潛艦本身的金屬艇殼會使地球磁力線集中,

動力潛艦的偵測距離可達水下 450 公尺,已足以應付共軍現役 093 型核攻擊潛艦的作戰深度 300至 400公尺; ⁴⁵ 在淺海域時,偵測距離仍可達水下 350公尺, ⁴⁶ 可知磁性偵測儀無法偵測超出偵潛深度限制的深潛目標,另外常規動力潛艦的偵測距離僅有水下 260公尺,故對於磁性偵測儀對於核動力潛艦的偵測效益較大。

美國海軍曾實際運用重量僅38磅的小型無人

飛行載具 (Unmanned Aerial Vehicle, UAV)

相較於美國、以色列及中共等主要 UAV 無人機產製國家,我國對於 UAV 載具的研製雖然尚處於起步階段,但迄今已投入相當多的資源發展,因此我國中科院目前已研製的 UAV 定翼型載具計有騰雲、鋭鳶及紅雀等三種型式,其中騰雲(Teng Yun)是屬於重量 600 公斤以上的大型無人機,驗證其耐航力可達 24 小時之久, 48 如能仿效西方先進國家在無人機裝配磁性偵測儀,必能提高反潛偵蒐效益,且對於中共核動力潛艦採用永磁推進電機為推進系統的計畫,必能形成一大反制威脅因素。

(二)次要威脅

除了上述磁性偵測儀的主要威脅以外,中共 新一代核動力潛艦仍會產生「特徵音紋」、「温 度」及「內波軌跡」等三個徵兆,而遭偵知其 可能之方位。

1. 特徵音紋:無論核動力潛艦是採何種推進

裝備,依當今世界技術發展近況:流場推進力仍需經軸系裝置的能量轉換程序,因此俥葉在超過限制轉速時,其渦音是必然會隨之產生。另外,核動力潛艦也無法如同常規動力潛艦透過沉坐海底進行掩蔽,其核反應系統的冷卻泵仍會產生特徵音紋訊號。49因此,透過被動式聲納進行核動力潛艦辨識的音紋分析也就相當重要。

2. 温度:隸屬於美國中情局的科學技術局, 曾於 1972 年出版《蘇聯反潛作戰能力報告》載 明:核動力潛艦推進系統的核反應爐會產生大 量的廢熱,所以單艘核動力潛艦的冷卻水每分 鐘用量至少數千加侖,會明顯提高環境温度至 少 10℃,從而導致周遭海水的物理特性產生變 化。⁵⁰ 因此,以紅外線感測的反潛裝置偵蒐核動 力潛艦行蹤是極具效益之選項。

3. 內波軌跡:核動力潛艦的排水量相較於常規動力潛艦大,因此在潛航時造成的海洋內波軌跡會在海面上形成顯著的波痕,亦稱為「開爾文波(Kelvin-Wave)」。透過衛星監測的方式,可無須直波接觸,即能在短期內有效掃描大面積海城範圍,進而研判出核動力潛艦的

Q2Q

搭配磁性偵測儀,以 90 節的速度巡弋約 45 分鐘執行反潛任務,且在 P-3C 反潛定翼機上即可發射使用,驗證可大幅提高偵蒐效益,⁴⁷ 可供我國海軍反潛兵力能量建置方向借鑿。

⁴⁴ 霍普金斯著,張兀岱譯,〈太平洋上的反潛黑洞〉《潛艦與反潛作戰》,第5期,1989年3月,頁158。

⁴⁵ 宋磊,〈大陸核動力潛艦發展近況〉,《觀察網》,2018 年 10 月,〈http://www.observer-taipei.com/article.php?id=2190〉(檢索日期:2020 年 4 月 8 日)

⁴⁶ 孟陽,《常規動力潛艇 PK 反潛機》(北京:機械工業出版社,2014),頁 40。

⁴⁷ John Keller. "Industry asked to develop MAD-equipped UAV for ASW, "Military Aerospace Electronics, 2004/10/9, https://www.militaryaerospace.com/unmanned/article/14034795/antisubmarine-warfare-asw-uav-magnetic-anomaly-detector-mad (檢索日期: 2020 年 4 月 9 日)

⁴⁸ The center for the study of the drone at bard college, "The Drone Databook," 2019, pp. 50.

⁴⁹ 西風,《當代潛艇和反潛作戰》(北京:中國市場出版社,2018),頁 42。

⁵⁰ 江飛宇,〈美國也不知的俄國偵潛高科技〉,《中時電子報》,2017 年 10 月 25 日,〈https://www.chinatimes.com/amp/realtimenews/20171025005685-261802〉(檢索日期:2020 年 6 月 14 日)

可能蹤跡。51

四、潛艦推進器未來發展方向

中共海軍核動力潛艦推進器,由於已投注相 當多成本在永磁推進電機的研製,故未來核動 力潛艦推進器的技術勢必將以「永磁推進電機」 的理論基礎發展「集成電機推進器」及「磁流 推進器」等兩項,目前世界先進國家尚未將這 些前衛技術應用至核動力潛艦 上,可知中共有 企圖在核動力潛艦的新科技範疇領先世界各國。

(一)集成電機推進器

永磁推進電機的研製技術成熟後,下一步可 將電動機、軸系及俥葉整併集結至艉導流管內, 即為集成電機推進器(如圖9所示)。

減少常規軸系的複雜構型,可消除軸系的振 動與雜訊等噪音源,其效益計有節省軸向空間、 提高推進效率及簡化結構設計等三項。

(二)磁流推進器

永磁電機可供高功率電源:整合高負載的磁 流推進器(如圖10所示),以取代常規軸系及 俥葉的推進方式。

減少常規俥葉的構型設計,可消除俥葉空蝕 效應及特徵頻率等兩個顯著噪音源。其效益計 有提高匿蹤性、機動性及穩定性等三項。

万、小結

022

綜上永磁推進電機的優劣勢、機會及威脅分

析顯示,預判未來中共核動力潛艦完成永磁推 推雷機的研製應用後,降噪效果將明顯提升, 我應重視磁性偵測儀的運用:審慎研擬現有可 裝配磁性偵測儀各型戰具之相關戰術(法),獲 致最大戰果,並蒐整建立其他可運用之水文資 料庫,深入探討,針對其中共新一代核動力潛 艦可能之弱點,以為剋制之道。

伍、結語

本文已針對核動力潛艦電力推進系統進行了 深入的探討,考量永磁推進電機是極為複雜且 先進的裝備,另有熱穩定性不足、機電尚未整 合、經驗基礎不足及產製成本過高等四個限制 因素尚待突破,近代對於核動力潛艦的大功率 密度永磁推進電機研究經驗並不多,所以中共 海軍沒有經驗可以借鑿的狀況下,進行第三代 核動力潛艦的研製,如能領先美國等先進國家 將永磁推進電機應用至核動力潛艦,將能突破 以往「技術外援」窠臼,並領先其他先進國家 核動力潛艦的發展水平。

永磁推進電機對於核動力潛艦推進系統的應 用是未來必然趨勢,由前述中共未來核動力潛 艦永磁推進電機之探討:首先,瞭解未來第三 代核動力潛艦的低頻噪音值必然可大幅改善; 第二,可知中共海軍長期以來在核動力潛艦的

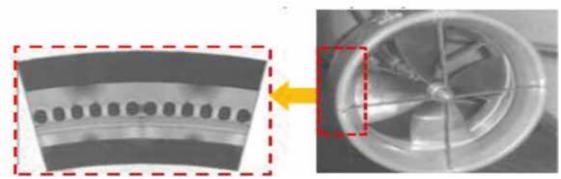


圖 9 集成電機推進器

資料來源:汪勇等,〈新型集成電機推進器設計研究〉,《中國船艦研究》,第6卷第1期,2011年2月,頁85。

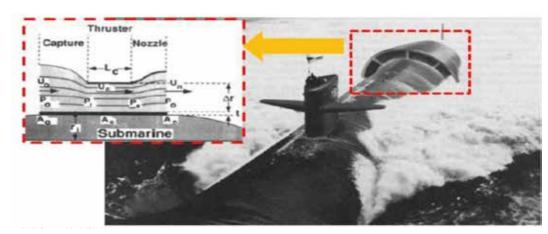


圖 10 磁流推進器

資料來源:Daniel W. Swallom. "Magnetohydrodynamic Submarine Propulsion Systems." 1991/5. pp. 146

科技方面,企圖領先西方先進國家;第三,我 國不應和中共較量潛艦的研製能力,而應在反 潛裝備構成對比優勢;最後,我國應重視磁性 偵測儀的運用,必能提高偵蒐效益。

為提升反潛偵蒐之效益,須達到我軍現有水 下、水面及空中載具的整合運用,而非僅重視

單一載具的偵蒐力,俾能使多載具聯合作戰之 反潛戰術更趨靈活與多元。另外,我國如能仿 效西方先進國家在無人機裝配磁性偵測儀,必 能節約戰場資源的挹注,且能夠加強我軍反潛 預警能力,使得中共新一代核動力潛艦喪失其 應有的隱蔽優勢,而掌握水下戰場的主導權。

^{51 〈}海洋內部因素對潛艦作戰的影響〉,《KKNEWS新聞網》,2018年3月27日,〈https://kknews.cc/military/61189yq.html〉(檢 索日期: 2020年6月14日)