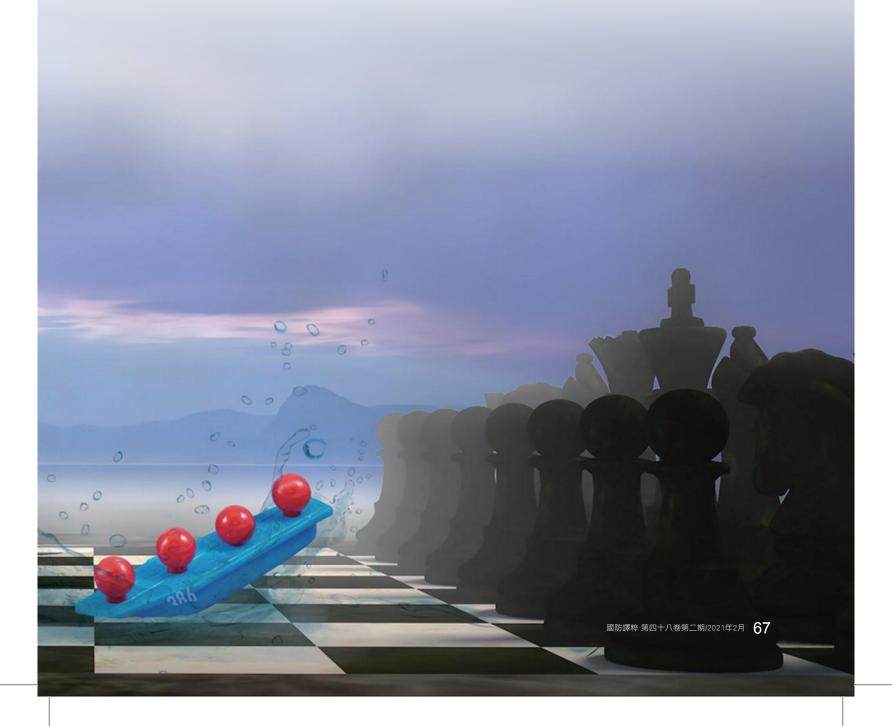
● 作者/William Williamson III

● 譯者/張彥元

● 審者/洪琬婷

美海軍與時俱進的戰備素質

From 'Battleship' to Chess


取材/2020年7月美國海軍學會月刊(Proceedings, July/2020)

小型衛星與運載火箭之革命性發展,未來將導致地球軌道遍布小型衛星群,可隨時觀測與追蹤艦艇,並發布動態資訊。如此一來,美海軍即將失去 其原有匿蹤、不定性與奇襲等優勢,其作戰方式勢將產生巨變。

海軍準則所仰賴之假定事項,乃是該軍種 有能力獲得對敵之資訊優勢,並能維持這 份優勢。¹然而,優勢是個相對的概念,由於潛在 敵人可獲得之資訊巨幅增長,故而對美國維持其 資訊優勢之能力構成嚴重挑戰。因為吾人逐漸能 夠得知軍事衛星甚至商業衛星之太空資訊,故此 論點十分中肯。高效能小型衛星群之迅速發展與 部署,在不久的將來,將使海上活動無所遁形。

20世紀初,美國軍官間所流行的紙筆遊戲「海戰棋」傳神地反應出海上作戰固有之不確定性;後於1967年,米爾頓布萊德雷公司(Milton Bradley Company)曾推出「海戰棋」的桌遊版。2然而,在海上倘若敵對方彼此之兵力動態時刻均無從匿跡,則海上用兵必須採取遠較「海戰棋」更為

OPERATIONS電種作戰

複雜之戰略運用,且將更類似於西洋棋對弈。

大量部署於低軌道小型衛星群之高性能感測 器,將全然暴露商船與美海軍艦艇之活動。數以 百計的低軌道小型遙測衛星配備高解晰度、持續 不斷且即時同步之偵測功能覆蓋全球,可透過觀 測艦艇之實體與訊號特徵,掌握艦艇之位置並追 蹤其動態。未來這些資訊將可串流直播,成為一 項商業服務。

與此同時,由數千個網路化之小型通信衛星 所組成的衛星群,將替所有海事人員提供寬頻網 路,讓網路服務與寬頻遍及海上,使每艘艦艇都 成為全球船舶追蹤、活動監控與分享網路資訊之 感測器。

這些無所不在的衛星群形成了資訊透明,將會 阻擾美海軍作戰之兵力整建,從而改變艦隊平、 戰時行動。

小型衛星立大功

自1960年代至2000年代初期,唯有國家才擁 有能力利用太空設備監控海洋。美國最初係利用 此監視能力,監看蘇聯之戰略核武戰力,因為當 時蘇聯核武深藏其國土境內,傳統情蒐系統無法 偵獲。後來,衛星已可觀測地面以及戰艦雷達所 發射之信號。在隨後數十年間,從太空遂行情蒐 的能力獲得不斷提升。

然而在1991年沙漠風暴行動中,美國國防部批 評了情報部門,因該部門未能利用情蒐系統,適 時向作戰部隊提供具重大戰術價值之資訊。3為 求改善,五角大廈遂與「國家偵察辦公室」(National Reconnaissance Office)合作,在各軍種推 動「國家戰術情報運用能力計畫」,俾利加速空 中戰略情蒐系統之情報傳遞。國防部與北約亦考 慮開發較小型之戰術衛星,以消弭戰略偵察與戰

> 術監視任務之間 的差距。4

於此同時,自 1981年至2000 年間,衛星的重 量大幅減輕,每 8年減輕為原重 量一半。此乃拜 下列4項關鍵科 技領域之發展 所賜:

結構:碳與石 墨、奈米材料、 金屬基複材蜂

重量僅數磅的小型衛星(如行星實驗室[Planet Labs]之Dove衛星)結合商用火箭額外容量,澈底 改變了「衛星影像經濟學」。(Source: Planet Labs, Inc.)

巢板,以及金屬基與金屬樹脂 複合材料(metal resin composites)等之發展,均使衛星的結構 變得更輕月更堅固,也因此提 升其酬載。

功率密度:多接面太陽能電 池(multiple junction solar cells) 效能不斷提升,並且配備能量 密度更高之鎳氫電池,以及功 率轉換與分配效率的改進等, 使衛星電力更充足 。

姿態控制:減少恆星傳感器 (star sensor)、反應輪、控制力 矩陀螺(control moment gyro)、 磁力儀、慣性參考單元(inertial reference unit),以及推進器等 裝置之尺寸、重量與耗能需求, 使衛星在重量更輕的同時,地 球指向精度(Earth-pointing precision)更高。

運算能力:摩爾定律(即處理 器運算速度每18個月增加1倍) 之實現,使衛星在感測能力、任 務管理,以及通訊功能方面的 運算力獲得大幅提升。⁵

2000年代初期,民間航太 產業與學術研究單位開始開 發更小型且更便宜的衛星,用 於研究與地球遙測任務,並制 定「立方衛星」之標準尺寸為

10x10x10公分(1單位或稱為1U, 重量略大於1公斤)。小型衛星尺 寸則模組化為1U、3U及6U等尺 寸。6 較大版本的小型衛星,重 量可達250公斤,採用模組化隨 插即用之元件與酬載。2012年 至2017年之間,世界各國總計 發射超過475顆小型商用衛星, 其中九成係由美國公司所製 造。7 2015年,美國中央情報局 的風險投資機構IQT電信表示:

「太空服務已成為新創企業的 營業範疇,不再僅屬於政府領 域。情報界以及其合作夥伴必須 考量此情況所可能帶來的影響 ······新太空競賽已然展開。」⁸

各大學、企業商號、美國國防 先進研究計畫局(DARPA)、美 海軍及其它各軍種均紛紛投入 並研發小型衛星能力。造成此 一熱潮乃是因為新型低成本小 型衛星運載火箭(SSLV)問世,以 及「共乘」方法之使用,將多顆 小型衛星隨主要酬載一起送入 軌道(一如Uber與Airbnb,此共 乘模式係運用未使用或未充分 利用之資源,亦即運用運載火 箭上的多餘容量。)

小型衛星革命性進展持續吸 引資本投資以及商用開發衛星 群與運載火箭。2020年至2024 年之間,預計年度在軌交付率 (on-orbit delivery rates)每年 將超過400顆小型衛星;這些 衛星不僅將擴大現有衛星群, 且亦將形成新衛星群。市場分 析公司SpaceWorks預估,未來 5年內,全球將發射1,800顆至 2,400顆重量為1公斤至100公斤 的小型衛星。9

以下列舉部分現行與預劃研 發之小型衛星類型供參考:

光學成像(Electro-optical imaging):行星實驗室每天至少一 次運作1群150顆以上的立方衛 星,可提供地球上任何地點之3 公尺解析度圖像,同時亦投注 經費於具有競爭優勢之衛星群 概念,如提高再訪率(revisit)、 頻譜影像技術(spectral imaging)以及影像傳輸功能。

雷達成像(Radar imaging):有 兩家商業公司目前正在建構合 成孔徑雷達(SAR)衛星群,計劃 以高解析度並且能穿透雲層之 雷達感測器拍攝海洋圖像。卡 帕拉太空(Capella Space)公司 正在打造其36顆小型衛星群, 每小時1次再訪,而且解析度最 高可達0.5公尺。波蘭與芬蘭的

OPERATIONS 電話作 歌

合資企業冰眼(ICEYE)公司,現正建造一個合成孔 徑雷達小型衛星群,以「stripmap」(搜索)與「spotlight」(識別)成像模式,提供平均3小時之再訪率, 其解析度可達1公尺。10

訊號攔截:鷹眼360(Hawkeye 360)公司之小規 模訊號攔截小型衛星群,可定位並追蹤射頻發射 器,例如船舶自動識別系統(Automatic Identification Systems, AIS)、船舶雷達、衛星通信、極高頻 無線電,以及應急示標(emergency beacons)。11

寬頻網際網路

全球寬頻網際網路覆蓋率之爭,或許是讓外界 明瞭市場競爭動力所在的最佳時機。亞馬遜(Amazon)與SpaceX等兩大巨頭,正在這個方面與眾 多其他公司競爭。亞馬遜規劃為其「古柏計畫」 (Project Kuiper)衛星群發射3,200多顆衛星;而 SpaceX近期已獲核准,將為其星鏈計畫(StarLink) 衛星群部署近1萬2.000顆衛星。SpaceX計劃將為 行動用戶提供100萬個小型衛星地面終端設備, 而且這些設備亦可於海上使用。12 如此激烈的競 爭,勢必將使寬頻資源供應充足目價格低廉。

在這個「遙測即服務」之新時代,任何潛在對 手,只要能支付合理的市場價格,都可以獲得高 解析度之畫、夜與全天候衛星圖像。商用地球遙 測市場服務許多甚具影響力的行業,因這些行 業對於資料量之需求與日俱增,俾滿足其分析需 求,從而獲得財務優勢。這些行業包括農業、採 礦業,以及運輸業等。各級政府部門,不論其規 模大小,均使用太空資料以遂行諸如城市規劃、 災難管理甚至税收評估等作業。

海上一覽無遺

在20世紀,海上作戰之決定性優勢通常屬於清 楚敵情且率先發動攻擊的一方。第二次世界大戰 之中途島海戰(The Battle of Midway)即為典型案 例。當日軍與美軍艦隊在環礁附近彼此逐漸接近 之際,精確標定敵方位置乃是發起攻擊之關鍵所 在。1942年6月4日約0530時,由於當時美軍擁有 優勢的情報判斷,其艦隊收到了PBY水上飛機通 報,並準備對日軍航艦發起攻擊。日軍則直至當 日0730時才發現美軍艦隊位置。資訊優勢使美海 軍獲得了決定性勝利。

自二戰迄今,美海軍航艦打擊群向來仰賴其 編制內偵測能力,即其水面艦、潛艦,飛機以及 無人機等,以執行搜索與屏衛作戰任務,同時向 上申請太空資源,並儘可能獲得陸基型巡邏機情 資。13 這些資源相互結合,為航艦打擊群提供強 大的情監偵能力,然而,此作法在可涵蓋之時間 與可覆蓋之範圍方面卻有其限制。儘管如此,美 海軍已在海、空與太空領域享有技術與作戰優勢 逾60年以上,使其在狀況覺知方面能保持優勢。 小型衛星技術革新則改變了這個局面。

在小型衛星「一覽無遺的海上」,美海軍必須 假設每一艘戰艦都可能被追蹤,故每日更新多次 位置。屆時對美海軍而言,無法於地平線外標定 其艦隊位置之弱勢敵人已不復存在。簡言之,美 海軍將失去其所兼具之匿蹤、不定性與奇襲等 方面之優勢。敵方所獲資訊詳細的程度,足可使 其能整合圖像、雷達與信號等多種訊息模式,進 而不僅可以確定艦艇位置,亦可推斷艦艇戰力現

可重複使用之SpaceX Falcon 9運載火箭。這些新型且低成本小型衛星運載 火箭問世,以及「共乘」方法的採用,使得軌道上小型衛星數量激增。 (Source: Space X)

況、作戰態勢,以及後勤運補作 法。

在小型衛星觀測下,港內艦 艇清楚可見;運送至艦艇之補 給品數量與類型亦將受到近乎 即時的觀測。敵方可觀測到艦 艇出港前之準備作業,並於數 小時甚至數分鐘內即可得知其 出港時間。這不僅是水面艦所 面對的情況,潛艦所面臨之情 況亦是如此。小型衛星的觀測 能力,加上與全球網路保持寬 頻連線之海上監視浮標,將使 得某些水下區域變得透明。14

小型衛星商業化革命的另一

個重要層面乃是讓公海上任何 地點都能使用寬頻網際網路與 寬頻通訊。時至今日,很少有海 上艦艇可使用寬頻網際網路; 甚至美海軍艦艇亦受限於衛 星通信線路超載和不穩定等問 題。然而,一旦星鏈計畫等商 業化革命完成衛星群建構,所 有用戶將可使用不中斷且低延 遲的寬頻網際網路。此情況實 際上代表美海軍現行海上資訊 優勢之終結,也使海上網路防 禦的範圍更為擴大且複雜。許 多較小型艦艇,例如漁船與小 型貨輪,就像工業控制系統(Industrial Control System, ICS)網 路一般,並不會配備足夠網路 安全防護能力,故容易受感染 而成為海上殭屍網路(botnets) 一員、航行的潛在危害因子,或 是導致更嚴重問題產生。

在伊拉克境外作戰時,美陸 軍曾一度採用「每個士兵都是感 測器」概念,等同美海軍「每艘 艦艇都是感測器」看法,希望能 讓全世界各型商船之雷達和觀測 資料,透過網路傳送至由小型 衛星驅動的全球整合系統。倘 若這些概念得以具體實現,則 美海軍建立全球「海上覺知能 力」(Maritime Domain Awareness, MDA)之目標,或可成為商 業現實(commercial reality)。

對應之道

在一覽無遺的海上,美海軍 作戰方式勢將產生大幅改變。 今日之「海戰棋」博弈,明日將 轉變成為「西洋棋」對決,因為 各個棋手都能清楚看見棋盤上 的一切。在此情況下,最能預判 未來動向、瞭解環境因素,並能 採取最迅速、最果斷之作為,儘 可能搶佔有利位置的戰略家方 能獲得作戰優勢。

OPERATIONS 電積作 1

小型衛星群每日可多次掃描地球上各地點,此能力讓海上活動一覽無遺,並使包括美國與中共之戰艦無所遁跡。圖 為中共「遼寧」號航艦。(Source: Satellite image ©2020 Maxar Technologies)

在這樣的未來環境中,制勝者必須迅速下達 決心並獲取作戰優勢。此戰略前提為:提高美方 決策之正確性與速度,同時降低敵方相對能力。 儘管敵方可獲得大量訊息,但拒止與欺敵作為仍 有遂行之可能。實際來說,「提供敵方事實」之作 法,乃是讓欺敵戰略合理可行的關鍵因素。15 由於 美海軍無法迴避敵方觀測,故必須利用對手可獲 得的大量數據與資料以遂行佯攻和誤導,使敵誤 認其所見不可信,而非美軍真正之意圖或戰力。

因此,美海軍之戰略思維必須從資訊優勢轉為 決策優勢,同時必須坦然面對新現實,也就是知 識深入程度與決心下達速度將主宰決勝之能力。 因此,美海軍必須:

- 利用機器學習與人工智慧等先進科技來確認 各種狀況, 並能適時提供已分析之大量新資 訊,及時支援指揮官下達決心。
- 在一覽無遺的新海洋環境中,掌握拒止與欺 敵之道。攻勢拒止與欺敵作為係於資訊不斷 累積的環境中發展而成, 而反拒止與反欺敵 能力亦須隨之成長。
- 擴充資訊作戰能力俾利將其運作在商業寬頻 網路的新環境中。

▶ 發展網路安全性原則以強化這些 根基網絡的新能力,俾以防範關鍵 基礎設施之潛在威脅。

最後,美海軍必須調整武獲策略以 遂行創新作為,如此方能結合美國特 有之偵蒐能力與商業情蒐能力,確保 美軍指揮官可更快獲得更深入的資 訊。欲達成此一目標,美海軍必須採 取以下作為:

- 持續關心商業衛星科技之進展以 及國外衛星技術發展,並不斷更新 衛星群部署現況,同時評估各方面 所構成之潛在威脅。
- ▶ 規劃以商用小型衛星轉為美海軍 特定用途。
- 投入投資與研發,以確保部分企業 領導者專注發展小型衛星群,為美 國帶來獨有優勢。

上述作為可確保美海軍在未來無從 遁跡的海上,不致喪失其優勢,並且 得以充分運用資訊豐富之新環境,建 立新作戰概念。

作者簡介

William Williamson III現於加州蒙特瑞美海軍研 究院(Naval Postgraduate School)擔任副教授。他 曾於攻讀博士學位期間支援美國國防先進研究 計畫局物理與元件專案,並曾與國防承包商及分 析師共同合作。

Reprint from Proceedings with permission.

註釋

- 1. Department of the Navy, "Information Superiority Vision." www. navy.mil/strategic/DON Information Superiority.pdf.
- Jeffrey P. Hinebaugh, A Board Game Education (Lanham, MD: R&L Education, 2009).
- 3. U.S. House of Representatives, Oversight and Investigations Subcommittee of the Committee on Armed Services, "Intelligence Successes and Failures in Operations Desert Shield/Storm," 103rd Congress, 16 August 1993.
- 4. "TacSats for NATO (Les Satellites Tactiques pour OTAN)," Agard Advisory Report 322, February 1994.
- 5. Pete Rustan, "Developing and Maintaining the Innovative Edge," High Frontier (Air Force Space Command) 3, no. 3 (May 2007).
- 6. 1999年,美國國防先進研究計畫局與美空軍共同出資贊助史丹佛 大學之軌道式皮米級衛星自動發射器(Orbiting Picosatellite Automated Launcher, OPAL)試驗,部署體積非常小的衛星。Robert Twiggs開發出OPAL試驗的首顆小型衛星,並定義1U的標準。
- "Smallsats by the Numbers 2018," Bryce Space and Technology, March 2018.
- 8. Ryan Lewis and Todd Stavish, "Cosmic Shift: The Commercial Space Revolution," IOT Quarterly 6, no. 3 (Winter 2015): 3.
- "Nano/Microsatellite Market Forecast" (10th ed.), SpaceWorks, February 2020.
- 10. For descriptions, see www.capellaspace.com and www.iceye.com.
- 11. For a description of the Hawkeye constellation, see www.he360.
- 12. 星鏈計畫之重要專利屬Mark Krebs等人(Google資料),2017年1月 5日星鏈計畫在美專利申請編號爲2017/0005719 A1。小型穩定式相 位陣列終端天線重要專利屬Mazlouman太空探索科技公司,其世 界知識展權組織專利號碼爲2018年8月23日WO 2018/152439 A1。
- 13. Kent R. Schneider, "The Unique Character of Naval ISR," AFCEA Signal, December 2013.
- 14. 舉例而言,國防先進研究計畫局之「戰術水下網路系統」(Tactical Undersea Network Architectures, TUNA)計畫刻正就海上監視浮 標網路之科技進行開發;這些浮標可加裝簡易寬頻終端設備而作 爲監視之用。
- 15. Michael Bennett and Edward Waltz, Counterdeception Principles and Applications for National Security (Boston, MA: Artech House, 2007).