

火砲射向賦予系統發展之研析

作者:朱慶貴

提要

- 一、射向賦予之目的在賦予火砲之射向,使能平行指向所望地區,當戰砲隊佔領陣地時,副連長(排長)應即賦予全連(排)最初之射擊方向,俾不失時機完成射擊準備。
- 二、砲兵定位技術近年已獲得長足進步,由於使用全球定位系統可快速獲知自身位置所在,惟全球定位系統在戰時易受干擾與破壞,因此除全球定位系統外,亦可在自走砲或牽引砲的載台或載具上加裝雷射陀螺儀,增加其定位功能。
- 三、砲兵長時期使用方向盤擔任火砲射向賦予之主要裝備,惟傳統型式的方向盤(M1、M2 方向盤)基於作業需求與投資效益考量,其結構簡單且功能有限,因此新一代的射向賦予系統及電子方向盤因運而生,可為砲兵裝備與技術提升,提供更多的選擇。
- 四、國軍砲兵當前 M2 方向盤使用已久、野戰榴彈砲定位性能有待提升、連(排) 陣地射向賦予能力有限,尤其精進案後,砲兵改以「戰砲排」為基本運用 單位,對連陣地測地、射向賦予之需求與負荷倍增。基此,美軍已換裝 GLPS 之作為,可供國軍參考與借鏡。

關鍵字:射向賦予、GLPS (Gun Laying and Positioning System)、GPS

前言

射向賦予之目的在賦予火砲之射向,使能平行指向所望地區,當戰砲隊佔領陣地時,副連長(排長)應即賦予全連(排)最初之射擊方向,俾不失時機完成射擊準備。國軍砲兵早期使用 M1 方向盤(圖1),遂行射向賦予、砲兵營、連測地與觀測等作業,自民國 66 年起換裝 M2 方向盤(圖2),運用在射向賦予、砲兵連測地任務,惟歷經長達40餘年之使用後,其性能有待提升,漸於部隊訓練、戰備與測考方面產生困擾。

砲兵射向賦予裝備目前仍使用 M2 方向盤,然 M2 方向盤裝備長年使用,除維修保養不易,其運用上作業時間長、功能性降低等,因此基於砲兵射擊指揮自動化考量,在陣地火砲射向賦予作業應提升其作業速度與精度之功能性,籌購或研發新型射向賦予系統,是現今探討之重要課題。筆者就現行砲兵射向賦予作業檢討,及提出國人自製之射向賦予裝備,並研擬精進作為,談砲兵射擊射向賦予運用情形,發表淺見希為提升砲兵射擊指揮作業效略盡棉薄。

¹ 《野戰砲兵戰砲隊訓練教範》(桃園: 陸軍司令部, 民國 90 年 12 月 24 日), 頁 3 - 11。

¹ 陸軍砲兵季刊第 191 期/2020 年 12 月

圖 1 M1 方向盤

圖 2 M2 方向盤

資料來源:圖 1 轉引自美軍準則《TM6-600 砲兵測地 Artillery Survey》(Washington D.C.: GHO ARMY GRC.1954 年),34 頁。圖 2 由砲訓部目標組教官卓以民拍攝(105 年 5 月 1 日)。

火砲定位與射向賦予

長久以來,砲兵執行任務時皆會掌握兩個基本問題「我究竟在那裡?」及 「目標位置在那裡?」2。砲兵定位技術近年來已獲得長足進步,使用全球定位 系統可快速獲知自身位置所在,但全球定位系統在戰時卻極易受到干擾與破 壞。除全球定位系統外,亦可在自走砲或牽引砲的載台或載具上加裝雷射陀螺 儀,此種儀器只要輸入已知的初始位置與高度,無論砲車如何移動皆可快速獲 得位置資訊,而在配合電腦的計算儲存功能後,即可解算出已知目標座標的射 墼參數。

射向賦予的方法很多,而目前國軍砲兵通常採用為方位角法、方向基角法 及基準砲瞄準點法三種。3基準砲瞄準點法,係無測量器材,或磁電感應甚大時 使用之。方向基角法精度最佳,惟需有測地成果方可使用。而方位角法則因角 值取得較為簡便,其使用之時機亦較多,惟方向盤磁針易受磁電影響,其精度 不及方向基角法,在射向賦予時,究盡採何種方法,應視射擊指揮所或連長(排) 所給予之諸元而定。(射向賦予速度與精度表如附表 1)

耿國慶,〈析論美軍砲兵火砲射向賦予與定位系統〉《砲兵季刊》(臺南),第135期,陸軍砲訓部,民國95年 9月1日,頁23。

³ 同註1,頁3-12。

表 1 砲兵射向賦予速度與精度表

項次	速度		精度		
砲種	方位角法	方向基角法			
牽引砲	76秒	38 秒	不分砲種裝定值於 方向盤,不可超過		
自走砲	72 秒	36 秒	1 密位誤差。		

資料來源:同註1

現行火砲射向賦予裝備檢討

砲兵長時期使用方向盤,擔任砲兵射向賦予之主要裝備,惟傳統型式的方向盤(如 M1、M2 方向盤)基於作業需求與投資效益考量,其結構簡單且功能有限,因此新一代的方向盤因運而生,可為砲兵裝備與技術提升,提供更多的選擇。美軍於 1960 年換裝 M2 方向盤,以取代老舊的 M1 方向盤,爾後雖曾將M2 提升為 M2A2 方向盤,惟外型與功能改變甚小。直至 1991 年第一次波灣戰後,美軍砲兵對射向賦予與定位之精度、速度需求日增,亦急於解決海外作戰缺乏定位統制所造成的困擾,始計畫汰除 M2 系列方向盤,建案採購 GLPS (Gun Laying and Positioning System)系統。 以下針對 M2 系列方向盤性能檢討如次。

一、器材裝備

M2 系列方向盤使用已逾 40 年,因機件空迴與老舊,致精度退化與維修預算偏高。如仍以拼修方式易造成誤差較大,不符砲兵射向賦予作業效益。

二、定位功能

當砲兵連(排)迅速占領陣地在測地尚未完成前,即實施連瞬間射擊,如 能迅速定位砲陣地座標,亦可增進射擊精度。惟 M2 系列方向盤無定位功能,連 (排)長僅能以配賦之全球定位系統勉強因應。

三、定向精度

M2 系列方向盤可採「磁針」與「天體觀測」兩種方式定向,惟所得「方格方位角」精度有限(因磁北與方格北,夾角取得關係)。1986 年起,M2A2 方向盤已不再列入美軍砲兵測地之定向裝備,改由「測地用輕型方位陀螺儀」取代。5

⁴ 同註 2, 頁 24。

⁵ 耿國慶,〈砲兵方向盤發展與運用之研究〉《砲兵季刊》(臺南),第 163 期,陸軍砲訓砲部,民國 102 年 11 月 1 日,頁 3。

³ 陸軍砲兵季刊第 191 期/2020 年 12 月

四、夜間操作

M2系列方向盤視界僅10度,夜間照明裝置使用傳統燈泡與BA30電池2個, 反覘體亦不明顯,對夜間操作標定、判讀分劃與反覘等,易產生誤差與不便。

五、刻劃度分劃

新型自走式火砲瞄準具(週視鏡)之方向分劃最小可裝定至 0.25 密位,而 M2 系列方向盤僅可顯示至 1 密位, 差距甚大, 實施射向賦予時, 顯然配合不易。 六、測距功能

因 M2 系列方向盤無法測距,砲遮距離通常採目測、圖上量取方式決定。惟 不精確之砲遮距離將影響最小射角計算之結果,致影響射擊安全。M2 系列方向 盤缺乏測距功能,無法由選擇點計算各砲砲位座標,如採步測估算,其精度甚 差,影響射擊精度。

七、射向賦予

M2 系列方向盤之望遠鏡倍率僅 4 倍,除無法調整焦距外,反覘體亦不明顯。 當陣地幅員寬廣或各砲間隔縱深過大、天色較暗時,即覘視與標定困難,造成 射向賦予不便。

新一代射向賦予系統簡介

一、瑞士 GLPS 射向賦予系統系統(Gun Laying and Positioning System, GLPS)

GLPS(圖3)為瑞士萊卡(LEICA)工業技術公司製造,系統涵蓋慣性定向、 雷射測距、GPS 定位、光電測角與電子計算等組件,具備體積小、重量輕、精 度高與功能完整等優點,堪稱先進且全功能之系統,美軍亦採用本裝備。

(一)系統組成:GLPS 為模組化設計,可視使用者之特定需求組合構型。 系統通常包括 SKK3-08 指北陀螺儀、T502S 電子經緯儀、MRF-2000-2 模組測距 儀、PLGR 接收機、SZ19 覘標桿、電池組、SST90 三腳架、攜行箱與附件等, 重要組成之結構與功能如次。6

1.SKK3-08 指北陀螺儀:為慣性系統,不受電磁干擾,可於 3.5 分鐘完成定 向作業,在南、北緯 65 度之間地區,可提供 0.2 密位精度之方位角;南、北緯 65-75 度之間地區,則為 0.3 密位。

2.T502S 電子經緯儀: 為電子式結構, 使用電子氣泡定平, 具備測量水平角、 高低角與全部系統整合能力。T502S 電子經緯儀結合 MRF-2000-2 模組測距儀與 SZ19 覘標桿,由望遠鏡光軸發射雷射,測距能力可達 2 公里以上。

3.PLGR 接收機:為體積小、重量輕、可手持操作,具機體結構堅固、防震、 防水之 GPS 接收機。區分為定位服務與精確定位服務兩種機型,平均定位精度

⁶ 同註5,頁6。

為座標 10 公尺、標高 10 公尺,可與 GLPS 連線使用。

(二)系統功能

- 1.快速定位:GLPS 通常整置於砲兵連(排)選擇點,可採 GPS 與「一點反交會」兩種方式決定「選擇點」系統位置,並顯示 WGS-84 之 UTM 方格座標。
 - (1) GPS 定位:由連線之 PLGR 傳輸所在位置之座標、標高至系統。
- (2)一點反交會(圖4):a.輸入已知點座標、標高;b.測定已知點方位角、 距離與高低角,由系統自動計算反交會點(系統)位置。
 - (3) 儲存位置資料。
 - 2.精確射向賦予與測定砲位(圖5)
- (1) GLPS 完成指北,並於 T502S 電子經緯儀輸入射擊指揮所通報之「砲 檢(目)方位角」。
- (2)經緯儀望遠鏡標定火砲瞄準具,測定至火砲之方位角、距離與高低角,並宣讀方向。
 - (3) 計算砲位,並儲存座標、標高。
- 3.測定砲遮距離:以 MRF-2000-2 模組測距儀,直接瞄準遮蔽物或瞄準背立於遮蔽物上之砲手,測定精確之砲遮距離。

圖 3 瑞士 GLPS 射向賦予系統

資料來源: Gun Laying and Positioning System (GLPS), (Switzerland: Leica Geosystems AG Defense & Special, 9/2002)

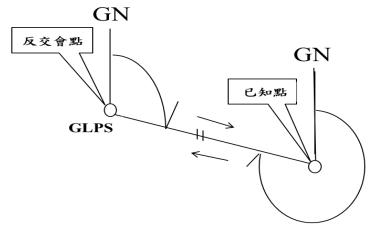


圖 4 一點反交會法 資料來源:作者繪製

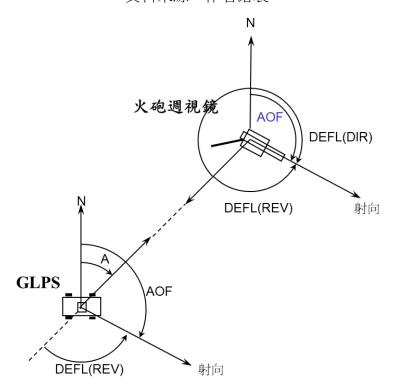


圖 5 火砲射向賦予與測定示意圖 資料來源:作者繪製

二、以色列 AGLS 射向賦予系統(Automatic Gun Laying System, AGLS)

以色列 AGLS 火砲射向賦予系統(圖6),系統包涵雷射測距、電子式量角 器、天文真北量測儀等組件,具備體積小、重量輕、精度佳與功能完整之射向 賦予系統。7

(一)系統組成:雷射測距、電子式量角器、天文真北量測儀、電池組、 三 腳架、攜行箱與附件等。重要組成如次。

1.雷射測距:可內建陀螺儀為慣性定向系統,不受電磁干擾。

⁷ 以色列 Azimuth 公司 AGLS 火砲射向賦予系統商情資料及詹氏年鑑電子資料庫。

隆起兵季刊 ARMY ARTILLERY QUARTERLY

- 2.電子式量角器:為電子式結構,使用電子氣泡定平。
- 3.天文真北量測儀:為體積小、重量輕、可內建 GPS 定為精確。
- (二)系統功能
- 1.快速定位:AGLS 系統通常配置砲兵連,可採慣性陀螺儀與 GPS 相互運用快速定位。
- 2.精確射向賦予與測定砲位: (1) 天文真北量測儀完成指北,並結合電子 式量角儀測得射向方位角; (2) 經緯儀望遠鏡標定火砲瞄準具,測定至火砲之 方位角、距離與高低角,並宣讀方向; (3) 計算砲位,並儲存座標、標高。

圖 6 以色列火砲 AGLS 射向賦予系統圖

資料來源:以色列 Azimuth 公司 AGLS 火砲射向賦予系統商情資料及詹氏年鑑電子資料庫 三、軍備局 401 廠 TS99 式數位射向賦予系統(圖7)

本裝備係針對各類火砲射向賦予作業之數位電子方向盤,所開發之新一代數位是射向賦予裝備,以消除方向盤因人為操作而產生之誤差。系統內建三軸向數位電羅盤,同時具備自動歸北功能(精度 5 密位以內),標準定向精度可達1 密位(功能諸元如表 2) 8。系統具備自動水平校準補償功能,架設迅速、光學刻畫描準同時配賦可調式照明與對覘用紅光燈,可滿足夜間火砲射向賦予需求;裝備並支援數據輸出功能,可作為射擊任務資訊之一環,應用層面廣泛。

⁸ 軍備局 401 廠《砲用裝備生產暨研發產能簡報》, 99 年 3 月 1 日, 頁 1。

⁷ 陸軍砲兵季刊第 191 期/2020 年 12 月

TS99 式數位射向賦予系統 圖 7 資料來源: 軍備局 401 廠砲用裝備生產暨研發產能簡報(99年3月1日) 表 2 TS99 式數位射向賦予系統諸元表

諸元	規格		
光學倍率	5 倍		
量測範圍	水平:6400 密位,俯仰:1500 至-500 密位		
視場	2.5 度		
屈光度調整	-4 至+4 屈光度		
重量	2300 公克 (不含腳架)		
夜間照明	內建分畫板投射與對覘燈源		
數據輸出	標準 RS232 通訊埠		

資料來源: 軍備局 401 廠砲用裝備生產暨研發產能簡報(99年3月1日)

小結

瑞士 GLPS 系統與以色列 AGLS 系統為現役射向賦予系統裝備,已有完整戰 場使用經驗,系統涵蓋慣性定向、雷射測距、GPS 定位、光電測角與電子計算 等組件,具備體積小、重量輕、精度高與功能完整等優點,堪稱先進且全功能 之系統。然此系統作業採用英文模組、價格昂貴、維修保養費用高,砲兵部隊 全軍配賦,必耗費龐大國防預算;如考量國人產能自製,運用軍備局 401 廠未來 TS99 式數位射向賦予系統,可達到作業系統中文化與操作便捷、價格低廉之效 益。各國火砲射向賦予系統功能規格比較如表3。

表 3 火砲射向賦予系統功能規格比較表

功能	瑞士 GLPS	以色列 AGLS	中華民國軍備局 TS99
具望遠鏡功能	10 倍率十字標線	2.5-10 倍率	5 倍率
可測量高低角	1 密位以下	水平正負 400 密位	1500 至-500 密位
可測量水平角、方位 角	6400 密位	360度	6400 密位
具測距功能	30-2500m 精度±1m	30-2000m 精度±1m	無
具 測 站 定 位 精 度 (GPS 及反交會法)	水平座標誤差: ≦ 10m CEP 標高誤差: ≦ 3m EP	水平座標誤差: ≦ 10m CEP	無
定向精度(陀螺儀)	方格方位角誤差 ≦0.2 密位	天文式尋北誤差 +-1 密位	電子羅經 +-5 密位
器材整置時間	5 分鐘以內	6分鐘以內	8分鐘以內
系統全重(不含攜行 箱及三腳架)	28 公斤	30公斤	2.3 公斤
充電時間不得超過 電力供應時間	電力供應時間 3 小時	電力供應時間 10 小時	不詳
具備與全球定位系 統(GPS)連線作業 能力	可	可	無
具備夜間操作能力	可	可	內建分劃板投射對 覘燈源
中文操作手冊及中 文操作介面	無	無	有
綜合比較分析	優	優	劣

資料來源: 作者繪製

精強作為之目標

國軍砲兵當前面對 M2 方向盤、野戰榴彈砲定位性能、連(排) 陣地測地能 力有限,尤其精進案後,砲兵改以「戰砲排」為基本運用單位,對連(排)陣 地測地、射向賦予之需求與負荷倍增。基此,美軍換裝 GLPS 作為之精神與目的, 可供國軍參考與借鏡,筆者建議如次。

一、提升自動化效能

自動化為先進國家砲兵之既定目標,致任何規劃中的新裝備,均以符合自 動化之條件或滿足自動化之階段目標為考量。美軍以 GLPS 取代 M2 系列方向盤 之作為,不僅符合自動化目標之進程,且不致造成投資浪費。

二、發揮人力效益

精簡兵力不僅為國軍現行政策,亦為全球趨勢,惟精簡兵力與提升戰力兩 者甚難取得平衡,遑論達到兩全之理想境界,故舉凡可精簡兵力且適度提升戰 力之裝備應視為首選。GLPS 除可提升戰砲連(排)之定位與射向賦予能力,達 成爭取作戰時效、提升反應能力與增大戰場存活力等效能外,亦可適切精簡兵 力,即使其價格較 M2 方向盤高出數倍,惟投資效益顯而易見。

三、前瞻定位與導航計畫

美陸軍砲兵為確立定位、導航系統之性能需求,使用單位應建立之教育與 資訊觀念,以及汰除當前疏於管理致過度擴散舊系統之具體措施,不僅頒定「陸 軍定位與導航主計畫」,並要求各兵監據此策頒兵科之定位與導航計畫。以「砲 兵定位與導航計畫 _ 為例,即規劃在 2000 年之前須完成 GLPS 換裝作業。 9國軍 可參考此一機制,嚴予審查各兵科對定位與導航之需求,適切管制當前系統與 規劃未來目標系統,期能符合節約預算、避免過度擴散與充分發揮定位、導航 系統之最大功效。

四、發揮裝備聯合操作效能

2000 年美軍砲兵完成 GLPS 換裝後,決定以「改良式位置與方位決定系統」 (Improved Position and Azimuth Determining System, IPADS) 取代使用逾25年 的 PADS, 俾有效提升測地能力。未來 GLPS 與 IPADS 之兩者之功能與任務並非 重複,而是長短相輔、密切配合,其砲兵營運用構想為:(一) IPADS 組與測 量組分別負責全部測地之「連接測地」與「前地測地」, GLPS 則在全部測地未 完成前提供連(排)射擊所需之「陣地測地」成果,爾後視需要再由 IPADS 提 供陣地「座標統一」諸元;(二)當砲兵連(排)單獨執行任務時,由連(排) 配賦之 GLPS 執行陣地測地與射向賦予作業。

⁹ 同註 2,頁 31。

結語

國軍近來積極加速組織變革,並在有限的資源下實施裝備現代化,而現今 砲兵射向賦予裝備(M2 方向盤)功能性已不符作戰所需,筆者建議國軍檢討 M2 方向盤,近程使用國人自製電子方向盤 TS99,遠程採購新型 GLPS 系統,以 符合砲兵火力支援快、狠、準之射擊任務。

射向賦予之良窳,不但影響爾後之射擊操作,並對整個射擊效果關係尤大, 運用先進射向賦予系統,必能提升作業精度與速度,亦可增進陣地測地作業、 砲位座標求取之效能,無論籌購與研發新式裝備,皆為國軍砲兵重要課題。

參考文獻

- 一、軍備局 401 廠《砲用裝備生產暨研發產能簡報》, 民國 99 年 3 月 1 日。
- 二、《野戰砲兵戰砲隊訓練教範》(桃園:陸軍司令部,民國90年12月24日)。
- 三、耿國慶、〈析論美軍砲兵火砲射向賦予與定位系統〉《砲兵季刊》(臺南), 第 135 期,陸軍砲訓部,民國 95 年 9 月 1 日。
- 四、耿國慶、〈砲兵方向盤發展與運用之研究〉《砲兵季刊》(臺南),第163期, 陸軍砲訓砲部,民國 102 年 11 月 1 日。

作者簡介

朱慶貴備役中校,陸軍官校74年班、砲校正規班140期,曾任排長、連長、 教官、主任教官、雇員教師,現任職於陸軍砲兵訓練指揮部射擊教官組。