

運用物聯網裝置監控無人機房環境安全 性之研究-以 Arduino 建置為例

作者/楊梅波士官長

提要

- 一、近年來因受半導體技術、資訊科技進步之賜,物聯網的應用範圍將越來越廣泛,在生活環境中各種裝置小至智慧電表,大至高速公路收費、貨櫃通關系統等,均可看出其應用 趨勢。
- 二、嵌入式的機板亦為現行物聯網的發展趨勢之一,可配合使用者的應用需求由技術開發者以各式的Arduino、NVIDIA、Raspberry Pi等物聯網機板,搭配所需的光、熱、聲、壓力等感測裝置,研發所需的物聯網系統。
- 三、本文以Arduino機板為實驗裝置,做為溫濕度、煙霧、門禁、電流等感測器,並以C語言 撰寫程式碼,用以偵測機房環境數據,達到監測機房之效果。其實驗結果所得相關數據 均可達一定之穩定與精準度,並於實測後30日,其功能仍可維持正常運用。

關鍵詞:Arduino、物聯網、智慧城市、無人機房。

前言

近年來國內物聯網產業蓬勃發展,涵蓋範圍非常廣泛,並發展出各式各樣的智慧產品。 通過物聯網可以使用電腦對機器、裝置、人員進行集中管理、控制,也可以搜尋位置、防止物品被盜等。目前市面上有幾種廉價、簡單、開源式的微型電腦,設計簡易的程式及搭配其他物件組建後,便可達到基本的感測及聯網等功能。

綜觀本軍無人機房因各單位經費及能力,存在許多問題,例如缺乏煙霧、失火,淹水等 感測機制,且若發生問題,往往必須要到現場才會發現。而現今物聯網裝置可安裝各種感測 器,相關裝置也已達經濟規模、價格逐年下降,可符合經費不足單位之需求,也可達到環境 安全掌控之能力。因此,選擇較易上手的Arduino Uno機板組建感測裝置,在陸軍通訓中心(文中簡稱中心)測試,以研究是否適合協助管理無人機房環境安全。

物聯網介紹


一、何謂物聯網

物聯網(Internet of Things, IoT)是運用網路讓所有的物體能夠實現互聯互通。物聯網不是近一兩年流行的,早在1995年比爾蓋茲就已提過這一個概念。而在這 20 年的科技發展當中

,都不斷有人提出生活全面與網路結合,正是這個概念的發展,通過物聯網可以使用電腦對 機器、裝置、人員進行集中管理、控制,也可以對家庭裝置、汽車進行遙控,以及搜尋位置 、防止物品被盗等,類似自動化操控系統,同時透過收集各種訊息,整合成大數據,如重新 設計道路以減少車禍、都市更新、災害預測與犯罪防治、流行病控制等等社會的重大改變。1 簡單說,就是將現實世界數位化,以無形的網路將有形的世界相互連結。

物聯網與國軍網狀化作戰有異曲同工之妙,網狀化意即是把所有重要的武器載台都連上 軍網,讓各級指揮官可立即掌握部隊現況,並在下達命令後,立即讓終端的操作手明確知曉, 架構示意如圖一。

圖一 網狀化作戰接戰網路示意圖

資料來源:徐建安,〈網狀化作戰與平台化作戰之比較研究:兼論我國陸軍未來發展〉(桃園),國防 大學戰略研究所戰略與國際事務碩十論文,民國106年5月,頁83。

二、物聯網簡易裝置介紹

實現物聯網的第一步,會想到用一台可運算的電腦來達成。目前市面上有幾種廉價、簡 單、開源式的微型電腦,其中較為有名的就是樹梅派Raspberry Pi與Arduino等產品,其他各家 也紛紛加入此戰場,概略介紹如下:

(一) Arduino機板

Arduino最初是針對沒有任何技術背景的學生而設計,由義大利北部伊夫雷亞互動設計 學院老師們共同開發,因市售的工具不管是配件、跳線或是接頭的數量都很多,這對學生來 說,似乎太過複雜,使得學生不知道該如何處置,為了解決這些問題,於2003年誕生Arduino ,²此為物聯網普及化之重要推手,本次研究也以此機板為主。(如圖二)

[〈]IoT技術〉,《維基百科》, https://zh.m.wikipedia.org, 民國 105 年 09 月 14 日。

[〈]Arduino〉,《維基百科》, https://zh.m.wikipedia.org/wiki/Arduino,民國 108 年 12 月 11 日。

⁶⁸ 陸軍通資半年刊第 134 期/民國 109 年 10 月 1 日發行

圖二 Arduino UNO 設備圖

資料來源:〈創客專區〉,《PChome24h 購物》, https://24h.pchome.com.tw/store/ DSAJ2B, (檢索日期:民國 108年3月30日)。

(二) 樹梅派(Raspberry Pi Foundation)機板

它是一個植基於Linux系統的單機板電腦,特點是簡單、便宜,由英國的樹梅派基金會 開發,只有一張信用卡的大小,功能如同一台電腦,效能足以播放1080p影片,最新版本亦有 Wi-Fi、藍牙連接,並可安裝Windows 10 IoT系統。³ (如圖三)

圖三 樹梅派設備圖

資料來源:〈創客專區〉,《PChome24h購物》,https://24h.pchome.com.tw/store/ DSAJ2B,(檢 索日期:民國108年3月24日)。

(三) 英業達(NVIDIA Jetson Nano)機板

此設備由英業達108年開發之產品,首款具備人工智慧的物聯網裝置,尺寸僅70×45 mm ,是全球最小的裝置。能有效將人工智慧部署至各個產業的終端裝置,包括智慧城市和機器 人。⁴(如圖四)

[〈]樹梅派〉,《維基百科》, https://zh.m.wikipedia.org/wiki/樹梅派,(檢索日期:民國 109 年 5 月 6 日)。

⁴ "NVIDIA,JETSON NANO," NVIDIA, https://www.nvidia.com/zh-tw/autonomous- machines/embedded-systems/ jetson-nan, (2019/03/24).

圖四 NVIDIA Jetson Nano設備圖

資料來源:"JETSON NANO," Nvidia, https://www.nvidia.com/zh-tw/autonomous-machines/embedded-systems/jetson-nan/, (2019/03/24).

三、各式感測器介紹

實現物聯網的第二步,就是主板周遭的各種感測器,現行感測器按種類區分有影像/成像/顏色感測、環境感測、壓力/彎曲/震動、生物識別技術、紅外線科技、距離感測/接近感測、運動/位置/加速度、電壓/電流、按鍵/輸入/人機介面模組、無線通訊網路模組、繼電器模組、衛星定位(Global Positioning System, GPS)、步進電機/馬達、工業物聯網/工控模組、Robotics機器人等種類繁多,分別介紹如下。

(一)影像/成像/顏色/聲音感測器

表一為圖像識別模組、手勢感測、語音識別、紅外線成像等模組,具有圖像處理、人臉 偵測、語音控制裝置、手勢控制裝置、紅外線掃描成像等功能,產品種類多,僅列舉部分品 項。

表一 各視覺感測器及手勢傳感器

資料來源:〈感測器傳感模組〉,《臺灣智能感測科技》, https://www.taiwansensor.com. tw/, (檢索日期:民國 108 年 3 月 24 日)。

(二)環境感測

表二為PM2.5空氣粉塵感測、光線紫外線、氣壓、地磁、氣體、液體水質、溫溼度、聲音傳感等感測器等,功能有量測光、空氣、水、地磁及聲音等功能的感測器,產品種類多,僅列舉部分品項。

表二 各式環境啟測器				
PM2.5 感測	溫溼度感測	火焰感測	酒精感測	
紫外線感測	水溫感測	氣壓感測	氣體偵測	

表一 各式環境感測器

資料來源:〈感測器傳感模組〉,《臺灣智能感測科技》, https://www.taiwansensor.com. tw/, (檢索日期:民國 108 年 3 月 24 日)。

(三)壓力/彎曲/震動/生物感測

表三為壓力、彎曲、震動、生物感測等感測器,有感測彎曲程度,雷達掃描、震動回饋、心跳脈搏、指紋及虹膜感測等,產品種類多,僅列舉部分品項。

表三 壓力彎曲震動生物感測器

資料來源:〈感測器傳感模組〉,《臺灣智能感測科技》,https://www.taiwansensor.com.tw/, (檢索日期:民國 108 年 3 月 24 日)。

(四)無線/網路模組

表四為無線傳輸、控制及有線網路模組,功能有無線遙控、藍芽通訊、Wi-Fi通訊、無線射頻辨識(Radio Frequency IDentification, RFID)、近場通訊(Near-Field Communication, NFC)、4G通訊、衛星定位及有線網路通訊等,產品種類多,僅列舉部分品項。

(五)運動/測距/電源模組

表五為電子羅盤、3軸加速計、紅外線測距、雷射測距、超音波測距、電壓電流感測、 開關、鋰電池充電模組等,產品種類多,僅列舉部分品項。

表四 各式無線/網路模組

RF無線遙控	藍芽模組	WIFI模組	RFID模組
NFC模組	4G模組	GPS模組	有線網路
6			

資料來源:〈感測器傳感模組〉,《臺灣智能感測科技》, https://www.taiwansensor.com.tw/, (檢索日期:民國 108年3月24日)。

表开 運動、測距、電源感測器

	九五 廷勒 //		
軍用電子羅盤	3軸加速計	紅外線測距	雷射測距
130 130 150 150 150 150 150 150 150 150 150 15		8	
超音波測距	電壓電流感測	電源開關模組	鋰電池充電

資料來源:〈感測器傳感模組〉,《臺灣智能感測科技》,https://www.taiwansensor.com.tw/, (檢索日期:民國 108年3月24日)。

上述各項感測模組,並非與機板接上就可以使用,仍需透過程式開發設計,才能開發出 所需的專案,程式種類眾多,其中以Arduino官網所附的設計軟體為例,如圖五。

圖五 Arduino 程式開發介面

資料來源:作者整理。

我國物聯網發展現況

近年來網際網路從人與人的連接到人與物的溝通時,下一階段將再深入物與物之間的溝通,這將是資通訊時代的終極應用,也是近幾年物聯網技術與相關應用熱門的因素。

一、政府相關發展介紹

政府現階段將物聯網應用於城市中的電力、自來水、交通、建築物和油氣管道、工廠、辦公室及居家生活等各種物件中,讓人們可以有更好的工作效率及生活品質。利用物聯網技術強化公共市政服務,不僅可以提升政府效能,更可以讓民眾享有更美好的生活品質,因而各國政府都將建設智慧城市視為提升城市競爭力的重要指標,如圖六。5

圖六 臺灣物聯網政策圖

資料來源:陳榮貴,〈物聯網發展與應用〉,《第27屆近代工程技術討論會》(台北),中華電信研究院,(檢索日期:民國107年10月23日),頁43。

(一)智慧電網

行政院推動低壓智慧電表建置,其效益為節省抄表人力、收集記錄用戶用電量、搭配時間電價與需求量反應等措施,鼓勵用戶用電行為改變,達到抑制尖峰用電與節能目的,用戶可透過上網或手機軟體(Mobile Application, APP)掌握家中用電情形,並且可配合台電用電離峰時間減免電費,⁶因建置成本高,若要全面更換,恐要數年時間,除非自己掏腰包,如圖七。

(二)公路總局新世代智慧機房應用

公路總局為改善機房的管理模式,於106年建立智慧機房,其中透過手機、平板或電腦,運用物聯網技術,可遠端的監控機房的電力狀況、溫溼度狀況、冷氣運作情形、遠端檢查防災系統,以及透過智慧機器人巡管機房情況,並透過資訊化報表,可立即查詢機房使用情形,若有異常,則透過簡訊,傳遞給輪值人員知悉,其模組如圖八。

 $^{^5}$ 陳榮貴,〈物聯網發展與應用〉,《第 27 屆近代工程技術討論會論文集》(台北),中華電信研究院,民國 107 年 10 月 23 日,頁 43。

^{6〈}智慧電表與電業端整合1000户示範計畫〉,民國107年5月,頁18。

⁷陳崑山,〈新世代節能環保智慧機房應用〉(高雄),交通部公路總局高雄市區監理所,民國 106 年 06 月 28 日,頁 13。

圖七 智慧電表

資料來源:〈智慧電表與電業端整合1000戶示範計畫〉,民國107年5月,頁18。

圖八 公路總局智慧機房建置功能

資料來源:陳崑山,〈新世代節能環保智慧機房應用〉(高雄),交通部公路總局高雄市區監理所,民國 106 年 06 月 28 日,頁 13。

二、業界相關實例介紹

(一)東海大學-智慧電力監控系統

東海大學在其校區各大樓建置智慧電表,將其數值傳回學校,透過資訊系統彙整,供其該區掌控大學整體用電量,及各大樓用電狀況,以做即時各項電力管控分析,如圖九。

人文大樓
《多四州用亞國 》

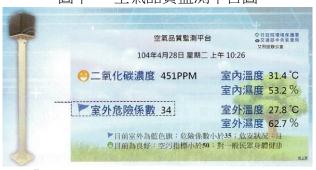
《中國 》

圖九 智慧電力監控系統

資料來源:東海大學,〈智慧電力管控系統〉,《智慧校園服務網站》,http://icems.thu.edu.tw/pmap.php,(檢索日期:民國 108 年 3 月 24 日)。

(二)全家便利商店

74 陸軍通資半年刊第 134 期/民國 109 年 10 月 1 日發行


於民國107年3月29日在重慶南路開辦了第一間科技概念店,⁸該店利用17項的IoT科技設施來簡化管理流程,以前工作人員需要不停的檢視店內冰箱的溫度、熱食區的溫度、店內冷氣的溫度,並且自行調整。現在利用監控看板將這些資料整合在一起,一目瞭然,結合IoT運用,定時將溫度、電流、電壓等資訊上傳雲端,進行溫度控管。而其下一步將發展故障預警、自動派修,如圖十。

(三)中心佈建溫溼度感測系統

中心從共約採購之空氣品質監測平台,可偵測周遭溫溼度,並顯示於網站、路邊懸掛之螢幕及戶外燈座燈號上,以利人員隨時掌握危險係數及空氣品質等狀況,如圖十一。

資料來源:〈全家推出概念店利用大數據物聯網改善流程強化顧客體驗〉,《T 客邦》,https://www.techbang.com/posts/57619-family-digital-transformation-second-war-technology-concept-store-to-create-new-retail-innovation-stage,(檢索日期:民國 108 年 3 月 30 日)。

圖十一 空氣品質監測平台圖

資料來源:擷取「共同公共契約(1070201)-空氣品質數據模組」畫面。

三、各國軍事用途發展

掌握各國軍事發展情形,可有利於我國軍在技術成熟之際,將相關技術導入我國軍之中,以下經研究相關文獻,從美國、中國及我國等3點方向來探討。

(一)美國

 $^{^8}$ 〈全家推出概念店利用大數據物聯網改善流程強化顧客體驗〉,《T 客邦》,https://www.techbang.com/posts/57619-

family-digital-transformation-second-war-technology-concept-store-to-create-new-retail-innovation-stage,2018 年 03 月 30 日 \circ

美國已於108年將第五代行動通訊技術(5th Generation Mobile networks, 5G)列為「最優先事項」, 9除成立專責辦公室,負責採購相關設備,也有意提供軍事設施,做通訊測試,讓美軍邁入5G時代。未來2年5G研發編列經費將大幅增長,以強化部隊系統通連的速度及提高資料量,使其能更快速獲得情資,有效實施決策方針,如圖十二。

資料來源:〈美國防部列最優先事項 美軍邁向 5G 時代〉,《青年日報》, https://www.ydn.com.tw/News/348481,民國 108 年 8 月 16 日,(檢索日期:民國 108 年 10 月 22 日)。

(二)中國

據報導,步戰電子化的共軍推首款單兵戰救訓練智慧腕錶,此款新研製的智能腕錶成功整合人工智慧、電子地圖、物聯網、戰傷模型、移動通信等新技術於一身,構建了作戰搜救與指管平台間傳輸鏈路。此錶功能有作戰訊息傳遞、搜救系統、目標繪定、火力掩護等,如同小型「移動指揮所」¹⁰,讓戰場更加透明,使官兵更加「耳聰目明」,如圖十三。

圖十三 共軍操作智慧腕錶

資料來源:〈步戰電子化 共軍推首款單兵戰救訓練智能腕錶〉,《中時電子報》,https://www.chinatimes.com/realtimenews/20181212000032-260417?chdtv,民國 107 年 12 月 12 日,(檢索日期:民國 108 年 3 月 22 日)。

 $^{^9}$ 〈美國防部列最優先事項 美軍邁向 5G 時代〉,《青年日報》,https://www.ydn.com.tw/News/348481,(檢索日期:民國 108 年 8 月 16 日)。

 $^{^{10}}$ 〈步戰電子化 共軍推首款單兵戰救訓練智能腕錶〉,《中時電子報》,https://www.chinatimes.com/realtimenews/20181212000032-260417?chdtv,民國 107 年 12 月 12 日,(檢索日期:民國 108 年 3 月 22 日)。

⁷⁶ 陸軍通資半年刊第 134 期/民國 109 年 10 月 1 日發行

(三)我國

中科院正著手規劃為期十年的「智慧國防」架構,要以人工智慧串連作戰情資與共同圖像,打造「智慧國防服務管理共通平台」與「智慧國防聯戰指管共同平台」。此計畫將規劃發展智慧化的營區、人事、醫療、後勤、學習、氣象、軍備製造、指管、情監偵、電戰、資安與作戰等項目,使我國軍開始邁入智慧物聯網的時代。¹¹

建置 Arduino 控制之效益

一、建置環境分析

本次研究限制為機房之機敏性,故以教室為本次測試之研究環境。

(一)現行規定環控之要求

依據本軍現行資訊機房管理規定,有關安全部分區分門禁管制、警監設備、環境安全、 電力管控、消防管理、空調管理等6項, 擷錄與本研究有關如下。

1.門禁管制

需以磁卡管制,若機敏性高,則需設置兩道鎖管制,窗戶需加裝防盜門(窗),如此進 出則可透過網頁查詢人員進出情形。

2.環境安全

人員應注意電力、空調、消防、不斷電系統等是否正常運作。

3.雷力管理

輪值人員應依電力、空調、消防各系統逐一檢查,以確保運作正常。

4.機房空調管理

機房溫度應維持20~24度,相對溼度維持於40~60%之間,若空調故障,則開啟大門及 排風系統,加強空氣對流。

(二)現行機房環控設施

現行機房以中心為參照對象,相關說明如下:

1.門禁管制

現行以門禁卡機管制人員進出並可線上查詢進出記錄,並設置兩道門鎖防止人員盜用 卡片,窗戶則使用白鐵防盜窗戶,使有心人士無法從窗戶進入。

2.環境安全

設置不斷電系統管控機房電源使用狀況,空調則採溫溼度系統,來掌握現行空調及環控狀況。

3.電力管理

 $^{^{11}}$ \langle 5G 世代國防應用論壇軍民合作建構智慧國防 \rangle ,《青年日報》https://www.ydn.com.tw/NEWS/350491,民國 108 年 08 月 31 日。

電力採每日巡管時,檢查不斷電系統、設備、空調等運作情形。

4.機房空調管理

環控掌握採人員巡管方式管控,若發現異常狀況,則立即緊急處置。

(三)機房無人化問題探討

1.門禁管制

機房採兩道門設計,其目的是防範百分之99.99的人員,但其中有百分之0.01的人員是 具備此專長能力,又或是有上網專研破解之道的人,有可能會知道兩道門禁卡機及鑰匙鎖的 弱點,而可無聲無息地完美進入,絲毫難以察覺。

2.電源管理

電源採不斷電系統管控,其安全上問題不大,惟無法遠端掌控其用電情形,容易喪失 先機。

3.環境管控

機房溫溼度管控雖然有設備在監控,但仍以人員每日巡查方式,來掌握是否正常,若 在此期間有任何狀況,則無法立即知曉,且保管人接到電話時,通常已經是發生狀況,在時 效處置上,可應變的時間就會縮短。

消防設施部分,採的是自動化感測溫度滅火器,啟動設定在65度,但若發生電線等失火,會產生大量的煙霧,此階段滅火器將無法發揮作用,僅能等到通知或巡察時,才知道機 房發生狀況。

淹水偵測部分,規定無特別律定,若下豪大雨,保管人員即會前往勘查,但本案仍將 此納入研究,以做最佳防護。

二、Arduino裝置建置之架構

從上述分析得知,機房在無人的情形下,存在著不安定的風險,故從門禁、溫溼度、電源等 感測裝置,著手研究分析是否可改善相關問題,分述如下。

(一)Arduino建置採用之設備模組

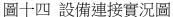
1. 主板樣式

本次採用的主板為Arduino系列中的UNO版本,其特色有具備數位13組感測器接腳,5 組類比感測器接腳,屬於大眾用途型的產品。

2.採用之感測器模組。

本次採用網路模組、溫溼度模組、電流模組、震動模組、水位模組、煙霧模組、磁簧 開關及火焰感測等8種感測器,如表六。

3.設備連接實況


本次採用電話線連接各項感測器,每一種感測器使用一條線,連接完成品,如圖十四。

表六 研究所採用之感測模組

W5100網路模組	DHT-22溫溼度 感測模組	ACS-712 20A 電流感測模組	震動感測模組
Table 1		E E E E E E E E E E E E E E E E E E E	
水位感測模組	MQ-2煙霧感 測模組	磁簧開關	火焰感測
		1 SUARE 1	Secondary Second

資料來源:作者彙整。

資料來源:作者拍攝。

(二)感測位置配置概況

本次研究以J6-9教室為例,進而模擬機房環境,各感測器建置位置如下。

1.震動傳感

用以偵測電腦主機是否遭人搬動,當做搬動測試時,在網頁上可以看到設備遭搬動之 訊息,其感測效果佳。也可以安裝於窗戶等地方,用以感測是否遭人開啟,如圖十五。

2.電源電流感測

偵測電源是否過載,測試安裝於20A無熔絲開關之下,此條線路提供電腦1台、音響1 台等,其效果良好,惟因配合本次感測器之20A規格,若需感測變電箱主電100A以上,則需 另外訂購特殊規格之感測器,如圖十六。

圖十五 感測器安裝於主機位置圖

資料來源:作者拍攝。

圖十六 電流感測器安裝於教室電箱位置圖

資料來源:作者拍攝。

3.煙霧偵測

本次煙霧偵測安裝於天花板處,用以感測是否有煙霧,在火災前會有短至幾分鐘是先 煙霧狀態,若能掌握先機,則可將災難以大化小,而其空氣感測器種類眾多,各自有獨立的 感測器,故在選用時須注意,如圖十七。

圖十七 煙霧感測器安裝於教室天花板位置圖

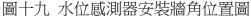
資料來源:作者拍攝。

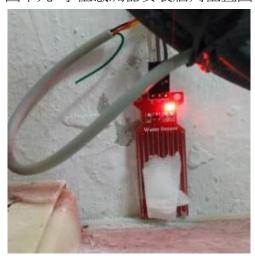
4.門禁感測

門禁感測採用簡單穩定性高的磁簧開關,加以掌握門禁情形,天下無不能破的鎖,就 算是使用門禁卡機亦然,故若增加感測器,則可提高其安全性。

5.溫溼度感測

溫濕度對於有高價設備的機房,尤其重要,其中若機房冷器故障時,溫度將會逐漸升 高,此階段並不會產生火災,但是會因為高溫,使得電子機板上的IC元件損壞,造成單位莫 大的損壞。故此等感測器就像是急救箱裡的溫度計一樣,是救命必備的好工具,如圖十八。





資料來源:作者拍攝。

6.水位感測

本次研究中,因規定淹水防範是採以沙包等相關物品,但此種情形較不容易發生,且通 常若淹水,相關保管人即會採取行動,往往能夠防範未然。而機房是設置在地下室的,為做到 更安全的防護,會設置淹水感測,故本次將淹水納入研究,以提高機房安全性,如圖十九。

資料來源:作者拍攝。

7.火焰感測

本次研究中,將感測器安裝於主機電源線旁,其感測距離約有1公尺,當有火時,其黑 色LED 感測頭,會接收到火的光譜,進而導通使電流傳送到內部IC,產生5V訊號給Arduino 裝置,如圖二十。

圖二十火焰感測器安裝於主機位置圖

資料來源:作者拍攝。

(三)Arduino裝置程式碼

本次所撰寫之程式碼共計251行(如圖二十一),因篇幅關係,截取部分供參考。且佔此 裝置95%記憶體,已無法再做更多應用,若需實裝,仍建議採大型模板或是拆成兩組以上板 子,以增加其穩定性。

圖二十一 Arduino UNO 部分程式碼圖

```
//網路参數股定
byte MAC[] = {OxFE, Ox18, Ox11, Ox00, Ox00, Ox03 };
       //無人看管機房環控系統程式碼,此系統使用C語言
        //nin 4、10腳位給W5100及SD卡,不能使用
                                                                         IPAddress IP{10,53,49,102};
IPAddress subnet(255,255,255,0);
IPAddress gateway(10,53,49,254);
       //使用W5100只能同時4個連線
     5 //下列為需啟用的程式碼套件及參數·別稱函式庫·須放在C:\| 27
                                                                          EthernetServer server(80);
     7 //網路函式掛載
                                                                         //功能腳位設定,執行一次,不重複執行
                                                                          void setup()
     8 #include <SPI.h>
                                      //網路承式庫
                                                                      31 {
32 //設定監看視窗傳輸速率
     9 #include <Ethernet.h>
                                    //網路卡函式庫
    10 #include <EthernetServer.h> //網路服務端函式庫
    12 //温澤展選式長村載
                                                                          //伺服器起始掛載網路卡卡號及IP地址
    13 #include "DHT.h"
                                   //dht溫溼度測量器函式庫
                                                                           Ethernet.begin(MAC, IP);
                                                                           server.begin();
dht.begin();
   14 #define DHTPIN 2
                                   //溫溼度
   15 #define DHTTYPE DHT22
                                   //DHT名稱
    16 DHT dht(DHTPIN, DHTTYPE); //dht名稱定義
                                                                           sensor.calibrate();
                                                                          //腳位設定
                                                                         //火焰
   18 //電流函式庫掛載
                                                                            pinMode(3, INPUT);
    19 #include "ACS712.h"
                                                                          //震動
                                                                         pinMode(5, INPUT);
//水位
    20 ACS712 sensor(ACS712 30A, A0);
                                                                    /網路敞用設定
EthernetClient client = server.available();
                                                                              client.print("");
   //網頁伺服器開設程式碼,等待用戶連線
                                                                               if(digitalRead(8) == 1)
     if (client)
                                                            //則
                                                                                 client.print("<font color=\"red\">大門開啟");
100 //等待用戶連線・週圏重複持續偵測
                                                            //無切 234
         while (client.connected())
                                                                                el se
                                                                               client.print("大門關閉");
                                                            //如果
          if(client.available())
                                                            //XIDN 238
//則 239
//傳給 240
             client.println("HTTP/1.1 200 OK");
                                                                               client.print("");
             client.println("Content-Type: text/html");
client.println("<!DOCTYPE html>");
client.println("<html>");
                                                            //傳給
108
109
110
111
112
113
114
115
                                                                               client.println("</body></html>");
             client.println("<head>"); //傳給
client.println("<meta charset=\"utf-8\"/>"); //傳給
client.println("<title>網路機樣溫度即門茶告警系統</title>"
                                                            //傳給
                                                                               break:
             client.println("</head>");
client.println("<body>");
                                                            // 傳給
                                                                            //切斷與用戶的連線
             client.println("<script>");
                                                                                client.stop();
             client.println("today = new Date();");
client.println("hour = today.getHours();");
```

資料來源:作者整理。

三、建置後成效研究分析

(一)用戶端從網頁取得Arduino感測資料

在用戶端電腦,使用IE瀏覽器,在位址上輸入Arduino的網頁地址,約2秒即獲得目前所 感測的狀態資料,如圖二十二。

@ http://10.53.49.102/ ○ ・ C 優 底路機構運運度門業告替系統× #HTML語法數學 植案(F) 編輯(E) 植視(V) 我的最愛(A) 工具(T) 説明(H) 無人機房環境管控

圖二十二 用戶端網頁連線至Arduino畫面圖

資料來源:作者整理。

無失火

機房失火|機房淹水|機房煙霧

無淹水

無煙霧

當感測裝置偵測到狀況時,則會啟動在旁的聲光告警喇叭,並傳送一個告警的網頁訊息 , 使監控人員能夠掌握, 如圖二十三。

(二)用戶端網頁自動取得Arduino 感測資料

機房温度

26.60C

但每次須手動連線至該裝置獲取資料,仍無法達到監控的目的,作者因時間及力求簡易 建置之關係,即從用戶端撰寫簡易的網頁自動更新模式,如圖二十四。

圖二十三 偵測狀況告警圖

設備電源

1.66A

機房温度

52.30%

機房大門

設備移動

設備無移動 大門關閉

資料來源:作者整理。

圖二十四 用戶端網頁程式碼圖

```
<!DOCTYPE html>
<html>
<head>
〈title〉無人機房環境監控系統</title〉
<meta http-equiv="refresh" content = "5">
</head>
<body>
<frameset border=2 cols=50%, 50% rows=50%, 50%>
<h2><font face="標楷體" color=#0000FF size="3">機房</font></h2>
<object ALIGN=left data="http://10.53.49.102/"> </object>
</body>
</html>
```

資料來源:作者整理。

(三)無人機房安全性感測成效分析

以上作者將研究數據分析整理成下列,如表七。

表七 感測數據分析表

感測器	震動傳感	火焰傳感	門禁開關	電流傳感	水位感測	溫度感測	煙霧傳感
感測方式	用手搖晃	打火機 測試	開門	開啟其他 設備	放入水中	開冷氣	使用薰香
感測時效	立即	立即	立即	2秒	立即	2秒	立即
長期使用 穩定度	追	追	讵	讵	讵	讵	低
數值精準度	精準	精準	精準	稍差	精準	稍差	極差
網頁處理時效	2-5秒						
聲光告警時效	立即						

資料來源:作者整理。

從上表得知,煙霧感測器易受環境空氣影響,在長期使用之後,自身溫度偏高,其所得 到之數值不穩定,故若須用於無人環境,仍須多加測試,方能達到效果;在溫溼度及電流部 分,則需要透過程式碼的修正,數值才會精準;其他感測器部分,穩定及精準度均良好,實 測30日後,其數值仍維持正常,可有效達成監控無人機房安全性之功用。惟此案因時間關係 ,尚未將運用Arduino製作網路告警裝置及建置網頁查詢歷史感測資料納入研究,故作者將持 續朝此方向精進。

(四)環境監控產品功能比較

現行業界有許多廠商,雖有專門承製各式各樣的環境監控系統,其功能眾多可符合機房 環控所需,惟其購置經費昂貴且無法模組化維護難度較高,作者採用自行購置之主機安裝的 樣式與業界相關產品實施比較,相關差異如表八。

表八 環境監控產品功能比較表

农人 农党血江库印列形记载农				
名稱	產品一	產品二		
物品	筆者使用的材料	8 埠環境監控伺服器		
廠牌	Arduino	有我數位科技 Block Box		
功能	網頁功能強弱依開發者	圖示化網頁功能		
感測能力	溫度、濕度、煙霧、漏水、門禁、 電力、火焰、震動	溫度、濕度、煙霧、漏水、風量、 動作、門禁、電力等		
後續維護	模組化	整台		
示警功能	網頁、聲音、燈號	E-mail、簡訊、聲音、電話、網頁		
圖片		Servicement EXP DC16		
價格	1,200 元整	80,000 元整		

資料來源:作者繪製。

經評估後,可得知「有我數位科技公司」之功能,較Arduino來的強,其網頁監控畫面如圖二十五。但在價格上,恐不是各單位可以支應的。因此,本研究也是考量到本軍各級部隊現況,若單位有較重要的機敏處所,則可考慮該產品之裝置,若有經費可再做整體規劃運用,並建議以「產品二」來做考量,可得知在未來物聯網發展的時代,「產品一」的優勢,將會越來越明顯。

圖二十五 環境監控操作介面圖

資料來源:〈BLACK BOX〉,《有我科技股份有限公司》,http://www.yowow.com.tw,(檢索日期:民國 109 年 5 月 6 日)。

結論

從研究中得知,此物聯網裝置Arduino,可有效提升無人機房安全,也可知,此產品將會持續的蓬勃發展,並可有效提升人們的各項安全與生活效能。在20年前,電腦的問世,使人們在資料的運用上更有智慧,那下個20年,將會是物聯網的時代,未來將會朝更智慧更便利的方向發展,如近期新聞報導的機器手臂寫作業等。故希望此研究能夠為我國軍開創出新方向,新思維,進而集思廣益的運用於各自所屬的環境或是裝備上。

此研究因時間關係,無法將網站建置更加完善,始能以更有效模式管控環境。若需做更有效之應用,應開發出當有狀況時,可將告警訊號透過網路回傳至所屬業管人員,以達其立即掌握先機之效。另也需架設出可查詢歷史資料,以利狀況鑑識時使用的網站。故作者將持續開發研究,使低成本但高效益的IOT裝置,能廣泛的運用於國軍各單位。

本軍未來運用建議

一、建立示範營區並推廣至各單位

有關物聯網Arduino裝置之應用效益,本文研究雖以所屬「教室環境」實施實驗及測試並 獲取相關驗證數據,惟無實際應用於「機敏處所」,建議可於本單位之無人「資訊機房」先

行建構各式之物聯網感測設備(溫、濕度、煙霧、火焰感測)並構聯至戰情室電腦,以達監控機房、降低風險係數之目的。如成效良好、可行,即可推廣至各單位、廣為建置相關之機敏處所。

二、推廣各單位小型軍品研發品項

本研究雖以物聯網感測器建置於無人機敏處所,來達到監控機房的運作狀況及降低各項的風險,惟物聯網應用不侷限於相關庫儲設施的監控,如同本文所示,東海大學用於校園環境之空氣監測、電力監控;全家便利商店用於冰櫃的溫、濕度控制,來達節省電費的目的,在在顯示其應用相當廣泛。而本軍教準部所屬各兵科訓部(中心),推行小型軍品研發制度已有一定的時間,如可將物聯網的相關應用技術納入各單位小型軍品研發中,由各訓部(中心)依所屬兵科任務屬性,研發所屬適宜之相關物聯網應用,將對各兵科的「戰、技術發展」有一定助益。如同外國文獻報導,美軍曾研發「微型感測裝置」灑落於戰場周邊,來達到蒐集敵軍活動的數據,此範例即可供相關單位來參考研發。

三、建立營區物聯網獨立專網環境

現行物聯網仍存在許多資安問題,為確保我國軍網路資料安全,建議比照民網模式與現行軍網分開,建置獨立網路環境,以避免有心人士變更感測狀態,來進行竊取或破壞等工事。另資料接收彙整部分,建議比照警監模式(或軍團指揮所模式),在戰情室、總值星官室、本教連,設置電腦節點,使各單位能隨時掌握無人機房(重要設施)狀況。

四、建議成立物聯網程式開發網站

撰寫此物聯網程式時,如遇狀況需除錯,資訊人員往往採詢問或上網查詢來解決,若人員調職,其心血結晶難以接續。作者於本中心儲士班(54員)程式開發課程中,研究發現無資訊背景人員,在提供程式碼及指導後,均能完成各式服務資訊系統的架設。故建議建置程式開發網站,將各程式碼公開於此網站,供各單位參考運用,以增進資訊人員能力,進而提升無人機房環境管控服務。

參考文獻

- 一、吳析廷譯,《Arduino連上網好好玩!》,(台北市:旗標出版股份有限公司,民國106年5月 31日)。
- 二、趙英傑,《超圖解Arduino互動設計入門》,(台北市:旗標出版股份有限公司,民國106年 8月)。
- 三、〈板子和模塊〉,《arduino官網》,https://store.arduino.cc/usa/arduino/boards- modules,arduino, (檢索日期:民國108年3月24日)。
- 四、〈開發板&擴充板〉,《樹梅派官網》, https://www.raspberrypi.com.tw/purchase/, (檢索日期:民國108年3月24日)。

- 五、〈產品概述〉,《聯發科官網》,https://labs.mediatek.com/zh-tw/platform/linkit- one ,(檢索日期:民國108年3月24日)。
- 六、〈創客主機板〉,《PCHOME商店街》,https://24h.pchome.com.tw/store/DSAJ2B,(檢索日期:民國108年3月24日)。
- 七、〈智慧型感測器傳感器分類〉,《臺灣智慧感測科技》,https://www.taiwan sensor.com.tw/product-category/sensors/,(檢索日期:民國108年3月24日)。
- 八、〈F-35之後美軍再將如虎添翼〉,《澳洲新聞網》, https://www.huaglad.com/ zh-tw/lovecn/20190324/345526.html, (檢索日期:民國108年3月24日)。
- 九、〈5G世代國防應用論壇軍民合作建構智慧國防〉、《青年日報》,https://www.ydn.com.tw/ NEWS/350491,(檢索日期:民國108年08月31日)。
- 十、〈步戰電子化 共軍推首款單兵戰救訓練智能腕錶〉,《中時電子報》,https://www.chinatimes. com/realtimenews/20181212000032-260417?chdtv,(檢索日期:民國107年12月12日)。
- 十一、〈美國防部列最優先事項 美軍邁向 5G 時代〉、《青年日報》,https://www.ydn.com.tw/ News/348481,(檢索日期:民國 108 年 8 月 16 日)。
- 十二、陳榮貴,〈物聯網發展與應用〉,《第27屆近代工程技術討論會》(台北),中華電信研究院,(檢索日期:民國107年10月23日)。
- 十三、〈全家推出概念店利用大數據物聯網改善流程強化顧客體驗〉,《T客邦》,https://www.techbang.com/posts/57619-family-digital-transformation-second-war-technology-concept-store-to-create-new-retail-innovation-stage,(檢索日期:2018年3月30日)。
- 十四、東海大學、〈智慧電力管控系統〉、《智慧校園服務網站》、http://icems.thu.edu.tw/pmap.php、(檢索日期:民國108年3月24日)。
- 十五、陳崑山、〈新世代節能環保智慧機房應用〉(高雄)、交通部公路總局高雄市區監理所、 (檢索日期:民國106年6月28日)。
- 十六、〈BLACK BOX〉,《有我科技股份有限公司》,http://www.yowow.com.tw,(檢索日期: 民國109年5月6日)。
- +: "NVIDIA, JETSON NANO," NVIDIA, https://www.nvidia.com/zh-tw/autonomous-machines/embedded-systems/jetson-nan, (2019/03/24).

作者簡介

楊梅波士官長,陸軍通信電子資訊學校專業軍官班98-1期、陸軍通信電子資訊訓練中心 通資電正規班197期。曾任所長、通信官、教官。現任陸軍通信電子資訊訓練中心網路作戰組 教官。