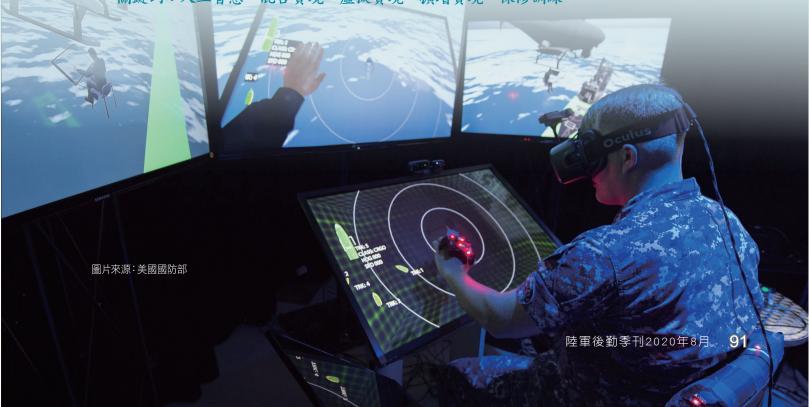
_朱凱麟—


建構AI VR AR及MR-

保修部隊後勤能量科技進軍肇新之路

提要 =

- 一、混合實境、虛擬實境及擴增實境領域之科學技術發展,已全面提升軍事作戰戰備整備,運用圖像視覺化、引導指示及人機互動等重要核心,將成為未來部隊訓練及提升 裝備維護度之關鍵要素。
- 二、保修部隊戰時前支搶修能量,即為戰力防護貫穿作戰全程及第一線戰力維持堅強後盾,建立高擬真、全互動、多領域、同時間、低預算之高效訓練系統,係為後勤能量 科技強軍之趨勢,發展綜合訓練環境及分布交互式模擬,將為最佳解決方案。
- 三、當今軍事作戰及後勤訓練,皆設法善用科技力量,以各種實體、虛擬訓練,強化戰備整備,並合理撙節國防預算,運用人工智慧及混合實境技術,達成主動預測及判斷指引之核心價值功能,必然成為次世代軍事武力及保修部隊訓練之關鍵成功因素。

關鍵詞:人工智慧、混合實境、虛擬實境、擴增實境、保修訓練

壹、前言

美陸軍職司各級部隊基地設施裝置管理之助理參謀長¹ 葛溫·賓漢中將(Lt. Gen. Gwen Bingham) 說道:「為未來設施裝置進行規劃,將促使設施裝置管理團隊重新思考美陸軍之文化。為求不斷進步,美陸軍必須善用商業化尖端科技,以洞悉未來設施裝置。到2035年,美陸軍之整體武力結構,將可透過智慧型裝置來運作,同時增進美陸軍建構與檢視作戰士兵及單位之戰備整備狀態。」²

人工智慧 (Artificial Intelligence, AI)自 1950年代中期正式問世開端以來,已歷經數次興衰,一方面被視為一項科技奇蹟技術,另一方面卻又被英國著名理論物理學家史蒂芬·霍金 (Stephen Hawking)、特斯拉創始人依隆·馬斯克 (Elon Musk),以及世界頂尖人工智慧專家等,警告人工智慧對人類生存之威脅,³是故,如何有效運用及善加管理此類科學技術,亦更形重要。

身處21世紀現今社會,AI人工智慧科技 及機器學習(Machine Learning, ML)應用 已充斥生活周遭環境,然而,有關此研究發展議題,一旦臻於具體且成熟之際,則其人工「智慧」之價值,即成為一種「電腦計算機程序」,例如:20至30年前之車輛導航系統,具備考量即時交通路況、道路車流量、道路事故或施工封閉路段等,能於真實世界地圖中,規劃出一條有效通往目的地之路線,乃係當時人工智慧之主要研究議題之一;然而時至今日,隨科技發展,導航科技僅被視為智慧型手機裝置上之一項應用程式軟體(Application, App),不再被稱為「人工智慧」,反而在某種程度上被淡忘。

近年來,人工智慧之應用領域,無論在 於實體智慧機器人,抑或軟體智慧程式之中, 均已有驚人之長足進步,舉凡如:口語應答 (Apple公司之Siri、IBM公司之Watson)以及 自動駕駛車輛等,皆達成重大技術突破,並 且充分發展出商業潛力,成為該產業科技領 域之重點投資項目,隨著產業迅速增長,每 年全球投資研究發展資金,已達200至500億 美元。值此同時,美陸軍在人工智慧之科學 與技術(S&T)投資成效,仍低於現行商用領

- 1 美陸軍基地設施管理助理參謀長 (Assistant Chief of Staff for Installation Management, ACSIM)負責管理美陸軍基地設施管理指揮部 (U.S. Army Installation Management Command, IM-COM) 運作, 其支援美陸軍全球各戰區基地設施之日常運作,提供各項設施及裝置使用需求,係隸屬於美陸軍裝備司令部 (U.S. Army Material Command, AMC) 之下轄指揮部。
- 2 Devon L. Suits, "Smart installations' with AI could be the Army's future, general says," U.S. Army, https://www.army.mil/article/206936/, retrieved 6 Apr. 2020.
- 3 〈人工智慧未來可能會摧毀人類的真正原因〉,BBC英倫網,http://www.bbc.com/ukchina/trad/amp/50236993,檢索日期:西元2020年3月25日。

域發展至少2至3個量級;即便如此,美陸軍 依然積極投入研究發展,其原因就在於為達 成軍事作戰使用需求所面臨之科技挑戰,相 較於商業領域發展項目,仍存在根本性之差 異,從本質來看,商業與軍事兩者間顯著不 同,惟人工智慧科技確實是未來作戰所需關 鍵能力之一。4

舉例而言,當今極其科技化、熱門之自 動駕駛車輛,其所應用之人工智慧及機器 學習,最初乃係由美國國防高級研究計畫局 (U.S. Defense Advanced Research Projects Agency) 推動發展, 而現行商用實務應用範 疇主要在於現代化城市之中,對象為規劃整 齊、具有規則之街道,以利機器學習、判斷及 最佳化,但真正美陸軍作戰需求所處環境,卻 是戰時非結構化、非穩定性、混亂、充滿瓦礫 或障礙物之城鎮戰場景;於是,美軍專責部 門及進階研究發展計畫亦應運而生。

美陸軍研究實驗室(U.S. Army Research Laboratory, ARL)⁵,正在積極推展「微 型自主系統技術及協同技術聯盟(Micro Autonomous Systems and Technology, Collaborative Technology Alliance, MAST CTA)」,研發無人飛行器之協同技術(如圖 一);即便是地面車輛間之協同運作已極具挑 戰性,且科技成熟度僅屬於基礎研究水準; 而美陸軍之長期發展重點,已經在於達成大 量、非近似型多領域環境之實體裝置協同運 作,諸如:整合多量大型、小型之空中無人飛 行器與地面機器人,以及散布於戰場環境之 人類士兵群體,共同在綜合場域中進行軍事 作戰行動(如圖二)。6

國軍教戰總則第17條揭示:「研究發展, 乃軍隊進步之動力。近代國防科技發展快速, 戰爭型態與戰法亦隨之不斷變化,國軍應依 任務、敵情與未來趨勢,對建軍備戰與用兵 藝術,發揮集體智慧,持續研究發展,以期日 新又新、精益求精,建立現代化國軍。」第14 條:「軍事訓練尤須針對敵情,模擬實戰,以 實人、實物、實時、實地、實情、實作,採對抗 方式勤訓苦練,而達超敵勝敵之目標。」美軍 軍事訓練亦秉持理念:「Train as you fight, fight as you train」結合作戰場景與想定之軍 事教育訓練,始能鍛鍊出可用、可恃之兵力, 而能善加運用當今科技發展最前沿之人工智 慧、虛擬實境、擴增實境及混合實境技術,在

- Alexander Kott, "The artificial becomes real," U.S. Army, https://www.army.mil/article/199133/, retrieved 6 Apr. 2020.
- 成立於1992年,專責美陸軍重要專案研究推展,所屬專業部門包含美陸軍研究辦公室、計算與信息科學 技術局、人類研究與工程技術局、感知器與電子設備技術局、生存能力/致命性分析技術局、車輛技術 局以及武器與材料研究技術局等1個辦公室及6個技術局。自1996年開始,即與工業及學術領域合作夥 伴簽訂創新合作協議,組建「聯合實驗室」,針對美陸軍重要發展領域進行廣泛研究。
- 同註4。

軍事演習訓場有限、科技武器裝備昂貴、操演 耗用資源龐大等限制下,仍可實現高擬真、全 互動、多領域、同時間、低預算之高效訓練、 強化作戰能力以及後勤支援能量。

貳、虛擬實境(VR)及擴增實境 (AR)於軍事後勤之應用

起始於70年代之「沙盤(Sandbox)」, 80年代即提出結合標準軍用地圖與指揮所 作戰態勢圖之「協同戰術訓練模擬系統」,其 後持續發展為「美陸軍戰鬥訓練模擬系統」, 迄進入90年代之後,美陸軍已正式成立「模 擬訓練技術中心(U.S. Army Simulation and Training Technology Center, STTC)」。7 學 者傅志豪8曾探討美陸軍虛擬實境技術之發 展成果,並提出其導入國軍軍事教育訓練之 研究,包含諸如應用於單兵訓練之「T91戰鬥 步槍射擊訓練模擬系統」,以及多人操作主戰 武器裝備之「戰車動感訓練模擬器」等,均具 備了「模組化」、「模擬真實體驗」、「撙節訓 練經費」等優勢。

圖一 美陸軍展示無人飛行器協同編隊飛行 (資料來源:同註4)

- 負責美國防部及國土安全部應用研究,發展擬真技術,建立研究基礎知識及環境系統人員,起始於 1983年美國防部高級研究計畫署(DARPA),研究科技工作網絡模擬器及半自動化模擬,建構分布交 互式擬真戰場(DIS)。
- 8 傅志豪,〈運用美陸軍「虛擬實境」技術導入國軍軍事教育訓練之研究〉《聯合後勤季刊》(桃園),第 23期,西元2010年11月,頁127-140。

圖二美陸軍運用無人飛行器、地面機器人及人類士兵群體,共同進行協同作戰行動 (資料來源:同註4)

學者簡民儒。曾探討現行虛擬實境技術 之4種主要類型,包含:桌面式(Desktop)、沉 浸式(Immersive)、分布式(Distributed)以及 增強式(Enhanced)虛擬實境,就其概念、技 術層次、模擬效果及人機互動性等項目,進行 優、缺點分析,提出「強軍必須興訓,興訓貴 在創新,改革重在突破」,以強化虛擬實境訓 練成效,及加強複合型軍事人才培養等,內容 側重於國軍戰鬥部隊戰備訓練(諸如:T91戰 鬥步槍射擊訓練模擬系統、戰場心理抗壓訓 練模擬系統等),俾善用「VR產業強化戰備 訓練」。

兵馬未動,糧草先行,論及戰備整備之 成熟度與時效性,則後勤能量之整備,即是 作戰成功之關鍵要素之一,目標在達成平 時持衡整備、戰時最大發揮。學者林俊安10

簡民儒,〈VR產業強化戰備訓練之研究〉《陸軍後勤季刊》(桃園),106年第1期,西元2017年2月,頁 99-118 °

¹⁰ Arnis Cirulis, Eils Ginters著,林俊安譯,〈擴增實境於後勤之應用〉《陸軍後勤季刊》(桃園),108年 第3期,西元2019年8月,頁7-19。

曾就拉脫維亞(Latvia) 維澤梅應用科技大學 社會科技系統工程學院 (Societechnical System Engineering Institute of the Vidzeme University of Applied Sciences) 教授,於電腦科學期刊 (Procedia Computer Science)發表之論文,譯 述「擴增實境於後勤之 應用」,重點在於運用現

代科技加強庫儲作業監控程序,導入擴增實境技術,藉由「視覺化(Visualizations)」及「三維立體模型投影(3-Dimension Model Projections)」提供最佳化解決方案,諸如:提升「庫儲揀料程序」,管控「揀料分類」或「取件下架」誤失率,運用最佳化路徑選擇演算法,結合頭戴式顯示器(Head Mount Display, HMD)及可攜式平板電腦,以無線射頻(Radio Frequency IDentification, RFID)技術及全球定位系統(Global Positioning System, GPS),計算庫管作業人員及目標料件之相對空間位置,引導最佳作業路徑,強化作業效能及效率(如圖三)。

虛擬實境技術早已逐步改變軍事作戰 及後勤支援之訓練模式,具體提升訓練成 效,運用於高科技武器研發之列。美陸軍奧 克拉荷馬州希爾堡(Fort Sill, Oklahoma) 士兵運用虛擬實境、擴增實境以及混合實 境技術,進行評估新研發之遠程極音速 武器(Long Range Hypersonic Weapon, LRHW),並且能以任意距離與觀察角度,互 動式操控此項能夠按比例縮放之武器立體 原型,參與整體工程設計之前端作業,提供 更符合使用者操作需求之改進建議(如圖 四、五)。¹²此為美陸軍現行「人類沉浸式協 同實驗室(Collaborative Human Immersive

Brandon Vigliarolo, "AR technology is a rising star in business and consumer tech. Here's what businesses need to know to successfully use augmented reality," TechRepublic, https://www.techrepublic.com/topic/innovation/, retrieved 6 Apr. 2020.

¹² Nancy Jones-Bonbrest, "Virtual Reality helps Soldiers shape Army hypersonic weapon prototype," U.S. Army, https://www.army.mil/article/232510/, 12 Feb. 2020.

圖四 美軍遠程極音速武器原型之一: Boeing X-51¹³

圖五 運用虛擬實境技術操控武器系統原型以提供工程設計建議 (資料來源:同註12)

Laboratory, CHIL)」提升新式 武器設計作法之一,由於極音 速武器可謂前所未有之複雜 技術,是故能在整體後勤概 念設計之前端即融入使用者 之經驗,必能利用先期之實務 回饋,協助改善潛存之設計缺 陷,達成提升作戰能力之關鍵 技術,以及其後之後勤支援可 靠度與維護度。

就武器系統壽命週期而 論,「部署使用與維持」係武

13 James Bosbotinis, "Hypersonic Missiles: What are they and can they be stopped?" Defense iQ, https:// www.defenceiq.com/defence-technology/case-studies/hypersonic-missiles-what-are-they-and-canthey-be-stopped, retrieved 6 Apr. 2020.


器裝備發揮其作戰效益之重要階段,依國軍 主要武器裝備成本資料庫建置模型及國軍武 器裝備成本分析架構,以使用壽期15年之武 器系統經驗常數統計,後勤維持成本與獲得 成本之比例為60%:40%,14、15、16在國防軍令系 統之用兵體系中,如何運用當今科學技術提 升武器系統作戰效益,同時合理降低部署操 作、保修人員訓練及裝備維修成本,則為增 進武器裝備效益/成本比率(B/C Ratio), 撙 節有限國防預算、發揮裝備效能、精進人員 訓練效益之關鍵核心。

參、科技強軍實務應用

近期陸軍保修部隊已積極投入虛擬實 境教學訓練系統,尤以陸軍後勤訓練中心自 2019年起,建置「3.5噸載重車保修訓練模擬 器」,運用科技技術,輔助學員提升學習成 果,該模擬器運算除戰術車輛基本車體架 構及總成(次總成)分解結構之外,同時配 備重要系統之故障箱模組,以電腦化模擬車 輛故障狀況,訓練學員裝備損壞情形之判斷 及故障排除之學能。此系統主要運用「桌面 式」虛擬實境系統,以大型顯示螢幕為人機 主要介面,建立三維立體影像及互動模式, 係國軍運用虛擬實境進行保修部隊技能訓 練之創新開端。未來可持續導入進階訓練層 級應用技術,選用擴增實境或人工智慧演算 等,結合實裝與狀態感知器,強化電腦輔助 訓練實效,諸如:微軟(Microsoft)及富豪汽 車(Volvo)共同開發擴增實境車輛底盤展示 系統,可輔助使用者更直覺性地了解車輛整 體結構,17而此僅係虛擬實境應用之初級開端 (如圖六)。

為達成提升使用者運用視覺、聽覺及其 他感官之共同沉浸體驗,投入高擬真模擬訓 練場景,隔離使用者所處真實世界之影響, 提升電腦輔助訓練之層級與應用成效,本 文就保修部隊後勤能量肇新提升策略為目 標,以運用沉浸式、分布式虛擬實境、擴增 實境、混合實境以及導入人工智慧整合應用 等關鍵領域,研擬4項建構科技強軍與智能 訓練之執行藍圖,並研提建議發展方向,同 時援引美陸軍因應最新「現代化戰略(U.S. Army Modernization Strategy, AMS)」所發 展之應用實例為參考,進一步強化我陸軍保 修部隊遂行未來防衛作戰之整體後勤支援 能量。

- 14 國軍武器裝備成本分析要綱(國防部),西元2018年12月。
- 15 國軍主要武器裝備成本資料庫建置教則(國防部),西元2019年12月。
- 李順德,《整體後勤支援原理與應用》(臺北:華泰文化,西元1997年1月)。
- 17 Michael E. Porter, James E. Heppelmann著,劉純佑譯,〈擴增實境必備五大策略〉《哈佛商業評論》 (臺北),第135期,西元2017年11月號,頁72-87。

圖六 由微軟 (Microsoft) 及富豪汽車 (Volvo) 共同開發擴增實境展示系統, 運用科技提供汽車引擎及 底盤結構X光立體影像(資料來源:同註17)

一、保修技能模擬訓練

(一) 沉浸式虛擬實境

軍事後勤作業經緯萬端,諸多任務訓練 實則潛存風險危害因子,運用虛擬實境技術 導入專業後勤訓練領域提升應用深度及廣 度,不僅可以達成有限國防預算下之最大化 訓練成效,同時得以管控訓練危安風險,降 低可能危害。相較於基礎桌面式虛擬實境, 個人模擬訓練採用「沉浸式 (Immersive)」虚 擬實境系統,可營造出使用者身處電腦運算 所模擬之360度環景、具有3D多維度景深感 受之環境狀態。沉浸式虛擬實境之「以假擬 真」完成度,令使用者不僅以視覺觀看,更能 附加聽覺渲染情境,輔以觸覺之操控,高階 之五感體驗更可具有天候晴雨、氣溫冷熱、 煙硝或廢氣之嗅覺、Z軸縱向空間之振動體 感等,可提升個人沉浸投入「虛境」以感受模 擬「實境」之程度,配合訓練課目操作學習, 將進一步有效強化保修訓練成效。

當陸軍保修人員執行重要主戰裝備各級 保修作業,諸如:地面部隊之戰車、甲車、自 走砲車等履車裝備,抑或航空部隊各型直升 機之裝備上維修支援作業項目時,常處於高 分貝噪音或高危險(墜落、夾傷、捲入等)之 環境,若妥適運用沉浸式虛 擬實境訓練系統,不僅可達 到高度擬真程度, 合理控制 環境條件因素,並可顯示影 音警告提示,潛移默化養成 良好作業習性,兼顧模擬實 境訓練之同時,亦可避免肇 因於長期執行駐地訓練、基 地訓練,或作業失慎所可能 造成之永久性職業傷害。

以美軍近期新式模擬 訓練為例:美陸軍駐防德國 之第10特戰群(U.S. Army 10th Special Forces Group), 已正式開始使用最新虛擬實 境技術,進行M3E1無後座力 砲之「實彈射擊」模擬訓練 (如圖七),18、19、20 囿於科學 研究驗證,發射肩射式武器 所產生之衝擊波,極易造成 射手「頭部外傷」,而運用沉

圖七 運用VR虛擬實境進行M3E1無後座力砲「實彈射擊」模擬訓練 (資料來源:同註19、20)

- 18 屬84公釐口徑,單兵攜帶、可重複使用多用途無後座力砲,依射擊彈種不同,有效射程可達1,000公尺, 最新M3E1型於2018年部署作戰。使用者風險:發射時產生超高壓尾焰及衝擊波,可能對砲後人員造 成炸傷、燒傷等,筒後危險距離50至75公尺,依訓練規定,基於人員安全考量,砲手每日僅可擊發6發 砲彈。
- 19 Dylan Malyasov, "U.S. Soldiers uses virtual reality for training on weapons system to bust enemy bunkers," DEFENSE BLOG, https://defence-blog.com/news/army/u-s-soldiers-uses-virtual-realityfor-training-on-weapons-system-to-bust-enemy-bunkers.html, retrieved 6 Apr. 2020.
- 20 Benjamin Tuck, "Weapons practice," https://www.dvidshub.net/image/868150/weapons-practice#. USAMUuiG7Ag#ixzz2L6bxidRb, retrieved 6 Apr. 2020.

浸式虛擬實境訓練系統,則可減少士兵操作 實彈射擊訓練時之衝擊波暴露次數,在達成 訓練實效之際,並可保護士兵,免於承受不必 要之潛存危害。

世界各國軍事人才培育,向來均係國防 重要課題,在國防預算緊縮狀況下,推展「精 兵政策」是一良方,而這亦使得國軍募兵制 招募推展及應有成效,必須齊頭並進,不僅 招募人力,更應著眼於專業人才及軍事專長 之培訓工作,尤以我陸軍保修部隊職司陸、 海、空三軍通用裝備及陸軍專用裝備妥善維 護,建構「一專多能」之人才培育體系,實屬 刻不容緩且勢在必行。

對於美國空軍而言,「專業飛行員人力」 係持續關注之課題,此非新興問題,但卻係 美空軍極度重視之議題,在近期美空軍協 會、太空、航空及網路會議中,各領域領導者 研議解決方案,目標以滿足未來作戰需求, 維持世界舞臺競爭力,並贏得最終勝利,而 重點對策乃係「建立培訓飛行員戰鬥能力, 持續且有效之訓練系統」。相較2016年前,美 空軍飛機數量減少了36%,現有飛行員人力 減少了37%,然而總體任務卻增加了15%,是 故,為了使飛行員能夠迅速通過培訓且又能 提高其應有熟練程度,美空軍飛行員將需要 更多完善的培訓機會或自我訓練管道,建置 使飛行員可從家中或便於使用之虛擬實境裝 置,以進行多元化訓練,已成為美空軍所推行 重要解決方案之一(如圖八)。21

(二)擴增實境

擴增實境之核心價值,係源於人類大腦 處理資訊之主要方式--視覺,負責接收人類 所觸及之80%至90%資訊量,而吸收及處理資 訊之能力,受限於人類之心智能力,即為「認 知負荷(Cognitive Load)」,大腦每承接一項 心智工作,即相對縮減同時處理其他工作或 信息之能力。依據認知負荷理論,運用「視 覺圖式」形式處理信息,可減少工作記憶負 荷,為其它活動釋放空間,是故,熟悉之工作 得以準確且順暢地執行,而未臻熟悉之任務 學習,亦可因獲得大程度之工作記憶運用空 間,進而達到高效率作業。22將現實世界接收 之所有資訊,以一張圖像疊加於視野中,即達 成縮減認知距離或認知負荷,以圖像使用者 介面取代紙本或螢幕之平面資訊(須再由大 腦轉換成認知),大幅提升對於真實世界之

^{21 &}quot;3 Ways to Shorten the Training Cycle and Boost the Proficiency of Pilot Training," Modern Integrated Warfare, https://www.modernintegratedwarfare.com/military-training/trainingeffectiveness/3-ways-to-shorten-the-training-cycle-and-boost-the-proficiency-of-pilot-training/, retrieved 6 Apr. 2020. 該系統操作環境使用CORETM模擬器體系結構,與實機飛行操作代碼同步,有 效提升培訓效能及效率;由於飛行員屬高專人力,採用先期系統模擬訓練,將有助於找到符合訓員所 需之訓練課目及提升適應性學習成效,而非在使訓員去學習、適應飛行模擬系統。

²² 陳密桃,〈認知負荷理論及其對教學的啟示〉《教育學刊》(高雄),第21期,西元2003年12月,頁29-51。

圖八 美空軍運用混合實境及虛擬實境技術進行飛行員培訓

(資料來源:同註21)

狀況覺知程度,以及將所獲悉資訊付諸應用 之能力與裕度。

車輛駕駛「抬頭顯示器(Heads-Up Display, HUD)」可謂最廣為人知、早期發展 成為獨立使用之擴增實境, 迄近年以來, 擴 增實境持續整合其他技術,始得以真正廣泛 應用並發揮其潛在科技能量。抬頭顯示器裝 置之應用,使多項作業或任務執行所需之數 位化資訊,同步整合顯示於操作者舉目可及 之視線範圍以內,無須轉頭或另行伸手取用 其他裝置,即可獲得各種輔助資訊,有效提 升作業安全及效率。

國軍依據技術書刊或作業指導手冊, 執行重要武器裝備各級保修作業,係保修技

術人員之標準作業程序,遵照書刊詳載之程 序、步驟及要領,進行裝備檢修、檢測或零附 件更換,即是修護品質之最佳保證。惟於維 修作業之繁複過程中,如必須持續使作業視 線在操作裝備與技術資料兩者之間反覆查找 對照,必然徒增人員認知負荷,則肇生作業工 時延長、工序對照錯誤甚或作業疲勞所致人 為疏失等,均屬潛存風險因素。

根據波音公司(Boeing)研究統計顯示, 擴增實境訓練對於複雜之飛機製程生產力 以及組裝品質,均有重大影響。舉例而言,進 行機翼組裝之50道必要步驟,其中約需使用 30項零組件,而運用擴增實境引導新進技術 人員(具經驗背景),其完成該作業所需之時

間,相較於使用傳統平面圖或技術文件者,減 少了35%;而對於幾乎無任何經驗背景之實 習生,擁有擴增實境技術之引導,首次即能正 確完成該項作業之人數,則增加近90%(如 圖九)。於實務上,利用穿戴式擴增實境裝置 之核心功能--視覺化、引導指示以及互動性 一以疊加於實體環境之模式,已經常被應用 於提供有關生產組裝、產品檢修或相關作業 指引,擴增實境技術正以前所未有之速度,取 代傳統技術指導手冊或任何形式之訓練。23

在現實世界中,將數位資訊及影像疊

加於其上,即是擴增實境「以虛入真」之概 念;利用電腦運算建構之數位環境,取代真 實世界,則係虛擬實境「以假擬真」之實踐。 使用「虛擬」之目的,主要在於創造「不可 得」抑或「不易得」之目標環境,故以電腦演 算模擬之,而應用於軍事教育訓練之訓練場 地、操作裝備受限,或者所需訓練環境極度 高危險(諸如:恐怖攻擊、爆炸、高溫、海上 石油鑽探等),則可採行全息影像(全像攝 影) 創造提供多人、異地、同時之訓練環境。 舉例而言:美國土安全部(U.S. Department

圖九 發動機技術人員使用微軟 (Microsoft) 公司Hololens頭戴式AR耳機麥克風進行發動機維修作業, 並與高階技術指導員互動24

23 同註17。

24 Brian Buntz, "Hannover Messe Provides Preview of Industrial AR Promise," IOT World Today, https://www.iotworldtoday.com/2019/04/04/hannover-messe-provides-preview-of-industrial-arspromise/, retrieved 6 Apr. 2020.

of Homeland Security)運用虛擬實境技術,建構恐怖攻擊應變訓練系統²⁵及洪水災害模擬²⁶等,以建構災難性危害快速應變能力;另外,包含英國石油公司(BP Plc)、埃克森美孚(Exxon Mobil)及英國皇家殼牌(Royal Dutch Shell)等大型石油公司在內,均已建置可考量地形、洋流、溫度、壓力等虛擬實境訓練系統,以協助技術人員及員工,進行海外石油鑽探及設施維護等重要工作,²⁷妥適移轉實地訓練之高成本及高危害風險。

我陸軍向美方採購新式主力戰車專案, 目前已全力推展進行中,依國軍防衛作戰構 想及用兵理念,新式主力戰車之多項系統及 總成(次總成)修護能量,未來必將納入國防 工業合作資料庫增訂,以建置砲塔、全車動力 系統、戰車熱像暨射控系統等工合技術引進 移轉,籌建自主修能;而依裝備維修深度及保 修權責劃分,接裝能籌之相關單位,包含:陸 軍後勤訓練中心、陸軍兵工整備發展中心、陸 軍飛彈光電基地勤務廠、陸軍裝甲兵訓練指 揮部及國家中山科學研究院、軍備局等,其中 多項重要總成或系統設備,亟需種子能量、 後續維持教育訓練制度以及基地基礎設施設備建立,包含:戰車動力核心AGT-1500燃氣渦輪引擎、X-1100液壓自動變速箱、單頻地空無線電系統(Single Channel Ground and Airborne Radio System, SINCGARS)、先進防衛全球定位接收器(Defense Advanced Global Positioning System Receiver, DAGR)以及選擇可用性反欺敵模組(Selective-Availability Anti-Spoofing Module, SAASM)等,均屬其先進關鍵能力。

運用擴增實境技術,建構保修技術人員訓練系統(如圖十),係未來高科技武器裝備之後勤能量發展趨勢,運用圖像視覺化、引導指示以及人機互動性等重要核心,將成為快速能量籌建以及提升裝備維護度之關鍵要素。新式主力戰車之重要總成及裝置系統,在我陸軍現有單位、野戰、基地之三段五級保修體制,及各基地廠(中心)階層之保修經驗中,仍屬新興技術需求;是故,妥善規劃接裝能籌,建置虛擬實境、擴增實境保修訓練模擬系統,必可有效增進新式武器裝備完整後勤維修能量。

- 25 Christopher Swift, Joseph M. Rosen, Gordon Boezer, Jaron Lanier, Joseph V. Henderson, Alan Liu et al., "Homeland security and virtual reality: building a Strategic Adaptive Response System (STARS)," Studies in Health Technology and Informatics, Vol. 111, p. 549-555.
- 26 Peter Herrick, "IMMERSED: A VR Experience About Flood & Resilience," FEMA, https://www.fema.gov/immersed, retrieved 6 Apr. 2020.
- 27 "How leading oil and gas companies are adopting virtual reality," Offshore Technology, https://www.offshore-technology.com/comment/oil-gas-virtual-reality/, retrieved 6 Apr. 2020.

當今工業技術已相當成熟,於接裝能籌 初期階段,首先導入虛擬實境及擴增實境技 術,以提升學員個人保修技術能力之教育訓 練為優先目標,配合3D立體掃描之應用,建 構重要零組件及系統結構之精密立體圖像資 料庫,同時由於新式武器裝備武獲技術文件 均以發展「互動式電子技術手冊 (Interactive Electronic Technical Manuel, IETM)」為優 先,且更符合使用實需,結合上述軟、硬體, 未來以擴增實境穿戴裝置視覺化圖像之顯 示方式,整合互動式電子技術手冊,則我陸 軍保修技術人員於執行新式武器裝備檢驗 或修護時,可即時以影像比對方式,查詢標 準化技術手冊,指引裝備維修步序,將得以 大幅增進作業效能及效率; 誠如前揭波音 公司統計成果,擴增實境圖像化技術資料指

圖十 運用AR擴增實境技術輔助飛機發動機(上)及車輛(下)檢修作業指引²⁸

28 Sean Gallagher, "Augmented reality gets to work and gets past the 'Glassholes'," Ars Technica, https:// arstechnica.com/information-technology/2015/03/augmented-reality-gets-to-work-and-gets-past-theglassholes/, retrieved 6 Apr. 2020.

引,可較使用傳統紙本技術文件者,節省35% 作業時間,而對於生手操作人員之學習成果, 更可協助提升首次完成正確率達近90%以上 之成效。

現代化高科技武器裝備,因係以多系統 之整合建構,故常須多人、以小組或團隊方式 進行全裝備整體保修作業,並且藉此提升戰 場敵火下相互掩護以及保修作業協同合作之 目的及實效,是故在建構第一階段認證合格 之個人保修訓練後,接續第二階段即應發展 多人型態之團體組合訓練,此一階段除延續 前述個人虛擬實境及擴增實境技術之外,重 點在於進一步提升對於相同場域團隊成員間 之互動功能,使每一項訓練課目之參訓學員, 可與同組別之成員共同進行「相同裝備、相 同系統(專長)」或「相同裝備、不同系統(專 長)」之修護訓練流程,培養團隊合作默契, 增進組合訓練成效。

二、戰場搶修訓練

我國國防依「防衛固守,重層嚇阻」軍事 戰略指導,發展「戰力防護、濱海決勝、灘岸 殲敵」整體防衛構想,並以戰力防護貫穿作 戰全程,「戰場搶修」係支持防衛作戰戰力持 續發揚之關鍵且必要因素。國防部民國108 年國防報告書29國防戰力戰訓整備揭示,「國 軍部隊訓練結合防衛作戰場景,以實戰化為 目標,秉持『作戰任務在哪裡,部隊就在哪裡

訓練,貫徹實戰化訓練』作法,以擬真戰場 景況,對抗訓練方式施訓,落實聯合戰力整 備。」就保修部隊戰時前進支援任務,支援防 衛作戰戰場搶修作業,而前進支援搶修作業 組之能量,即為第一線戰力維持之後盾,故於 平時建構戰場搶修能量,係為訓練要點。

戰場搶修作業性質係屬於多人組合訓 練,戰時搶修作業尚須考量所處戰場環境條 件,是否適宜執行就地搶修,抑或應將損壞 武器裝備救濟離開現地,移至較無立即性敵 火顧慮之處所或保修收集站,再予進行裝備 搶修程序;是故,進行完整之戰場搶修訓練, 除保修人員之個人專業專長技能之外,搶修 組團隊合作默契與成果亦為訓練要點,另為 落實「平戰合一」之訓練指導,將戰場景況 (敵火交織、場地限制、零附件、工具或救濟 車不足等)納入整體訓練想定,始能具體提 升訓練實效。然而,於現實部隊駐地訓練或 年度重大演習中,仍無法實現此一狀況演練 場景,且實戰狀況下之訓練深度,亦限於指定 損壞狀況之搶修作為,對於戰時裝備臨機損 壞狀況判斷、戰場安全評估、裝備損壞評估 及應急救濟措施等訓練要項,均尚待強化及 提升。

為因應此等戰場搶修訓練擬真條件設 定,以及多人(多群體)多場域組合訓練需求 (如圖十一、十二),若能導入沉浸式「綜合

²⁹ 中華民國108國防報告書編纂委員會,《中華民國108年國防報告書》(臺北:國防部,民國108年9月),頁 46-84 °

訓練環境(Synthetic Training Environment, STE)」,並配合 「分布式交互模擬 (Distributed Interactive Simulation, DIS) \(\) 技術,即可找到最佳訓練解決 方案。

學者約翰·尤哈斯(John S. Yuhas) 曾強調分布式交互模 擬系統係一項在虛擬戰場情境 中,串聯時間及空間因素之系 統運作環境,其使全球各地之 作戰人員可與彼此互動,其中更 包含了由電腦演算法所建構出 來之虛擬戰士,32而回憶2014年 電影《金牌特務》之長桌會議場 景:在現實中位於不同地區之 團隊成員,可透過組織系統構 聯,結合虛擬與真實環境之「混 合實境(Mixed Reality, MR)」 技術—即將虛擬物體置放進真 實環境,並可進行即時互動一 使會議成員彼此間以虛擬型 態聚集,同時得以交互溝通及

美陸軍運用綜合訓練環境(STE)及分布式交互模擬 (DIS) 進行組合訓練³⁰

圖十二 美陸軍國民警衛隊運用虛擬實境進行Golden Covote三 階段虛擬車隊作戰組合訓練31

- 30 Brandon Shopp, "A new Army network could also help training," https://www.c4isrnet.com/ opinion/2019/08/28/a-new-army-network-could-also-help-training/, retrieved 6 Apr. 2020.
- 31 Virtual Reality, https://www.defense.gov/observe/photo-gallery/igphoto/2001934207/, U.S. DoD, retrieved 6 Apr. 2020. 美陸軍國民警衛隊運用虛擬實境進行Golden Coyote三階段虛擬車隊作戰組合 訓練,透過該系統使指揮官可專注於任務導向之需求、作戰任務以及戰鬥演練。
- 32 John S. Yuhas, "Distributed Interactive Simulation," Army RD & A Bulletin, May-June, 1993, p. 4-6.

互動,而對於混合實境中之虛擬物件操作, 則又可透過個人配戴之沉浸式裝置(如前揭 HoloLens),來獲得虛擬實境之互動回應(如 圖十三);將此一場景轉換運用於軍事後勤訓 練領域,即能創建一套符合國軍保修部隊所 需、結合各種戰場想定狀況,以最少化參訓 裝備、最大化參訓人員(次),並且得以進行 行動後分析(After Action Review, AAR),評 估訓練成效之戰場搶修模擬訓練系統,整體 建構概念說明如表一。

就本質而言,「人工智慧」與「擴增實 境」係兩種截然不同之技術,擴增實境係透 過顯示器呈現電腦虛擬數位資訊以及現實環 境資訊之相互結合,而人工智慧技術主要則 係透過深度機器學習,使電腦軟體程式及硬 體運作達到最佳化;於擴增實境核心技術之 中,進行環境認知、交互理解以及視覺定位 追蹤等過程,均與人工智慧、深度機器學習 存在緊密關聯,故兩者在技術實質上可相互 整合,意即人工智慧及擴增實境之結合,將

圖十三 美陸軍運用分布式交互模擬 (DIS) 技術,與不同地點之成員進行戰術決策33

33 "Holographic Tactical Sandbox: Augmented Reality for Mission Preparation," SSVAR, https:// ssvar.ch/xr-use-cases-video-directory/holographic-tactical-sandbox-augmented-reality-for-missionpreparation/, retrieved 6 Apr. 2020.

=	10 1/4++4K T	매나 다 나스.	/かー川 4本 7左	ㅁ++샤·爽ㅁ
<u>तर</u> ─	1末11念4寸6270	更添得,	11多言川 紀米 加美	用技術發展

應用技術	需求條件		↓## #27=11/0± rb= FD ¬↓ 44 × 77 ↓↓ ↑ > / 再 / ±	
	場景想定	人機互動	模擬訓練應用功能及核心價值	
虚擬實境擴增實境	廠修*環境個人訓練教官參與指導學員訓練	以系統建構可體感操控之零附件及工具	●個人保修技能訓練●管控生手及半熟手人員操作危安風險	
虚擬實境擴增實境	廠修環境組合訓練教官參與指導組員訓練	以系統建構可體感操控之零附件及工具相同場域成員間互動操作性	單一或特定指定狀況之搶修組前支訓練管控人員操作危安風險可執行行動後分析檢討	
混合實境人工智慧	● 戰場狀況**(野戰訓場、城鎮戰、空地整體作戰等)想定之組合訓練 ● 教官參與指導組員訓練	以系統建構可體感操控之零附件及工具不同場域成員間互動操作性戰場環境因素模擬戰損狀況條件設定	 綜合電腦模擬狀況之搶修組前支訓練 管控人員操作危安風險 避免大型主戰裝備或救濟車輛交通事故機率 簡化勤前整備工作 相同/不同條件設定下可重複執行模擬訓練 撙節龐大資源成本 可執行行動後分析檢討 	

註:

- * 廠修係指於野戰段或基地段單位原有廠房設施環境下,所執行之各類修護作業,強調相對於前進支援搶修組進 行野戰(潛存基礎設施不足)修護任務之背景條件狀態。
- ** 戰場狀況係指非於原有廠房設施環境下執行修護作業,且依訓練需求可由系統模擬野戰、城鎮、空地整體作戰 等各類場景,以及附加氣候環境條件狀態。

資料來源:本研究整理

能創造不受現實條件限制,且又強大多元之 可能性,此項新概念即為「智慧AR」,將扮演 下一波擴增實境之關鍵性角色。34

參照美陸軍準則FM 9-43-2第6章「戰 場損害評估與修理程序(Battle Damage Assessment and Repair Procedure) 35」, 装 備損壞之搶修或救濟作業,應始於損壞評估 (Damage Assessment)程序,並非一味地投 入進行繁複之保修作業, 遑論作戰時戰場實 際場景必定與平時各級訓練環境大相逕庭

- 34 黄昱綸,〈解密擴增實境未來視界新樣貌—智慧AR趨勢大爆發〉《智慧財產權月刊》(臺北),第252 期,西元2019年12月,頁39-60。
- 35 Headquarters Department of the Army, FM 4-30.31 Recovery and Battle Damage Assessment and Repair. (California: CreateSpace, 2006).

(除非已發展前述應用虛擬實境擬真戰場條件之裝置設備),而裝備狀態之評估作業,則可自人工智慧之應用談起。若以「工業4.0」之觀點討論,第一次至第三次工業革命之驅動力,可分別歸因於「蒸汽」、「電力」及「資訊技術」,亦即半導體(Semiconductor)技術,而當今驅動總體工業進步—工業4.0之原動力,則係在於「資料(Data)」,能夠進行海量資料以及大數據價值探勘、挖掘之重要關鍵工具,即為「人工智慧」之相關發展技術。36

於建構電腦系統軟、硬體整合,以及多元化資料數據運用價值發展後,戰備整備之成效以及訓練成果之良窳,即在於能否達成聯合作戰或協同作戰之預期成果,聚焦於保修部隊訓練而言,在培養完善之組合訓練團隊默契,達成同場域團隊成員互動操作性,有能力執行單一或特定指定狀況之前支搶修作業,即係為開展次一階段目標一「混合實境」之應用,力求更進一步戰場環境模擬程度,以及複雜條件情境下之重要武器裝備搶修訓練目標。

混合實境技術之應用概念,在於提取真實物體之姿態,延伸建構虛擬型態,並置放進另一真實環境之中,使得位處不同地點之真實物體或參與者,能於該真實環境中進行即時互動,達成無論係以「真實型態與虛擬型態」抑或係以「虛擬型態與虛擬型態」之型

式進行之。導入混合實境應用於保修部隊修 護能量訓練實務,首先獲得需求軟、硬體設 備用以建構安全雲端平臺(Cloud Platform), 以進行模擬軍事訓練環境條件之高速雲端 運算、資料分析統計以及深度機器學習等程 序,使應用程式引擎提供任意環境條件設定 之混合實境,呈現於每位參與訓員所配戴之 沉浸式裝置(如前揭HoloLens),沉浸於系統 創造之「綜合訓練環境(STE)」,即係依不同 訓練課目需求,模擬防衛作戰之空地整體作 戰、城鎮戰、灘岸作戰等情境,供系統串聯 來自不同真實環境之參與者進行即時互動操 作,此即達成「分布式交互模擬(DIS)」實效, 並提供整體任務行動後分析功能。

運用虛擬實境及擴增實境技術,進行修 護技能之個人或團體組合訓練,不僅有效提 升保修部隊單一裝備或特定條件保修專業職 能,並得以轉移大部隊、重裝備施訓之潛存危 安;而導入混合實境結合人工智慧技術,執行 防衛作戰戰力防護之戰場搶修能量訓練,則 能進一步綜合電腦模擬狀況來創造各種可能 之需求訓練環境,不僅有效管控潛存作業風 險,避免危安事故,以滿足高擬真、全互動、 多領域、同時間、低預算之狀態,重複執行相 同或不同條件設定之模擬訓練,並有效降低 武器部署操作、保修人員訓練及裝備維修成 本,撙節龐大後續維持國防預算支出,大幅

³⁶ 胡竹生,〈從核心價值出發運用人工智慧技術〉《哈佛商業評論》(臺北),第133期,西元2017年9月 號,頁68-71。

增進武器裝備效益/成本比率(B/C Ratio)。

本文前揭「保修技能模擬訓練」之具體 發展策略,運用沉浸式虛擬實境及擴增實境 技術,提升技術人員教育訓練學習輔助,以 及操作指引、互動式稽核,以至於發展「戰 場搶修訓練」組合訓練,進階採用混合實境 之應用技術,達成沉浸式綜合訓練環境及分 布式交互模擬訓練,並因藉由電腦演算,使 能夠記錄各式場景演練過程及成果,再透過 行動後分析程序,評估每一種作戰場景想定 狀況下,單一或群體組合訓練之成效。當今 美陸軍持續積極發展混合實境技術,已與微 軟公司簽訂一項價值4.8億美元之契約,由微 軟公司對美陸軍提供多達10萬部HoloLens擴 增實境頭戴式視聽裝置,並將其運用於軍事 作戰及相關訓練,此HoloLens具備熱能感測 以及夜視功能,技術水準大幅高於現有軍用 頭戴式耳機,37再進一步發展更高階科學技 術應用層次,即係導入人工智慧輔助裝備妥 善或故障狀態覺知,以及故障排除作業;此 項技術一如「自動駕駛車輛」或「自動導航系 統」,在過去似是尖端科技,而今卻已是相當 成熟且可廣泛應用之技術,對於軍事武力部 隊而言,其價值就在於能否將其導入現行軍 事作戰或後勤作業,抑或運用於未來戰略發 展及戰術戰法之中。

三、人工智慧輔助裝備故障排除

美陸軍深知人工智慧可應用於軍事作 戰之貢獻,其人工智慧工作小組(U.S. Army Artificial Intelligence Task Force, AITF) 職 司美國防部人工智慧戰略研究發展作業推 行,以及建構軍事作戰人工智慧能量。為更 進一步增進發展能量與速度,美陸軍研究 實驗室38已與學術界計算機科學發展龍頭 之卡內基梅隆大學39簽訂7,200萬美元、為期 5年之人工智慧研究合作協議,目的在研發 高階演算法以及自動化系統,以強化國防力 量。40其當今發展之技術能力,已可於軍事或 衛星圖像中,自動搜索並辨識出潛在重要軍 事目標,諸如:敵軍戰車等;而美國防部如今

³⁷ Makena Kelly, "Microsoft secures \$480 million HoloLens contract from U.S. Army," The Verge, https://www.theverge.com/2018/11/28/18116939/microsoft-army-hololens-480-million-contract-magicleap, retrieved 6 Apr. 2020.

³⁸ 同註5。

³⁹ Carnegie Mellon University, 簡稱CMU, 位於美國賓夕法尼亞州之研究型私立大學, 擁有來自全球114 國家之1萬3千餘名學生。於2018年泰晤士高等教育世界大學排名第20位,其中,計算機科學於USNews 排行全美第一位,並擁有世界頂尖機器人學專案,係全球最早建立計算機學院之一。

⁴⁰ Sean Kimmons, "Army leaders discuss benefits, challenges with AI systems," Army News Service, https://www.army.mil/article/218595/army_leaders_discuss_benefits_challenges_with_ai_systems, retrieved 6 Apr. 2020.

約有500項人工智慧研發項目,刻正如火如荼 進行中。

將高階演算法結合重要武器裝備之 後勤維持資料庫數據,即達成美陸軍之 「故障排除引導式人工智慧(Guided AI for Troubleshooting)」⁴¹,其運作原理係整合原 始裝備製造商及美陸軍豐富之保修經驗,運 用貝氏(Bayesian)⁴²網絡之人工智慧功能, 透過前揭虛擬實境技術,傳送予前線保修 技術人員;⁴³即使無法建立網路系統連線,亦可藉由內建故障參考數據,準確診斷問題所在,有效節約修護時間與預算,並提升安全性及裝備妥善率,目前主要應用於美陸軍武器系統之通信及電子次系統中,未來亦將配合其現代化戰略(Army Modernization Strategy, AMS)發展,擴展應用於遠程精準火力、防空與導彈防禦系統以及次世代戰鬥車輛等跨功能團隊研究領域(如圖十四)。

圖十四 美陸軍作戰隊整合人工智慧辨識潛存軍事威脅位置及種類,以混合實境方式呈現於頭戴式顯示器 (HMD),輔助作戰行動及任務決策(資料來源:同註41)

- David Robinson, "Machines don't have to break," U.S. Army, https://www.army.mil/article/210108/machines_dont_have_to_break, retrieved 6 Apr. 2020.
- 42 或稱決策/信念網絡,適用處理已發生之事件,預測數種可能之已知原因中,真正促成導因之可能性。 導入高階演算法,運用變量觀測、參數學習及結構學習等程序,可於網絡中進行自我學習及邏輯推理 或預測。
- 43 同註41。

四、人工智慧預測性維修

前揭人工智慧效能發揮之關鍵,在於海 量資料及大數據價值探勘,發掘隱藏其中之 關聯性,並獲致有效之結論,應用於進一步之 預測行動,且人工智慧技術可同時處理或觀 測之資料量,遠高於人類大腦之可辨識基準 之上。

2002年電影《關鍵報告》(The Minority Report) 描述可預測犯罪並預先逮捕嫌犯 之未來世界,現今已在美國實現,科技公司 PredPol⁴⁴ · 45 依據數據分析及演算法,提升都 市中10%至50%之「犯罪偵測率」,且該犯罪 預測軟體能預測未來12小時內特定犯罪類 型、地點、時間,隨著歷史資料庫數據不斷累 積,演算法每日均進行更新;當今此套運用 人工智慧技術之犯罪預測軟體,已與美洛杉 磯警察局合作試行,且已獲致所預期之成效 (如圖十五)。

美軍之「主動預防性維修 (Proactive and Predictive Maintenance)」,以區分為4階段之 初始程序(數據轉換、評估分析、試驗建構、 後續數據蒐集) 進行預測行為,繼美空軍E-3 機載早期預警控制 (Airborne Early Warning and Control, AEW&C)系統、C-5運輸機及 F-16戰鬥機之後,現已運用於美陸軍布萊德 利戰車(Bradley)之預測性維修計畫,未來亦

圖十五 科技公司PredPol犯罪預測軟體,標示選取之紅色區塊為其演算法預測高風險區域 (資料來源:同註44)

^{44 &}quot;PredPol", https://www.predpol.com/, retrieved 6 Apr. 2020.

藍立晴,〈犯罪時間地點AI都可預測?美國超過50警察部門已開始應用〉,匯流新聞網,https://cnews. com.tw/002181030a06/,檢索日期:西元2020年4月6日。圖十五為科技公司PredPol犯罪預測軟體,標示 選取之紅色區塊為其演算法預測高風險區域,用以主動分配警務及巡邏管理資源,建立犯罪分析與預 測,達成降低犯罪率之目標。

已規劃擴展至F-35閃電II戰鬥機。美陸軍運用「主動預防性維修」不僅已為布萊德利戰車車隊節省數十億美元之後勤維持成本,且更大幅提升了戰車裝備之總體妥善率。

基此,我陸軍保修部隊若能整合現有各 式重要武器裝備之歷史維修資料庫數據,輔 以適當之資料轉換、分析,進一步導入工業 界發展已日趨成熟之虛擬實境或擴增實境技 術,則建構「主動預防性維修」及「故障排除 引導式人工智慧」技術,亦將指日可待;而未 來此類科技之推廣應用,對於我陸軍科技強 軍以及新興兵力部署成軍之後續維持與裝備 妥善率,均將能有諸多裨益,在建構現代化 後勤體制之同時,大幅提升保修能量,持續 精進防衛作戰後勤支援能力。

肆、結論

近年國防建軍政策戮力推展國機國造、 國艦國造,極力建構科技化建軍發展能量, 我陸軍隨著新興兵力陸續成軍部署,對於高 專科技保修人力之需求更是與日俱增,航空 部隊新機型AH-64E APACHE阿帕契攻擊直 升機、UH-60M BLACK HAWK黑鷹通用直升 機均係全球頂尖之科技軍武行列,地面部

46 翁毓嵐,〈戴爾預告:企業利用AI工作、 押注AR應用〉,工商時報,https://stage. ctee.com.tw/News/ViewCateNews. aspx?newsid=170394&cat=kjmd,檢索日期: 西元2020年4月6日。 隊新一代CM32、CM33、CM34裝步戰鬥車系列更為我國防自主代表性重要裝備,而未來陸軍新一代「地表最強戰車」亦將於近年陸續完成接裝部署,面對未來軍事武力作戰任務,唯有運用科技,不斷精進戰備整備及後勤支援能量,俾確保當國家需要軍事力量時,國軍必定得以持續之最大戰力立即回應,達成防衛作戰任務目標。

當今科技發展正進入人機合作新時代, 戴爾科技認為,從現今開始以至2030年,機 器更將因與人更緊密的合作而改變人類生活 型態。⁴⁶盱衡世界先進強國軍事作戰及後勤 訓練系統,皆在於設法善用科技力量,以進 行各種實體、虛擬訓練,目的無非係提升整 體訓練效能及效率,強化戰備整備,同時合 理撙節國防預算開支,並有效管控潛存之軍 事訓練危安風險;人工智慧及混合實境技術 之應用,延伸了虛擬實境及擴增實境之關鍵 核心價值,必然成為次世代軍事武力部隊訓 練之關鍵成功因素。

作者簡介

朱凱麟少校,中正理工學院兵器系94年班,國防管理學院後勤管理正規班99年班,運籌管理碩士班102年班,飛訓部航空補保軍官班104年班,現任職陸軍後勤指揮部保修處航空保修科飛機修護官。