J Med Sci 2020;40(4):194-196 DOI: 10.4103/jmedsci.jmedsci_1_20

CASE REPORT

Acute Myocardial Infarction Presented with Isolated Precordial Lead Elevation in V2

Li-Hsiang Chen^{1,2}, Li-Wei Wu², Shih-Chung Huang^{3,4}

¹Department of Family Medicine, Kaohsiung Armed Forces General Hospital, ³Department of Internal Medicine, Division of Cardiology, Kaohsiung Armed Forces General Hospital, ⁴Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, ²Department of Family Medicine, Tri-Service General Hospital, Taipei, Taiwan

Atrial fibrillation (Af) with acute myocardial infarction (AMI) is a life-threatening disease, and electrocardiogram is indispensable for the initial diagnosis of high-risk patterns in the emergency department. Here we report a case of a 63-year-old male of Af with AMI, presented with isolated elevation of the precordial V2 lead ST-segment, mostly arising from major occlusion of the left main coronary artery and right coronary artery.

Key words: Atrial fibrillation, isolated precordial V2 lead, ST-segment elevated myocardial infarction

INTRODUCTION

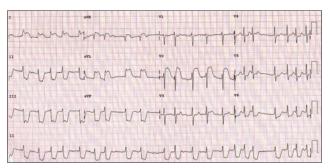
Atrial fibrillation (Af) is the most prevalent arrhythmia and is associated with thromboembolism, stroke, congestive heart failure, acute myocardial infarction (AMI), and all-cause mortality.^{1,2} Af with AMI is a critical condition, and electrocardiogram (ECG) is indispensable for the initial diagnosis of high-risk patterns in the emergency department (ED). Usually, transmural infarction will cause ST elevation in the precordial leads and could prompt the ED to inform cardiologists to perform percutaneous transluminal coronary angioplasty as soon as possible. Here we report a case of Af with AMI originating from left main coronary artery (LMCA) and right coronary artery (RCA) occlusion, presented with an unusual finding of prominent ST-segment elevation in a single precordial lead (V2) on 12-lead ECG.

CASE REPORT

A 63-year-old male smoker with a history of hypertension presented to the ED with an 8-h duration of chest pain and palpitation. Physical examination revealed a body temperature of 36°C, a blood pressure of 77/65 mmHg, a heart rate of 123 beats/min, and a respiratory rate of

Received: January 01, 2020; Revised: January 20, 2020; Accepted: April 02, 2020; Published: April 22, 2020 Corresponding Author: Dr. Shih-Chung Huang, Kaohsiung Armed Forces General Hospital, No. 2, Zhongzheng 1st Road, Lingya District, Kaohsiung 802, Taiwan. Tel: +886-774-967-51; Fax: +886-774-052-31. E-mail: sghung@gmail.com

18 breaths/min. Laboratory data included potassium (4.2 mmol/L), creatine phosphokinases (171 U/L), creatine phosphokinases-MB [32 U/L (<24 U/L)], and troponin I (0.61 ng/mL [<0.04 ng/mL]). A 12-lead ECG showed Af; ST-segment elevation (STE) in leads V2, I, aVL, and aVR; and ST-segment depression (STD) in leads II, III, aVF, V5, and V6 [Figure 1] Coronary angiography showed total occlusions of the LMCA [Figure 2] and the distal segment of the RCA [Figure 3]. Subsequently, the patient developed bradycardia and cardiac arrest despite treatment with coronary intervention, despite intra-aortic balloon pump and temporary pacemaker support. We were unable to save his life despite attempting cardiopulmonary resuscitation.


DISCUSSION

By searching the Medline or PubMed databases using keywords "acute myocardial infarction and isolated precordial lead ST-segment elevation (STE)," we identified no other case noting this kind of finding. AMI with prominent STE in lead V2, but not in other precordial leads with concomitant STE in leads I, aVL, aVR, and reciprocal changes in inferior

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Chen LH, Wu LW, Huang SC. Acute myocardial infarction presented with isolated precordial lead elevation in V2. J Med Sci 2020:40:194-6.

Figure 1: Emergency electrocardiogram showed a rhythm of atrial fibrillation at a rate of 120 BPM, with leftward axis and ST-segment elevated at isolated V2, aVR, I, aVL and depressive ST-segment at lead II, III, and aVF

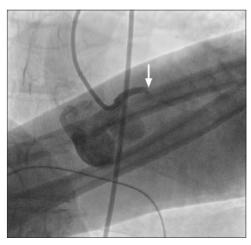


Figure 2: Coronary angiography demonstrating total occlusion of the distal segment of the left main coronary artery (white arrow)

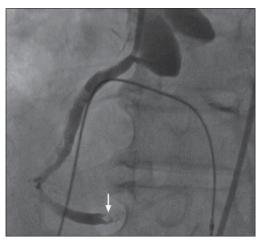


Figure 3: Coronary angiography demonstrating total occlusion of the mid and distal segments of the right coronary artery (white arrow)

leads II, III, and aVF in the ECG, can mislead us to believe that only relatively limited area of transmural ischemia in the anterior wall is involved, which reduces our awareness to have a prompt approach slows the response in this kind of case.³⁻⁵ The presentation of ECG due to LMCA usually shows STE at aVR (67%), V2–V6 (35%), or depressive ST-segment in more than six leads (31%).⁶ However, the cancellation of the vector of the ST elevated segment in precordial leads can accompany RCA occlusion due to near equilibration of electrical forces from the apical and the basal parts of the left ventricles.⁷ However, the ischemia in the apical segments is somehow not counterbalanced by the basal part and thus, can be exposed in lead V2. This case also confused the emergency room staff, leading to a delay in informing the cardiologist and slowing the therapeutic schedule.

Both STD and STE with direction and the magnitude of the ST vector in certain leads can be informative about which lesion is involved and the severity. When the ST vector points in the direction of the leads, it will cause ST elevation. Otherwise, the ST vector will be less proportionally elevated if the vector is perpendicular to leads. In our case, we should not ignore "the elephant in the room" by only focusing on isolated ST elevation at V2, neglecting the finding of ST depression in the inferior leads (II, III, and aVF) and elevation in I, aVL, and aVR.

Fujii *et al.*⁸ reported ECG findings of STE in lead V2 with larger magnitude STD in inferior leads, and STD in the lead V5 suggests AMI owing to LMCA lesions. Moreover, widespread STD in inferior leads with STE in lead aVR in the ECG displayed occlusions of LMCA and multiple vessels, which led to ischemia of large portions of the left ventricle and high risk of cardiac death.⁴ Prolonged ischemia contributes to the delayed conduction of Purkinje fibers, resulting in irreversible necrosis of myocardium and poor prognosis.³

Dysfunction of sinus and atrioventricular nodes usually indicates the occlusions of RCA or left circumflex coronary artery, which increase the risk of Af and atrial complications.⁷ Af is the most prevalent arrhythmia and is associated with thromboembolism, stroke, congestive heart failure, AMI, and all-cause mortality.1,2 Identifications of ST-segment elevated myocardial infarction (STEMI) are based on clinical symptoms (chest pain), ECG morphologies of STE at the J point in at least two contiguous leads of $\geq 2 \text{ mm} (0.2 \text{ mV})$ in men or \geq 1.5 mm (0.15 mV) in women in leads V2–V3 and/or of at least 1 mm (0.1 mV) in other contiguous chest or limb leads in the absence of left ventricular hypertrophy or left bundle branch block, and elevated cardiac biomarkers. 9 The recommendations of therapy - antithrombotic agents (anticoagulant and antiplatelet medications) and primary percutaneous coronary intervention (PCI) - should be provided in patients with STEMI and ischemic symptoms of <12-h duration.^{2,9} The delayed performance of PCI after admission to hospital is associated with a high risk of in-hospital mortality.9

In conclusion, Af with AMI, particularly involving occlusions of LMCA and RCA, is a life-threatening condition. Analyses of the ECG data detected Af and ST elevation in isolated precordial lead V2, with widespread STD in II, III, and aVF and STE in I, aVL, and aVR, resulting from acute LMCA and distal RCA occlusion. Clinicians should be aware of these critical ECG morphologies to enable early detection and timely coronary revascularization.

Declaration of patient consent

This article does not include studies with human or animal subjects performed by any of the authors. For this type of study, formal consent is waived due to the death of the patient. The authors certify that the patient's name and initials will not be published, and all reasonable efforts will be made to conceal their identity. The images and other clinical information will only be published in this journal article.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Ruddox V, Sandven I, Munkhaugen J, Skattebu J, Edvardsen T, Otterstad JE. Atrial fibrillation and the risk for myocardial infarction, all-cause mortality and heart failure: A systematic review and meta-analysis. Eur J Prev Cardiol 2017;24:1555-66.
- January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC Jr., et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: Executive summary: A report of the American College of Cardiology/American Heart Association task force

- on practice guidelines and the heart rhythm society. Circ 2014:130:2071-104.
- Birnbaum Y, Drew BJ. The electrocardiogram in ST elevation acute myocardial infarction: Correlation with coronary anatomy and prognosis. Postgrad Med J 2003;79:490-504.
- Macias M, Peachey J, Mattu A, Brady WJ. The electrocardiogram in the ACS patient: High-risk electrocardiographic presentations lacking anatomically oriented ST-segment elevation. Am J Emerg Med 2016;34:611-7.
- Sclarovsky S, Birnbaum Y, Solodky A, Zafrir N, Wurzel M, Rechavia E. Isolated mid-anterior myocardial infarction: A special electrocardiographic sub-type of acute myocardial infarction consisting of ST-elevation in non-consecutive leads and two different morphologic types of ST-depression. Int J Cardiol 1994;46:37-47.
- D'Angelo C, Zagnoni S, Gallo P, Tortorici G, Casella G, Di Pasquale G. Electrocardiographic changes in patients with acute myocardial infarction caused by left main trunk occlusion. J Cardiovasc Med (Hagerstown) 2018;19:439-45.
- Gorgels AP. ST-elevation and non-ST-elevation acute coronary syndromes: Should the guidelines be changed? J Electrocardiol 2013;46:318-23.
- Fujii T, Hasegawa M, Miyamoto J, Ikari Y. Differences in initial electrocardiographic findings between ST-elevation myocardial infarction due to left main trunk and left anterior descending artery lesions. Int J Emerg Med 2019;12:12.
- O'Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: A report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. J Am Coll Cardiol 2013;61:e78-140.