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A Deep Learning-Based Offline Signature Verification Method
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ABSTRACT

Signature verification is one of the popular biometric techniques for personal identification.
Although automatic signature verification systems have attracted researchers’ attention for a long
time, there are few attempts to perform the verification based on a single known sample. In this
paper, we propose an off-line handwritten signature verification method by using a unique local
feature extraction approach and deep convolutional neural network (CNN). In the training process,
our CNN is trained by only single genuine (known) and some forged signature samples. In the
testing process, the proposed method can verify a questioned signature as genuine or forgery (all
questioned signatures and forged authors were not present in the training process). We use the open
source dataset, Document Analysis and Recognition (ICDAR) 2011 SigComp in the experiments,
and get the accuracy of 98.41%, FAR 0f 0.91% and FRR of 2.88% in our testing dataset.

Keywords: handwritten signature verification, convolutional neural network (CNN), deep learning,
forensic science
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I. INTRODUCTION

Handwritten signature verification plays an
important role in biometric authentication. In
practice, well-trained experts perform it with
visual comparison. In order to increase
reliability and efficiency, automatic signature
verification methods have been developed for
decades. Some of them have applied deep
learning methods and shown their capability for
verification. Most of these methods require
several (more than one) genuine reference
signature samples for the feature extraction and
model training processes [1-3]. However, it is
not easy for police officers to get "enough”
reference signature samples for examination in
first-line law enforcement. In Taiwan, the
forensic document examiners of Criminal
Investigation Bureau (CIB) perform most of the
handwritten signature examinations for both
civil and criminal cases. They will need to
collect more signature samples from the suspect
if there are too few features in current samples.
If the case is still under preliminary investigation,
the investigators wusually need a quick
examination (to evaluate the possibility) to
progress their investigation. In this case, they
will need a quick verification method with few
samples.

Another example is the use of commercial
signature  verification. =~ When considering
customer convenience, some companies may
only ask customers to provide a limited number
(or even only one) of the signature samples.
There are only a few researches [4] attempt to
perform signature verification with single known
reference signature. And, they are based upon
handcrafted feature algorithms and do not
consider skilled forgeries (i.e., only for the
random forgery problem).

In this paper, we propose an off-line
handwritten signature verification method by
using a unique local feature extraction approach
and convolutional neural network (CNN). The
proposed method can classify a questioned
handwritten signature as a genuine one or skilled
forgery.

The rest of the paper is organized as
follows. First, we provide a brief discussion of
automatic signature verification and survey
related works in Section 2. We introduce the
CNN used in the paper, in Section 3. Section 4

explains the design of experiments, including
data acquisition and the network architecture
used for training. Section 5 shows the training
process and evaluates the performance of our
model. Finally, we conclude with the advantages
and limitations of our approach and describe our
future works in Section 6.

II. BACKGROUND AND RELATED
WORK

2.1 Signature Verification

Handwriting signature verification methods
can be classified into two categories: online and
offline. In general, offline methods are more
challenging than online ones, since we cannot
acquire additional dynamic information from the
signature tablet or other digital devices.
Furthermore, comparing to other biometric
technique,  handwriting  signatures  have
relatively low inter-class variability (the
variability between genuine signatures and
skilled forgeries) and high intra-class variability
(the variability among an individual’s genuine
signatures, see Fig. 1). For these reasons,
although offline signature verification is widely
used for the purpose of personal authentication,
it is still one of the most challenging problems in
biometrics.

Fig. 1. An example of multiple signatures written by
the same person. It shows a high variability
l[ae]tween samples. Source: Justino et al., 2000
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2.2 Feature Extraction

The  offline  handwritten  signature
verification methods can be classified as two
types: handcrafted feature extraction and deep
learning methods [3].

The first type of approaches uses the
handcrafted feature extraction methods to find
feature descriptors for offline signatures. In last
few decades, several survey papers [6-9] have
reviewed the handcrafted feature extraction and
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classification methods. For example, Deng et al.
[10] proposed a wavelet-based verification
system by curvature features. Drouhard et al. [11]
took the signature outline as a global shape
feature by using Probability Density Function
(PDF).

The second type of approaches uses CNN
or other deep learning neural networks to learn
features directly from the whole signature raw
data (e.g., pixels). This kind of approaches has
shown their capability of classification [1-3]. For
example, Khalajzadeh et al. [12] proposed a
CNN-based approach to learning features
directly from image pixels of Persian signature
datasets and applied their method to writer
classification. Soleimani et al. [13] proposed a
Deep Multitask Metric Learning (or Deep
Multi-Task Metric Learning, DMML) method.
They used deep neural networks to learn a
distance metric between pairs of signatures.

2.3 Signature Verification by Single Genuine
Sample

As we mentioned in Section 2.1,
handwriting signatures have high intra-class
variability. This has a significant impact on
signature verification with single reference
signature (because we can’t overcome this
disadvantage through additional signature
samples). Therefore, signature verification with
single reference signature has attracted less
attention. Adamski and Saeed [4] proposed a
method based upon thinning algorithms and
sampling techniques to acquire the signature
feature vector from one-pixel-wide signature.
However, their method only dealt with random
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forgery samples (by using other users’ genuine
signatures as forgeries) rather than skilled
forgery samples in their experiments. In this
paper, our method is to classify one’s genuine
signature and skilled forgery samples (forgers
imitate the genuine signature) which make our
research more realistic and reliable.

III. DEEP CONVOLUTIONAL
NEURAL NETWORKS

3.1 CNN Architecture

Recent development in deep neural
networks has achieved great success in different
applications, such as computer vision, natural
language processing (NLP), and speech
recognition. Convolutional Neural Network
(CNN) [14] is a class of deep neural networks.
Since Krizhevsky et al. [15] won the
ImageNet challenge with CNN in 2012
(AlexNet reached the error rate of 15.3% and
was better than the second best entry by 10.4%),
CNN has become a most popular and effective
method of deep neural networks for computer
vision tasks. Some researchers have claimed that
they can approach human-level [16] or even
super-human performance [17-19].

The CNN architecture used in this research
is mainly composed of convolutional layers,
pooling layers, and full connected layer as
illustrated in Fig. 2. The first two layers run the
feature extraction work, and the full connected
layer is basically a regular multilayer perceptron
(MLP) that connects to the previous layer for the
further classification task.
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/, EE n Feature| oo« \\\4 8 Il(\\ 8 /)O
ey Maps Q' 9/
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| Size: 224x224

Convolutional Networks for feature extraction

Full Connected Layer

Fig. 2. The CNN architecture used in the proposed method.
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3.2 Convolutional Layer

The convolutional layer is used to extract
the higher-level features from the low-level
information [20], such as detecting the edges,
corners, junctions, vertices, end-points and other
characteristics from original 1images. The
convolutional layer uses multiple convolution
filters or called convolution kernels as a
sliding-window to path over the entire image.
The sliding area is multiplied by the filters and
its sum is saved as a new feature map pixel.
Besides, to prevent imperfect overlays on the
border, border pixels are computed with zero
padding, see Eq. 1 [21].

YU, )=&xF)()+b (1)

In Eq. 1, X is the input image, F is the
convolution filter, Y is the feature map (the
convolved output with an additive bias b). Fig.

3 shows an example of the convolutional
operation.
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Fig. 3. Convolution filters with zero padding. X is the
input images, F is the set of convolution filters,
and Y is the set of the feature maps.

In the Deep CNN architecture, the number
of hidden layers (mainly constituted by
convolution layers) is called the depth of the
network. Recent studies [22,23] show that
increasing the depth of networks can make the
system learn more complex features and is a
crucial point of getting good performance.
However, the increasing depth of networks will
bring dramatic growth in the size of feature
maps and accompanied by the tedious
computation. Therefore, we use
the pooling layer to reduce the feature map size
and improve performance.

3.3 Pooling Layer

The pooling layers are used to reduce the
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feature map size and the spatial dimensions of
neural networks. Three are mainly three types of
pooling layers: Average Pooling, Min Pooling,
and Max-pooling. In this paper, we use
Max-pooling for the following two reasons: 1.
Max-pooling  can  theoretically  reduce
background noises and keep more handwriting
features for our signature images. 2.
Max-pooling leads to a faster convergence rate
for networks [24].

The max-pooling layer used in this paper is
a 2x2 sliding window mask moving across the
input space (feature maps), and then set the
maximum value within this mask as the output
(see Fig. 4).
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Fig. 4. We use the Max-pooling layer to reduce the
feature map size[24,25].

IV. EXPERIMENTS

In this paper, we use Python 3.6 [26] and
Python Imaging Library Pillow 5.0 [27] to
implement the data pre-processing. The model
training and validation are implemented by
using Keras 2.1 [28] and TensorFlow 1.7 [29].
TensorFlow is an open-source deep learning
framework released by the Google Brain team in
2015. Keras is an open source high-level neural
network library written in Python, and it can run
on top of TensorFlow. All our experiments were
conducted on a PC with Intel Core 17-4790
Processor (8 logical cores, 8M Cache, up to 4.00
GHz) and 12GB DDR-III RAM.

4.1 Data Acquisition

Our experimental signature samples are
from the ICDAR 2011 SigComp dataset [30],
which contains different sample sizes of forged
signatures for each genuine author, see Table 1.



Table 1. The summary of the forged signature
samples in Comp 2011
datasets(http /IWWWw.ia r—tcll org/mediawi
ki/index.php/ICDAR 5011 Signature Ver

ification_Competition_(SigComp2011)).

Genuine Samples Forgeries Samples

Signature Author  Signature
Author ID Num Num Num

001 24 2 8

002 24 3 12
003 24 3 12
004 24 3 12
006 24 3 12
009 24 3 12
012 24 3 12
014 24 4 16
015 24 3 12
016 24 4 16

In Table 1, ID No.14 and No.16 contain the
largest number of forged reference signatures in
the SigComp dataset (16 Skilled Forgeries from
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4 authors), so we choose ID No.14 and No.16
author’s signatures as experimental samples.

Our experimental dataset includes 1
genuine author with 8 signatures and 4 forged
authors with 16 signatures. Note that our
genuine author has 24 signature samples and we
take the first 8 samples based on the ascending
order of signature's ID number in the original
SigComp dataset. We denote them as No.l -
No.8 (No.1 as the training data, No. 2-4 as the
validation data, and No. 5-8 as the test data, as
shown in Table 2).

In this paper, the experiment results and
discussions are mainly based on genuine sample
No.14. Due to there are some serious defects in
the genuine sample No.16 that leads
experimental results not reaching the expected
accuracy. This will further be discussed in
Section 5.4.

Genuine Forged signatures (author ID)
014 0102014 0104014 0208014 0214014
Y G %/%M (o frone O Suclion Lone oo | . o
L /,;,//l;g,\ czf hL /T// /Zﬂic v 5/4([0“,»/'1 Y i ‘ “-/)':;,‘LL‘ -
oy /ﬁ// /{)M / f// e U 7 Sulliene fopne C“‘Af%l//z:;;ﬂu J}/_v .7);w»=w
y/ N z;z//// | Jotre /?,j"i//"“’ ///44,,M [ fxd’ - /%/wl / AN T
pepe ¢ St
/,; , /,,3,1/191.
y 2 // ~
///1{4 ! Y7

Fig. 5. Experimental data from the ICDAR 2011 SigComp dataset(http://www.iapr-tc11.org/mediawiki/index.
php/ICDAR 2011 Signature Verification Competition (SigComp2011))

4.2 Data Preprocessing

Since our method only uses a single
genuine signature as the training data, we need
some steps in the preprocessing for the
following purposes. Firstly, our system can
increase the number of samples by converting a
single original signature image into many
sub-image blocks. For example, the first genuine
signature author ID 014 is converted to 1062
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new images (see Fig. 6), thus we can increase
the feasibility of deep learning neural network
method. Secondly, using sub-image blocks as
the training and identification data can
effectively prevent few local features from
dominating our CNN system. In some cases,
researchers can even fool or attack deep learning
systems by inserting designed features, see [30].
It shows that focusing only on a few local
features may interfere the verification system.
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Thirdly, by applying a rotation process, we can
make our CNN system focus on the rotation
invariant features and reduce the unnecessary
influence from different handwriting angles
(rotational invariant). The created rotation data
can train our CNN and simulate the author’s
intra-class variability to a certain extent.

The steps of the preprocessing are shown as
follows:

1. we convert the raw images into grayscale
images (saved as 24-bit BMP files), as the
first step in Fig. 6.

We use a block-based method for data
expanding (as the second step in Fig. 6).
We set a 224x224 window as a sliding
mask to get a sub-image block from the
original image. Then, we shift the mask by
20 pixels each time to repeat the process
from left to right and from top to bottom.
After finishing the processes above, we can
obtain N overlapping sub-image blocks
from the original signature image.

We rotate clockwise each sub-image blocks
by 60 degrees and repeat the process 5
times to get Nx6 sub-image blocks totally
(as the third step in Fig. 6). Although we
can get more features with smaller rotating
angles, we need more computational load.
We check each sub-image block to see if it
contains enough information for our
experiments. To this end, we set some
thresholds for inspection based on
experience. We set 230 as the threshold
grayscale value (the value is set based upon
the ICDAR 2011 SigComp dataset). The
pixel with the grayscale value over the
threshold is regarded as a valid pixel. If a
sub-image block has over 7.5% valid pixels,
we classify it as a valid sample. Otherwise,
we regard it as an invalid sample and drop
it.
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Fig. 6. In the preprocessing, we increase the number
of samples by converting a single original
signature image into many sub image blocks.

Considering the characteristics of the deep
learning network, we deliberately rotate
sub-images at a large angle (like 90 degrees and
180 degrees) for better learning efficacy in the
step (3). If we limit the rotation angle within -15
to +15 degrees (which is more intuitively close
to real writing situation), then the testing
accuracy will drop from 98.41% to 94.19%.

4.3 Experimental Design

We designed three experiments with
different numbers of training and validation
samples, as shown in Table 2. While we use
forgery samples from three authors in the first
experiment (see Exp.l in Table 2), we use
forgery samples from two authors and one
author in the second and third experiments (see
Exp. 2 and Exp.3 in Table 2), respectively. We
use these three experiments to see if our
networks can learn some useful features from
signature samples.
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Table 2. The summary of the datasets used in three experiments.

Genuin Forgery author ID Number of signatures ->
author ID e Converted image blocks
014 0102014 0104014 0208014 0214014

Exp.1 Training No.1 No.1,2 No.l,2  No.l1,2 (1,6) > (1602,5914)
Validation No.2-4 No.3,4 No34 No.34 (3,6) > (2926,6390)
Testing No.5-8 No.1-4 (4,4) > (4608,2392)
Exp.2 Training No.1 No.1,2 No.1,2 (1,4) > (1602,4220)
Validation No.2-4 No.3,4 No.34 (3,4) > (2926,4354)
Testing No.5-8 No.1-4 (4,4) > (4608,2392)
Exp.3 Training No.1 No.1,2 (1,2) > (1602,1906)
Validation No.2-4 No.3,4 (3,2) ->(2926,1944)
Testing No.5-8 No.1-4 (4,4) > (4608,2392)

Note: (%, y) -> (x’,y’) in this table shows how many sub-image blocks we got from data preprocessing. Where x
is the number of genuine signatures and x’ is the number of it’s sub-images. Likewise y and y’ is the number of

forged signatures and it’s sub-images.

We divide the experimental dataset into
three parts for training, validation, and testing
(each piece of data only belongs to one part).
Take Exp.l1 for example, we use genuine
signature No.l of the genuine author 014 and
forged signature No.1,2 of three authors (author
ID: 0102014, 0104014, 0208014) as training
data; genuine signature No.2-4 and forged
signature No.3,4 (author ID: 0102014, 0104014,
0208014) as the validation data; genuine
signature No.5-8 and forged signature No.l1-4
(author ID: 0214014) as the testing data, see
Exp.1 in Table 2). Exp.2 and Exp.3 use the data
in the same way but with fewer forged signature
samples. The dividing of the samples is simply
based on the ascending order of author's and
signature's ID numbers in the SigComp dataset.

4.4 VGG19 Network Architecture

Simonyan and Zisserman [22] have shown
that the depth of the CNN network plays an
essential role in classification accuracy. The
increasing depth of the network may cause lower
performance [32] and over fitting [33]. We use
VGG-19 architecture [22] in this paper. There
are 27 layers in the VGG-19 architecture: an
input layer, 16 convolutional layers, 5
Max-pooling layers, 3 fully-connected layers,
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Flatten, and output (as shown in Fig. 7). The
main layers in our model are of the following

types:
Input Layer: 224x224

Layers 1-2: Conv-64 3x3

)

Max-pooling Layer 2x2

Layers 3-4: Conv-128 3x3

Max-pooling Layer 2x2

Layers 5-8: Conv-256 3x3

Max-pooling Layer 2x2

Layers 9-12: Conv-256 3x3

Max-pooling Layer 2x2

Layers 13-16: Conv-256 3x3

Max-pooling Layer 2x2

Flatten Layer
Layers 17-18: FC-4096 drop-0.5
Layer 19: FC-1

Output Layer: Sigmoid

Fig. 7. The CNN architecture used in the experiment
(based on VGG19).
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1. Conv-64 3x3 represents the convolutional
layer with 64 convolution filters in which
filter size is 3x3.
Max-pooling Layer 2x2 represents the
Max-pooling layer with a 2x2 filter.
3. Flatten layer is a utility layer that converts
the multidimensional feature map data into
a 1D-feature vector.
FC-4096 is a classical backpropagation
neural network [34]. It represents the
fully-connected layer  with 4096
perceptrons.
Besides, for the real problems and the real
world are mostly nonlinear, we need to add an
activation to bring the nonlinear properties into
our networks. Since the ReLU function [35]
requires less computation (compared to the
sigmoid and tanh functions) and can
significantly diminish the vanishing gradient
problem, we choose ReLU as the activation
function in all convolutional and fully-connected
layers. ReLU is a non-symmetric function and
can be defined as Eq. 2.
ReLU(X) = max{0, X} (2)
In the Layers 17-18, Drop-0.5 means the
dropout process [36], which is a widely used
technique to prevent Deep Neural Networks
from overfitting. During the training phase, we
temporarily remove (or ignore) 50% perceptrons
by random from the current layer in each
training epoch. Finally, we use the sigmoid
function in the output layer. The sigmoid
function is defined as a curve whose values lie
between 0 and 1(see Eq. 3) and can be used for
calculating the probabilities in our binary
classification task.

1

Trer O

Sigmoid(x) =

4.5 Training the Networks

Before training our CNN networks, we use
a transfer learning [38] technique to save the
training time and get better performance. The
transfer learning (or inductive transfer)
technique is a kind of machine learning method.
It takes the model weights from a solved
problem which is different but similar to ours.
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We download the well-trained weights (but not
include weights in fully-connected layers) from
ImageNet competition for VGG-19 architecture
[39] as our initial model weights. This network
is built to recognize 1000 different categories
(such as cat, bike, airplane, etc.) from target
Images. It is already finely tuned and does
exceptionally well in object detection and
classification. We use those weights as
pre-trained weights to provide a shortcut to train
our networks more efficiently.

In the training process, we need a loss
function to estimate the deviance between the
predicted and actual labels. The lower the loss
value, the closer network predictions are to the
correct labels. Considering that our output layer
is a sigmoid function, we use a cost function
called Binary Cross-Entropy (BCE) as shown in
Eq. 4, where ¥ is the predicted probability in
which target is a genuine signature and y is the
correct one [39].

BCE = —ylog() — (1 =ylog(1 —=9)  (4)

We use the Stochastic Gradient Descent
(SGD) algorithm [40] to update all parameters in
our network. SGD is a popular optimization
technique for the deep learning problem. Since
an extortionate learning rate may hinder the
convergence, we set a relatively small value of
le-4. The momentum is set as 0.9, which is the
most often used value in SGD.

V. RESULTS AND DISCUSSION

5.1 Networks Training and Validation

Our dataset includes 24 images (with 1
genuine and 4 forged signatures). All images are
converted into 23,832 image blocks for the
experiment. Our training is finished in 12 epochs,
due to the training and validation performance
does not significantly improve and tend to be
stable (each epoch represents a full pass over the
training or validation data). From Exp.1 to Exp.3,
we get nearly 100% training accuracy; 99.6%,
99.99%, and 100% validation accuracy;
7.44E-05, 6.48E-05, and 1.12E-04 training loss;
0.0077, 9.48E-04, and 2.21E-04 validation loss,
as illustrated in Figs. 8a and 8b.
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Fig. 8. (a) BCE Loss per epoch during the training
and validation, (b) accuracy per epoch during
the training and validation

5.2 Networks Performance

After the model training and validation, we

test the network with a new author (ID: 0214014)
which is not in the training and verification
dataset (see Table 2). Then we evaluate our
performance by using the following metrics:

Accuracy, False Rejection Rate (FRR) or Type |

error(a), False Acceptance Rate (FAR) or Type

I error(B), which are defined in Egs. 5-7 [41].

1&CCUIaC» - 100 /0 (5)
FRR == X ]000 6

TP means the number of true positive
(genuine signatures are correctly classified as
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positive). Likewise, we got false positive (FP),
false negative (FN), and true negative (TN).
Thus, the higher accuracy and lower error rate
(FRR / FAR) can be considered the better
performance. In this research, different results
obtained considering different sample size
(numbers of forgery authors and signatures for
training) are summarized in Table 3.

Table 3. The summary of experimental results.

Category Exp.l1 Exp.2 Exp.3
Forged authors for training 3 2 1
Forged signatures for training 6 4 2
Train accuracy (%) 100 99.83  99.97
Validation accuracy (%) 99.60 99.9 100
Test accuracy (%) 98.41 90.31 80.1
Test FAR (%) 0.91 054 0
Test FRR (%) 2.88 273 58.24

Note: Each forgery author has four signature samples
in the original dataset

5.3 Discussion

The results of our main task (Exp.1) are
very encouraging. Our approach not only
correctly distinguishes the genuine and forgeries
in the training and validation period but also
achieves the accuracy of 98.41%, FAR of 0.91%
and FRR of 2.88% in testing dataset. Please be
noted that each signature sample is only used in
one of the training, validation and testing sets.
Furthermore, the signatures used in the testing
process are collected from a whole new author
whose samples are not present in the training
and validation processes. It indicates that our
approach is able to learn some useful features to
discriminate among different signatures and
authors. Experiment Exp. 2 and Exp. 3 are also
very useful because we can observe that the
accuracy drops significantly with the decreasing
number of forgery samples. It shows the factor
that there is no sufficient information can learn
in those experiments with fewer signature
samples.

While we have good experimental results
with the genuine sample No.14, we obtain quite
different results with the genuine sample No.16,
as we mentioned in Section 4.1. We repeat the
experiments for the genuine sample No.16 and
get the accuracy of 60.25%, FAR 0f 36.95 % and
FRR of 42.21% in the testing dataset. We check
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the samples of No.16 and find the samples are
with high intra-class variability. The genuine
signatures used for training and testing processes
are shown in Fig. 9. Obviously, it is very
difficult to verify if these signatures are from the
same person, even with human visual
comparison. Since our signature verification
method is only based upon single genuine
sample, it may lead to poor performance (low
accuracy, FAR, and FRR) when training and
testing data have high intra-class variability.
Therefore, the experimental results make sense.

Genuine signature sample used for
Training

Testing

N —— e ————————

Fig. 9. High variability between samples (written by
author No.16.)

VI. CONCLUSIONS AND
FUTURE WORK

In this paper, we propose an off-line
handwritten signature verification method by
using a unique local feature extraction approach
and CNN. Our CNN is trained by only single
genuine and several forged signature samples in
the training process. From the experimental
results, the proposed method can achieve an
accuracy of 98.41% with very few training
samples (single genuine signature and six
forgeries in Exp.l), and even under the most
extreme conditions (single genuine signature and
only two forgeries in Exp.3), our method still
maintains accuracy of 80.1%. In practical
applications, since more forgery samples will
give more information, we can easily obtain or
even create forged signatures by ourselves to
improve the performance of the proposed
method.

Our method is currently for solving a
binary classification problem. We use the
sigmoid function as the output layer. The
softmax layer outputs a value between 0 and 1 to
represent the probability of one class (genuine
signature’s sub-image in this case), so the
probability of the other class is just 1-p. If we
want to verify the final result, we may use the
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voting method based on the number of
sub-images. However, if we need the optimal
verification results, more data and follow-up
studies are needed.

This paper shows the capability of the CNN
model on the signature examination. Our
experiments use the open databases that do not
consider the effects of many handwriting
variables, such as the thickness, paper types,
various forgery skills, etc. Our further work will
focus on these subjects.

REFERENCES

[1] Alvarez G., Sheffer B., and Bryant M.,
"Offline  Signature Verification with
Convolutional Neural Networks," Tech. rep.
Stanford University, Stanford, 2016.

Zhang X. Y., Bengio Y., and Liu C. L.,
"Online and offline handwritten Chinese
character recognition: A comprehensive
study and new benchmark," Pattern
Recognition, Vol. 61, pp. 348-360, 2017.

2]

[3] Hafemann L. G., Sabourin R., and Oliveira
L. S., "Offline handwritten signature
verification—Tliterature  review," Image

Processing Theory, Tools and Applications
(IPTA), 2017 Seventh International
Conference, pp. 1-8, 2017.

Adamski M. , and Saeed K., "Signature
verification by only single genuine sample
in offline and online systems," AIP
Conference Proceedings, Vol. 1738, No. 1,
pp- 180011, 2016.

Justino E. J. R., ElYacoubi A., Bortolozzi F.,
and Sabourin R., "An off-line signature
verification system using HMM and
graphometric features," Proc. of the 4th
international ~workshop on document
analysis systems, pp. 211-222, 2000.
Leclerc F., and Plamondon R., "Automatic
signature verification: The state of the
art—1989-1993." International journal of
pattern  recognition and artificial
intelligence, Vol. 8, No. 03, pp. 643-660,
1994.

Plamondon R., and Srihari S. N., "Online
and off-line handwriting recognition: a
comprehensive survey," IEEE Transactions
on pattern analysis and  machine
intelligence, Vol. 22, No. 1, pp. 63-84,
2000.

[4]

[5]

[6]



[8] Impedovo D., Pirlo G., and Plamondon R.,
"Handwritten signature verification: New
advancements and open issues,” [w:]

Frontiers in  handwriting recognition

(ICFHR), 2012 international conference on,

pp. 367-372, 2012.

Shah A. S., Khan M. N. A., and Shah A.,

"An appraisal of off-line signature

verification  techniques,"  International

Journal of Modern Education and

Computer Science, Vol. 7, No. 4, pp. 67,

2015.

[10] Deng P. S., Liao H. Y. M., HoC. W., and
Tyan H. R., "Wavelet-based off-line
handwritten signature verification,"
Computer Vision and Image Understanding,
Vol. 76, No. 3, pp. 173-190, 1999.

[11] Drouhard J. P., Sabourin R., and Godbout
M., "A neural network approach to off-line
signature verification using directional
PDE," Pattern Recognition, Vol. 29, No. 3,
pp. 415-424, 1996.

(9]

[12] Khalajzadeh H., Mansouri M., and
Teshnehlab ~ M.,  "Persian  signature
verification using convolutional neural
networks,"  International  Journal of

Engineering Research and Technology, Vol.
1, pp. 7-12, 2012.

[13] Soleimani A., Araabi B. N., and Fouladi K.,
"Deep multitask metric learning for offline
signature verification," Pattern Recognition
Letters, Vol. 80, pp. 84-90, 2016.

[14] LeCun Y., Boser B., Denker J. S,
Henderson D., Howard R. E., HubbardW.,
and Jackel L. D., "Backpropagation
Applied to Handwritten Zip Code
Recognition," Neural Computation, Vol. 1,
No. 4, pp. 541-551, 1989.

[15] Krizhevsky A., Sutskever 1., and Hinton G.
E., "Imagenet classification with deep
convolutional neural networks," Advances
in neural information processing systems,
pp- 1097-1105, 2012.

[16] Taigman Y., Yang M., Ranzato M., and
Wolf L., "Deepface: Closing the gap to
human-level  performance in  face
verification," Proceedings of the IEEE
conference on computer vision and pattern
recognition, pp. 1701-1708, 2014.

[17] Zhong Z., Jin L., and Xie Z., "High
performance offline handwritten chinese
character recognition using googlenet and

33

P EHEZR Fwt A F—H RE 109.05
JOURNAL OF C.C.I.T., VOL.49, NO.1, MAY., 2020

directional feature maps," Document
Analysis and Recognition (ICDAR), 2015
13th International Conference, pp. 846-850,
2015.

[18] He K., Zhang X., Ren S., and Sun J.,
"Delving deep into rectifiers: Surpassing
human-level performance on imagenet
classification," Proceedings of the IEEE
international conference on computer vision,
pp. 1026-1034, 2015.

[19] Russakovsky O., Deng J., Su H., Krause J.,
Satheesh S., Ma S., Huang Z., Karpathy A.,
Khosla A., and Bernstein M., "Imagenet
large scale visual recognition challenge,"
International Journal of Computer Vision,
Vol. 115, No. 3, pp. 211-252, 2015.

[20] Girshick R., Donahue J., Darrell T., and
Malik J., "Rich feature hierarchies for
accurate object detection and semantic
segmentation,” Proceedings of the IEEE
conference on computer vision and pattern
recognition, pp. 580-587, 2014.

[21] Goodfellow, 1., Bengio, Y., and Courville,
A., Deep Learning, MIT Press, Chap. 9, pp.
333, 2016.

[22] Simonyan K., and Zisserman A., "Very
deep convolutional networks for large-scale
image  recognition," arXiv  preprint
arXiv:1409.1556, 2014.

[23] Szegedy C., Liu W., Jia Y., Sermanet P.,
Reed S., Anguelov D., Erhan D,
Vanhoucke V., and Rabinovich A., "Going
deeper with convolutions,"Proceedings of
the IEEE conference on computer vision
and pattern recognition, pp. 1-9, 2015.

[24] Scherer D., Miiller A., and Behnke S.,
"Evaluation of pooling operations in
convolutional architectures for object
recognition," Artificial Neural Networks—
ICANN, Springer, pp. 92-101, 2010.

[25] Jarrett K., Kavukcuoglu K., and LeCun Y.,
"What is the best multi-stage architecture
for object recognition," Computer Vision,
IEEE 12th International Conference on, pp.
2146-2153, 2009.

[26] Python Foundation, "About PythonTM |

Python.org," About Python,
https://www.python.org/.

[27] Lundh F., and Clark A., "Pillow: the
friendly PIL fork,"

https://python-pillow.org/.
[28] Abadi M., Agarwal A., Barham P., Brevdo



Hsin-Hsiung Kao et al.

A Deep Learning-Based Offline Signature Verification Method By Single Known Sample

E., Chen Z., Citro C., Corrado G. S., Davis
A., Dean J., and Devin M., "TensorFlow:
large-scale machine learning on
heterogeneous systems," URL https://www.
tensorflow. org.

[29] Chollet F., "Keras
https://keras.io/.

[30] Liwicki M., Malik M. L., Van DenHeuvel C.
E., Chen X. Berger C., Stoel R.,
Blumenstein M., and Found B., "Signature
verification competition for online and
offline skilled forgeries (sigcomp2011),"
Document Analysis and Recognition
(ICDAR), 2011 International Conference
on, pp. 1480-1484, 2011.

[31] Brown T. B., Mané D., Roy A., Abadi M.,
and Gilmer J., "Adversarial patch," arXiv
preprint arXiv:1712.09665, 2017.

[32] He K., and Sun J., "Convolutional neural
networks at constrained time cost,"
Proceedings of the IEEE conference on

Documentation,"

computer vision and pattern recognition, pp.

5353-5360, 2015.

[33] GuJ., Wang Z., Kuen J., Ma L., Shahroudy
A., Shuai B, Liu T., Wang X., Wang L.,
and Wang G., "Recent advances in
convolutional neural networks," arXiv
preprint arXiv:1512.07108, 2015.

[34] Bishop C., and Bishop C. M., "Neural
networks for pattern recognition,". Oxford
university press, 1995.

[35] Nair V., and Hinton G. E., "Rectified linear

units  improve  restricted  boltzmann
machines," Proceedings of the 27th
international conference on machine

learning (ICML-10), pp. 807-814, 2010.

[36] Hinton G., and Dahl G., "Dropout: A simple
and effective way to improve neural
networks," Advances in Neural Information
Processing Systems, 2012.

[37] Pan S. J., and Yang Q., "A survey on
transfer learning," IEEE Transactions on
knowledge and data engineering, Vol. 22,
No. 10, pp. 1345-1359, 2010.

[38] Chollet F., "Keras,"
https://github.com/fchollet/deep-learning-m
odels/releases/download/v0.1/vggl9 weigh
ts tf dim ordering tf kernels notop.hS5.

[39] DeBoer P.-T., Kroese D. P, Mannor S., and
Rubinstein R. Y., "A tutorial on the
cross-entropy ~ method,"  Annals  of
operations research, Vol. 134, No. 1, pp.

34

19-67, 2005.
[40] Bottou L., "Large-scale machine learning
with  stochastic  gradient  descent,”

Proceedings of COMPSTAT 2010, Springer,
pp. 177-186, 2010.

[41] Scharcanski J., Proenca H., and Du E.,
Signal and image processing for biometrics,
Springer Press, Chap. 5, pp. 121, 2014.





