──蔡沐騰、陳鴻鈞**─**

以科技接受模式探討國軍後勤資訊系統整合成效

提要=

- 一、國軍近年來推動各項業務簡化,力求專注戰訓本務,而資訊化為業務簡化之關鍵手段;後 勤業務於民國89年即推動資訊化,本研究為探討其執行成效,運用科技接受模式建構後勤 資訊系統執行成效的分析架構,並提出相關建議供後續資訊整合參據為目的。
- 二、本研究以後勤資訊系統使用者為研究對象,探討「知覺有用性」、「知覺易用性」、「使用態度」及「使用意圖」等構面對資訊系統使用意願之影響;採抽樣調查方式進行資料蒐集, 共回收191份有效樣本,並運用結構方程式模型檢驗研究假說。
- 三、研究結果計有以下兩項結論:(一)科技接受模式可有效詮釋國軍人員對後勤資訊系統使用之行為模式;(二)在整體效果部分,「知覺易用性」與「知覺有用性」均對於使用意圖有影響效果,且「知覺有用性」對「使用意圖」的效果大於「知覺易用性」對於「使用意圖」的效果。

關鍵詞:後勤資訊系統、科技接收模式、知覺易用性、知覺有用性

阿月來源:青年日報 國月來源:青年日報 陸軍後勤季刊2020年2月 7

壹、前言

依據民國106年國防部「四年期國防總檢討」所述,國軍藉由資訊科技及現代管理概念,推動各級單位之業務簡化作業,並區分「改善作業流程」及「簡化業務項量」等2個面向執行,其中在「改善作業流程」部分,更以「程序簡單、時程縮短、頻次減少與成本節約」為目標,1而作業資訊化為業務簡化之必要手段。

國軍後勤資訊管理運用巨量數據分析、整併及調整航空器管理等8項資訊系統,並推動庫儲條碼整合,增進補保作業效能,2 在系統資訊整合已有長足之變化與進步,然而僅限於作業程序(如:回報、申請、管制等程序),但後勤作業必要之會議、表單與報告繁多,參謀與作業人員多須採人工作業方式,擷取相關資訊運用文書處理軟體執行資料處理,以各級後勤業管幕僚部門為例,須按每月召開軍品整備會議,以掌握與管制所屬單位之後勤現況;然而現階段均由幕僚人員透過相關資訊系統進行資料擷取、彙整、分析、篩選與轉謄等人工作業方式,進行會議之資料產製,其所費時間甚鉅,對作業時效與水準上將有顯著的差異。

另用兵後勤系統為高階決策者與管理者

用以掌握部隊現況之重要工具之一,故要求 系統數據與現況相結合,以達到精準掌握之 目標;然而現階段相關數據仍由基層單位採 人工方式,每日進行彙整與轉謄,增加人員工 作項目,另常因作業誤失、缺漏等,導致資料 失真之情事。

實務上有諸多學者運用科技接受模式 (Technology Acceptance Model, 以下簡稱 TAM),探討消費者或操作者對於資訊系統 或科技產品,於實際操作使用後之知覺價 值,亦可視為操作者對資訊系統或科技產品 的滿意度參考,分析結果可作為系統研改與 策進之方針。故本研究將運用科技接受模 式,對前揭面向進行探討,期能有效瞭解國 軍人員對於「後勤資訊系統」的想法與使用 意圖,作為後續系統研改之參據。

爰此,本研究目的如後:(一)建構國軍 後勤資訊系統執行成效的分析架構;(二)由 數據分析資料結果詮釋現階段後勤系統整合 之實施成效;(三)針對研究結果提出相關建 議供後續資訊整合參據。

貳、文獻探討

一、後勤管理與資訊整合

後勤所涵蓋軍隊中一切補給、保修、運

- 1 中華民國106年四年期國防總檢討編纂委員會,《中華民國106年四年期國防總檢討》(臺北:國防部, 民國106年3月),頁46。
- 2 中華民國104年國防報告書編纂委員會,《中華民國104年國防報告書》(臺北:國防部,民國104年12月),頁111。

輸、衛勤等支援與勤務活動,為維持軍隊正 常運作之關鍵因素。對於後勤之管理方式即 為後勤管理,運用組織、計畫、協調管制及資 訊系統,將可運用之資源作適切之管制、分 配與運用,以獲取最大之效益。其中後勤管 理對於資訊系統之運用,即為透過電腦與網 路系統等硬體設施,運用高度有效之管理發 法,以構建出完整之後勤資訊系統,俾利決 策層級獲得即時之後勤現況,並作出正確之 決策,而其後勤資訊系統概可區分為(1)用 兵後勤資訊系統、(2)通用後勤資訊系統、 (3)各軍種後勤資訊系統、(4)採購管理資 訊系統等4類。³

其中用兵後勤資訊系統為高階決策單 位為掌握全般性之後勤現況,並提供最高階 層決策服務;而通用後勤資訊系統與各軍種 後勤資訊系統,均依據「通用後勤」與「各軍 種專用後勤」等各項後勤工作之規範、流程 與特性所建立之作業系統,以供各級機關 與部隊執行申請、審核與管制等作業,而經 處理後之後勤現況,均須回饋至用兵後勤 資訊系統;採購管理資訊系統為提供各級 機關與部隊執行全般採購業務之資訊基礎 建設,較前述三者上無直接資訊回饋之關 係。依據本研究之限制與範圍,僅對用兵後 勤資訊系統與通用後勤資訊系統進行探討, 以收聚焦之效果。

用兵後勤資訊系統在使用介面上,可區 分為「後勤戰力管制系統」與「後勤整備管理 系統」;後勤戰力管制系統為各部隊依補給 (包含糧秣、油料、彈藥等存量)與裝備現況 (包含主件數量),每日由業管人員登載於系 統進行訊息回饋作業,並可運用系統執行前 支申請作業,以快速獲得所望之補充與支援; 後勤整備管理系統則為各專業後勤部隊依據 補給品(包含糧秣、油料、彈藥、衛材、零附 件等存量)與支援能量(包含保修、運輸、衛 勤、副食供應等勤務)現況,每日由業管人員 登載於系統進行訊息回饋作業,並接收受支 援之前支申請需求,進行支援與勤務派遣。

通用後勤資訊系統由陸軍後勤指揮部 負責建立、維護與管理,所建立之通用後勤 資訊系統包含5項母系統、18項子系統:1.保 修系統:計有基地修製、零附件管理、計修備 料、五級分屯、庫儲條碼及野戰與單位段補保 等6項子系統。2.補給系統:計有糧秣、服裝、 油料、主件、陣營具、彈藥及大賣場管理等7 項子系統。3.運輸系統:計有運輸及駕照管理 系統等2項子系統。4.軍醫系統:計有衛勤管 理系統1項子系統。5.其他系統:計有料號申 編、全程籌補等2項子系統。4 綜觀「用兵後勤 資訊系統」與「通用後勤資訊系統」,概可區

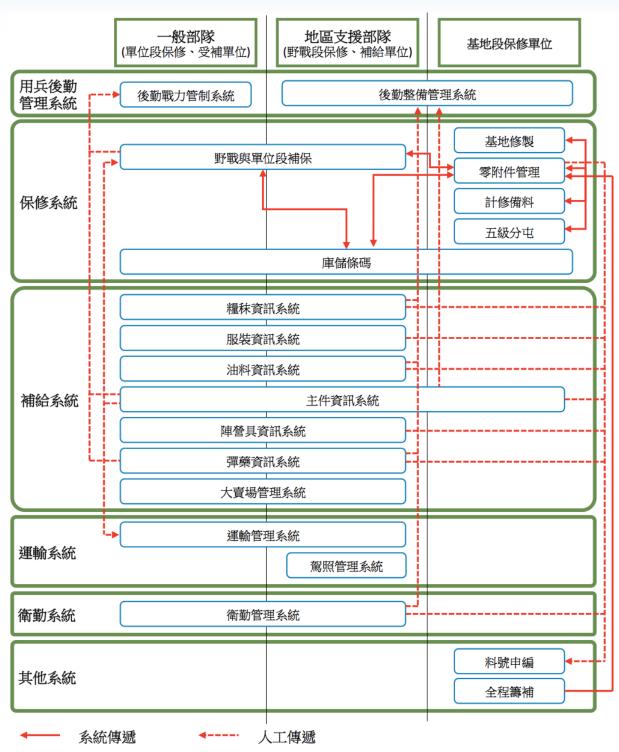
^{3 《}國軍○○要綱》(臺北:國防部,民國104年3月)。

⁴ 郭俊良、郭晴龍,〈如何運用後勤資訊系統簡化補保作業流程之研究(國防部業務研究報告)〉,民國 106年,頁1-44。

分為6項母系統、20項子系統(如圖一),各系 統間之鏈結分述如後:

(一)用兵後勤系統與通用系統間之鏈結關係

- 1. 後勤戰力管制系統:為一般部隊之各 類補給品存量、裝備妥善與設施狀 況,其參數應與主件管理系統、單位 段補保系統、彈藥資訊系統相符,因 系統未完成鏈結,故仍採人員每日進 行登載作業;另糧秣、油料之參數部 分,由於受補單位介面未建置存量管 制功能,故迄今仍採人工帳籍管理, 並登載於「用兵後勤資訊系統一後勤 戰力管制系統」。
- 2. 後勤整備管理系統:用以掌握勤務支 援部隊之支援能量,其參數應與主件 管理系統、糧秣資訊系統、油料資訊 系統、彈藥資訊系統、衛勤管理系統 相符,然而因系統未鏈結,故仍採人 員每日進行登載作業。

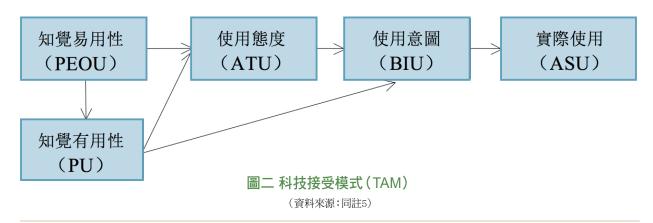

(二)通用後勤資訊系統

1. 母系統內之資訊鏈結:在保修系統與 運輸系統部分,因其所屬的子系統作 業間之資訊流較為密切,作業程序 之關聯性較強,故較早執行系統間之 資訊整合系統研改,各種不同性質單 位之人員,運用同一介面,依其職務 賦予不同權限,並運用系統執行所業 管之作業,如野戰與單位段補保系統 及零附件管理系統之間,於民國100 年以前採用單機作業軟體,並透過資 訊封包遂行資訊鏈結;而民國100年 以後,改採網頁介面進行系統作業, 此時已完成初步整合,後續更於民國 105年建置「連主檢系統」功能,作業 範圍已涵蓋至基層連隊,使其整合效 果更為完備。

2. 跨母系統之鏈結關係:各個母系統 依職能劃分,在作業程序有明顯之不 同,故較少資訊直接之鏈結關係,但 就資料上仍有鏈結之必要,如野戰與 單位段補保系統(支援密度維護)及 與運輸管理系統(車輛派遣系統)之 裝備,均必須與主件管理系統(編制 數、現有數、裝備序號維護)相結合, 以切確掌握需求與可用支援,然而目 前因系統未鏈結,故仍採人工方式進 行資料維護作業。

依郭俊良和郭晴龍(2017)對於後勤資 訊系統之研究,系統與系統間未整合的方式 協同作業,多數系統產生「資訊孤島」,與現 代化供應鏈之概念背道而馳,易造成資料不 一致與發生人為錯誤,影響後勤支援效能。5

綜上所述,目前國軍後勤資訊系統整合 之執行,多注重於母系統或子系統之內部整 合,較欠缺於跨母系統之整合作業,特別在 於用兵後勤系統與通用後勤系統之間資訊整


圖一 用兵後勤系統與各通用後勤系統間訊息傳遞關係圖 (資料來源:本研究繪製)

合並未有相關進展。缺乏系統間之資訊鏈結 與整合,將增加操作者之使用負荷,亦降低使 用者對於系統的知覺價值。

二、科技接受模式

不使用資訊科技與現代技術,則無法提高組織績效與效益,但資訊管理人員對基層系統使用者的抵制是一個普遍的問題。為了更好地預測、解釋和提高用戶接受度,由Davis, Bagozzi, and Warshaw等3位學者於1989年提出科技接受模式,基於理性行為理論(Theory of Reasoned Action, TRA),主張知覺易用性與知覺有用性影響人對於科技使用的態度,並影響具體的使用意圖。而在TAM模式中,其構面主要包含了知覺有

用性(Perceived usefulness, PU)、知覺易用性(Perceived ease of use, PEOU)、使用態度(Attitude toward use, ATU)、使用意圖(Behavioral intention to use, BIU)、實際使用(Actual system use, ASU)等5個構面,6知覺有用性與知覺易用性為知覺價值之二階因子,7可用於詮釋使用者對於現行資訊系統或科技產品,於實際操作使用後之知覺價值。科技接受行為領域中,TAM已經被許多的實證研究用來作為模式構建之理論基礎,且已經累積大量之實證支持,TAM具備精簡、構面明確性、有力的理論基礎以及大量的實證支持等優點。8其模式各個構面間之關係如圖二。

- Davis, F. D., Bagozzi, R. P., & Warshaw, P. R., "User acceptance of computer technology: a comparison of two theoretical models," Management science (Maryland), Vol. 35, No. 8 (1989), p. 982-1003.
- 7 林娟娟、苗惠茹,〈從消費者的涉入與信任態度探討網路拍賣投標行為〉《臺大管理論叢》,第17卷第1期,西元2006年12月,頁167-189。
- 8 Hu, P. J., Chau, P. Y., Sheng, O. R. L., & Tam, K. Y., "Examining the technology acceptance model using physician acceptance of telemedicine technology," Journal of management information systems (Oxfordshire), Vol. 16, No. 2 (1999), p. 91-112.

針對本模式之主要變數之定義與關係, 說明如下:

- (一)知覺易用性:指使用者認知到科技容 易使用的程度,當系統愈容易使用時, 使用者對於自我效能與自我控制會更 具信心,對系統所持態度也會更積極。
- (二)知覺有用性:指使用者相信操作某系 統會可增加其工作績效或所能省下努 力的程度,亦即個人對於採用某種資 訊系統,會增加其工作效能的主觀認 知。當使用者知覺系統容易被使用時, 會促進使用者以相同的努力完成更多 的工作,因此知覺有用同時受到知覺 易用與外部變數的影響。
- (三)使用態度:使用者在使用資訊科技的 態度時,同時受知覺有用與知覺易用 影響。
- (四)使用意圖:資訊系統的使用決定於行 為意圖,而行為意圖同時受個人對科 技的使用態度與知覺有用所影響。
- (五)實際使用:主要是受到使用者使用行 為意向,其特別之處為導入知覺有用 性與知覺易用性,以解釋人們對資訊

科技的接受度。

在科技接受模式提出後,後續衍生出許 多模式推廣,包含結合計畫行為理論與科技 接受模式 (Combined TAM and TPB, C-TAM-TPB)、第二代科技接受模式(TAM2)、第三 代科技接受模式(TAM3)、精簡後科技接受 模式及科技接受與使用統一理論(Unified Theory of Acceptance and Use of Technology, UTAUT)等,然而經過學者實證研究後,發現 各構面間之關係解釋能力並沒有較原始的科 技接受模式充足。9、10

三、科技接受模式對於後勤資訊系統之 運用

在過去的研究,被廣泛的運用在使用者 對於科技產品與資訊介面之接受、滿意與喜 好的程度,過去國內學者運用科技接受模式 研究彙整如表一。在模式中的「知覺易用性」 與「知覺有用性」則為資訊系統滿意度的決 定關鍵因素,二者皆顯著影響使用者對於系 統操作上的滿意度,亦代表使用者於使用上 的偏好。11

而後勤資訊系統建置以加速作業效能 為目的,在郭俊良與郭晴龍(2017)之研究,

⁹ 洪新原、梁定澎、張嘉銘,〈科技接受模式之彙總研究〉《資訊管理學報》,第12卷第4期,西元2005年 10月,頁211-234。

¹⁰ 任維廉、呂堂榮、劉柏廷、〈科技接受行為模式之整合分析-三個主要模式之比較〉《資管評論》(臺 北),第15卷第1期,西元2009年9月,頁101-138。

¹¹ 徐于婷,〈認知風險、認知可信賴度、信任、認知易用性、認知有用性對線上拍賣消費者購買意圖之影 響》(臺南:國立成功大學企業管理學系專班碩士論文,西元2010年)。

耒—	國內學者運用科技接受模式	ここ こうしゅう こうしゅう こうしゅう こうしゅう はい こうしゅう はい こうしゅう はい
70		

本研究	年份	標題
林娟娟、苗惠茹	2006	從消費者的涉入與信任態度探討網路拍賣投標行為12
任維廉、呂堂榮 劉柏廷	2009	科技接受行為模式之整合分析—三個主要模式之比較13
陳宜棻、劉璧瑩	2010	結合服務品質與TAM觀點探討消費者線上信任及購買意願之影響因素 ¹⁴
彭思舟、許立群 黃永進	2012	線上購物者購買行為之實證研究:科技接受模式之權變觀點15
李一靜、樊台聖 王炯傑	2015	行動社群使用意願之影響因素探討 ¹⁶

資料來源:本研究整理

各個後勤作業系統均建立專用的資訊系統, 然而系統與系統之間缺乏有效的資訊鏈結, 導致許多作業程序仍須依靠人工作業,各系 統間形成資訊孤島,影響人員對後勤整體與 後勤資訊系統的滿意度。¹⁷惟前述研究屬於 質性研究,缺乏運用量化數據執行論證,故 本研究運用科技接受模式探討國軍後勤資訊 系統整合成效,並深入分析各個系統使用者 對於系統之知覺有用性、知覺易用性、使用態 度與使用意圖間影響效果之差異,做出成效 推斷,並可對未來之系統提升與整合方針提 出建議。

參、研究方法

一、研究架構與假設

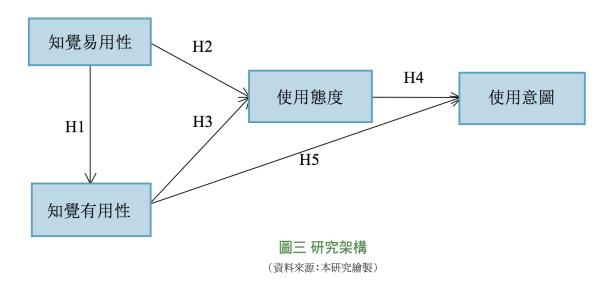
國軍人員操作後勤資訊系統屬作業流 程之必要途徑,且研究對象為近1年內具後勤

- 12 同註7。
- 13 同註10。
- 14 陳宜棻、劉璧瑩,〈結合服務品質與TAM觀點探討消費者線上信任及購買意願之影響因素〉《顧客滿意學刊》,第6卷第1期,西元2010年3月,頁1-32。
- 15 彭思舟、許立群、黃永進,〈線上購物者購買行為之實證研究:科技接受模式之權變觀點〉《顧客滿意學刊》,第8卷第2期,西元2012年9月,頁183-210。
- 16 李一静、樊台聖、王炯傑,〈行動社群使用意願之影響因素探討〉《電子商務研究》,第13卷第4期,西元2015年12月,頁403-430。
- 17 同註4。

資訊系統使用經驗之人員,故將「實際使用」 之構面省略,餘研究架構均依科技接受模式 (基本型)發展(如圖三),藉以探討各個構 面對於使用意圖之影響;本研究假設如後:

- (一) H1: 知覺易用性會顯著影響操作人員的 知覺有用性。
- (二)H2:知覺易用性會顯著影響操作人員 的使用態度。
- (三)H3:知覺有用性會顯著影響操作人員 的使用態度。
- (四) H4:使用態度會顯著影響操作人員的 使用意圖。
- (五)H5:知覺有用性會顯著影響操作人員 的使用意圖。

基於前述文獻探討與研究架構,本研究 共計「知覺易用性」、「知覺有用性」、「使用 態度」與「使用意圖」等4個構面,各構面之操 作型定義與衡量題項分述如表二;除受訪者 基本資料以外,餘均採用李克特(Likert)五 點量表,分數越高代表認同程度越高,分數 越低則反之。


二、資料分析方法

依據本研究之研究目的及假設檢定需 要,本研究區分兩階段執行資料分析,第一階 段運用SPSS統計軟體執行樣本結構分析與各 構面之敘述性統計,第二階段運用AMOS統計 軟體執行之驗證,以科技接受模式作為結構 方程式(Structural Equation Model, SEM)之架 構,並透過配適度檢定、效度檢定、常態分配 檢定與模式路徑檢定,驗證假設是否成立。

肆、驗證分析與結果

一、問卷發放、回收與樣本結構分析

考量後勤資訊系統操作人員分布於國軍 各部隊之特定職務,較難以針對單一群體進 行抽樣,採滾雪球抽樣方式以增進問卷填答 數量與廣度,合計發放問卷267份,回收問卷

衣	各種	面乙傑作性定義與衡重問項
	題號	

構面	操作型定義	題號	衡量問項	參考文獻		
	使用者認為資訊系統			V1	我所使用的後勤資訊系統的介面是清楚且容易理解	
知覺易用性		V2	我所使用的後勤資訊系統功能操作不用花很多精神 心力去學習	賴宜弘 黃芬芬		
和見勿用注	相關操作的容易程度	V3	我所使用的後勤資訊系統的操作很容易上手	楊雪華		
		V4	我可以很容易的利用我所使用的後勤資訊系統完成 我的工作	(2015) 18		
		V5	我所使用的後勤資訊系統對我的工作是有幫助的			
60 K×2 → 177 L/I	使用者相信使用資訊 系統將帶來的工作績 效提升程度	V6	我所使用的後勤資訊系統能讓我更快速的完成工作	任維廉		
知覺有用性		V7	我所使用的後勤資訊系統能提升我每日的工作成效	呂堂榮		
		V8	我所使用的後勤資訊系統可以讓我的工作更少出錯	劉柏廷		
	使用者對於科技系統	V9	我覺得後勤部門推行使用的資訊系統是很好的政策	(2009) 19		
使用態度	之正向(喜歡)或負向	V10	我所使用的後勤資訊系統讓我覺得工作較輕鬆有趣			
	(不喜歡)的程度	V11	我很喜歡我所使用的後勤資訊系統			
	 使用者依據主觀機率 來判斷使用科技系統	V12	我預計未來繼續使用我所使用的後勤資訊系統執行 我的工作	張巧真		
使用意圖	的利弊得失,從而決 定繼續使用之的意願	V13	往後我也會在工作上持續使用後勤資訊系統執行 作業	陳筠惠 (2014) ²⁰		
	程度	V14	我打算經常利用後勤資訊系統執行我的工作	(2014)		

資料來源:本研究整理

266份,有效問卷191份,無效問卷75份,有效 回收率71.8%。

回收問卷之樣本結構,將樣本區分性 別、年齡、教育程度、階級、服務年資、任職 單位階層、任職單位屬性與使用頻率等8項, 分析結果如表三;其中受測者對於後勤資訊 系統使用經驗,單一系統使用者佔46.6%,同

時使用2種資訊系統的使用者佔29.3%,同 時使用3種資訊系統的使用者佔11.0%,同時 使用4種資訊系統的使用者佔8.9%,同時使 用5種資訊系統的使用者佔2.1%,同時使用 7種資訊系統的使用者佔1.0%,同時使用10 種資訊系統的使用者佔1.0%;就整體而言, 同時使用數個後勤資訊系統佔總受測人數的

¹⁸ 賴宜弘、黃芬芬、楊雪華、〈科技接受模式中文版量表之編製與相關研究〉《亞東學報》,第35卷,西元 2015年12月,頁201-221。

¹⁹ 同註10。

²⁰ 張巧真、陳筠惠,〈應用延伸型整合科技接受模式探討線上購買意願-以雙媒介之觀點〉《電子商務研 究》,第12卷第2期,西元2014年6月,頁143-168。

53.4%,單一系統使用者則佔46.6%,由此可 知,跨系統使用者於國軍人員內並非少數群 體。

二、各研究構面之敘述性統計

各構面平均值介於3.165至3.485之間, 坐落在無意間與同意之間,其中以使用意圖

較高(3.485),知覺易用性較低(3.165),整 體而言,受測者對於各個構面的態度趨向正 面;標準差介於0.828至1.010之間,其中以使 用態度的標準差最高(1.010),表示受測者在 此構面答題離散情形較大,亦即受測者在操 作後勤資訊系統的使用態度認知差異較大,

表三 基本資料結構

特徵變項	項目說明	樣本數	百分比	累積百分比
性別	男性	159	83.2%	83.2%
「土力リ	女性	32	16.8%	100.0%
	18~30歲	49	25.7%	25.7%
年齡	31~40歲	133	69.6%	95.3%
	40歲以上	9	4.7%	100.0%
	國中及以下	0	0.0%	0.0%
) 教育程度	高中職	64	33.5%	33.5%
秋 月任反	大學/專科	105	55.0%	88.5%
	碩士以上	22	11.5%	100.0%
	校級軍官	64	33.5%	33.5%
	尉級軍官	47	24.6%	58.1%
階級	士官長(含一、二、三等)	15	7.9%	66.0%
道秋	士官(含上士、中士、下士)	62	32.5%	98.4%
	士兵(含上等兵、一等兵、二等兵)	3	1.6%	100.0%
	聘僱人員	0	0.0%	100.0%
	10年以上	120	62.8%	62.8%
服務年資	10~5年	55	28.8%	91.6%
加物一具	5~1年	15	7.9%	99.5%
	1年以下	1	0.5%	100.0%
	軍團(防衛部)	21	11.0%	11.0%
 任職單位階層	旅級(指揮部、地支部、群級)	67	35.1%	46.1%
江城平以泊僧	營級	37	19.4%	65.4%
	連級	66	34.6%	100.0%
	戰鬥部隊(包含步兵、裝甲、陸航)	62	32.5%	32.5%
任職單位屬性	戰鬥支援部隊(包含砲兵、工兵、通信、化學)	18	9.4%	41.9%
	勤務支援部隊(其他)	111	58.1%	100.0%
	每季少於1次	60	31.4%	31.4%
	每季1次	38	19.9%	51.3%
近一年使用頻率	每月1次	31	16.2%	67.5%
	每週1次	40	20.9%	88.5%
	每日	22	11.5%	100.0%
使用經驗	單一系統使用者	89	46.6%	46.6%
文/市和公司	跨系統使用者	102	53.4%	100.0%

資料來源:本研究整理

而知覺有用性的標準差最低(0.828),表示 受測者在此構面答題離散情形較小,亦即受 測者在操作後勤資訊系統的使用態度認知差 異較小(如表四)。

三、量測模式

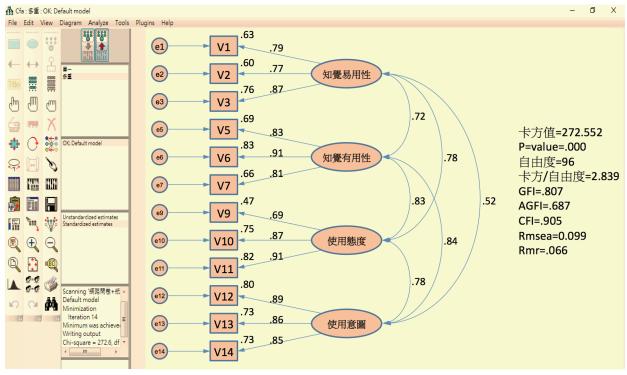
(一) 違犯估計 (offending estimates)

在執行模式適配度檢驗前,須先行檢查 是否有「違犯估計」,以檢驗估計係數是否超 過可接受範圍,提列檢驗項目計有2項,(1) 檢查有無負數的誤差變異數存在,(2)標準 化係數不得接近1,通常以0.95為標準;21模 式中誤差變異數量測值為0.02至0.092,並 無負值之誤差變異數;模式中標準化係數 絕對值介於0.574至0.862之間,皆未超過 0.95,檢測結果顯示本模式未發生違犯估 計現象。

(二)適配度檢核(model fit)

採用SEM作為理論模型執行驗證時,驗 證模型適配度是必要之條件,適配度越良 好,表示模型與樣本更為相近;本研究先逐 一對各個構面進行檢核,若適配度不符合 標準時,刪除相關係數過高之題項,於知覺

表四 潛在變相之敘述性統計分析與信度檢驗


## -	野石		項	構面	
構面	題項	平均數	標準差	平均數	標準差
红口	V1: 我所使用的後勤資訊系統的介面是清楚且容易理解	3.251	0.935		
知覺易用性	V2:我所使用的後勤資訊系統功能操作不用花很多精神心力去學習	3.010	0.989	3.165	0.959
用	V3: 我所使用的後勤資訊系統的操作很容易上手	3.105	0.968	3.100	0.959
任	V4:我可以很容易的利用我所使用的後勤資訊系統完成我的工作	3.293	0.922		
έn	V5: 我所使用的後勤資訊系統對我的工作是有幫助的	3.576	0.829		
知覺有用性	V6: 我所使用的後勤資訊系統能讓我更快速的完成工作	3.387	0.812		0.828
月用	V7:我所使用的後勤資訊系統能提升我的每日的工作成效	3.204	0.880	3.343	
性	V8: 我所使用的後勤資訊系統可以讓我工作更少出錯	3.204	0.915		
使	V9: 我覺得後勤部門推行使用的資訊系統是很好的政策	3.686	1.003		
使用態度	V10: 我所使用的後勤資訊系統讓我覺得工作較輕鬆有趣	3.047	0.969	3.244	1.010
度	V11:我很喜歡我所使用的後勤資訊系統	3.000	0.912		
使	V12:我預計未來繼續使用我所使用的後勤資訊系統執行我的工作	3.466	0.851		
使用意	V13:往後我也會在工作上持續使用後勤資訊系統執行作業	3.503	0.876	3.485	0.890
昌	V14:我打算經常利用後勤資訊系統執行我的工作	3.487	0.945		

資料來源:本研究整理

²¹ 榮泰生,《AMOS 與研究方法》,第4版(臺北:五南文化,民國100年)。

易用性之構面,刪除「V4」題項,於知覺有用性之構面,刪除「V8」題項,使各個構面適配度均符合標準;接續進行整體適配度指標檢驗,卡方值與自由度比值為2.839、CFI值為0.905,達到可接受標準(1≦卡方值與自由度比值≤3、CFI>0.9);GFI值為0.807、RMSEA值為0.099、RMR值為0.066未達可接受標準

(GFI>0.9、RMSEA<0.05、RMR<0.05),然而 過去學者研發現若樣本數過小,將導致前述 各項指標超出可接受標準,故可放寬接受標 準(GFI>0.8、RMSEA<0.10、RMR值<0.08); ^{22、23、24}另AGFI值為0.687,未達可接受標準 (AGFI>0.8)²⁵;整體而言,本研究之觀察變 項整體適配度尚可(如圖四)。

圖四 整體適配度檢驗

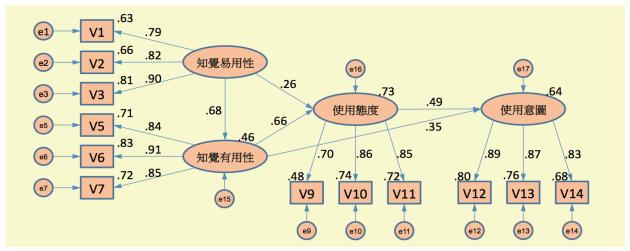
(資料來源:本研究繪製)

- Doll, W. J., Xia, W., & Torkzadeh, G., "A confirmatory factor analysis of the end-user computing satisfaction instrument," MIS Quarterly (Minnesota), Vol. 18, No. 4 (1994), p. 453-461.
- 23 Browne, M. W., & Cudeck, R., "Alternative ways of assessing model fit," Sociological Methods & Research (New York), Vol. 21, Issue 2 (1992), p. 230-258.
- 24 Hu, L. T., & Bentler, P. M., "Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives," Structural equation modeling: a multidisciplinary journal (Oxfordshire), Vol. 6, Issue 1 (1999), p. 1-55.

(三)信度與效度分析

在組合信度(Composite Reliability, CR) 部分,可接受的值須在0.60以上,若高於0.70 則可判定量表具備良好的組成信度;本研究構面組合信度介於0.85至0.90之間,皆高於0.70,表示各個量測構面具備良好的一致性。另平均變異萃取量(Average Variance Extracted, AVE)介於0.66至0.75之間,高於

建議標準值0.50以上,表示本研究模型具備 良好之收斂效度,且各構面之平均變異萃取 量平方根均大於構面間之相關係數,表示本 模型具備良好之區別效度(如表五)。


四、模型路徑係數顯著性檢定與假說驗證

本研究繼續觀察模型中各構面之路徑 係數顯著與否(如圖五),以驗證假設是否成立,在觀察表六後可發現,各路徑係數均達很

3.77 重次的关系UNABUILINACIF								
構面	組合信度(CR)	平均變異萃取量 (AVE)	知覺易用性	知覺有用性	使用態度	使用意圖		
知覺易用性	0.85	0.66	0.81					
知覺有用性	0.89	0.72	0.72	0.85				
使用態度	0.87	0.69	0.78	0.83	0.83			
使用意圖	0.90	0.75	0.52	0.84	0.78	0.87		
註:對角線粗體字為AVF值的平方根								

表五 量測模式的構面相關矩陣

資料來源:本研究整理

圖五 本研究結構模式

(資料來源:本研究繪製)

25 MacCallum, R. C., & Hong, S., "Power analysis in covariance structure modeling using GFI and AGFI," Multivariate Behavioral Research (Oxfordshire), Vol. 32, No. 2 (1997), p. 193-210.

顯著或非常顯著之標準,表示各構面間均呈 現因果關係,即得假設H1、H2、H3、H4與H5 均成立(如表七)。由此可證,科技接受模式 可用以探討後勤資訊系統使用之行為模式, 以作為結論與建議之論述。

伍、結論與建議

一、結論

國軍後勤資訊系統主要目的在於增進 操作者作業效率,並迅速與精確掌握後勤成 本。本研究基於科技接受模式,以「知覺易用

性」與「知覺有用性」探討使用者對於系統操 作之影響,經第四章研究分析均獲得支持, 即驗證科技接受模式對於後勤資訊科技接受 度具備相當解釋能力,且各個構面所獲的觀 察變項平均值介於3.165至3.485之間,屬「無 意見」與「同意」之間,且趨向「無意見」值, 顯見國軍後勤資訊系統仍有進步與成長空 間。

(一) 假設H1、H2成立

「知覺易用性」會正向顯著影響操作 者的「知覺有用性」與「使用態度」,如系統 設計時將系統的易用性納入考量並有效的

表六 研究模型之路徑係數

	₽ <i>ħ ⟨₁;;;</i>		標準化	非標準化估	S.E.	C.R.	Р	
路徑		估計值	計值	(誤差)	(t值)	۲		
知覺有用性	←	知覺易用性	0.679	0.64	0.074	8.601	***	
使用態度	←	知覺易用性	0.256	0.241	0.077	3.125	0.002**	
使用態度	←	知覺有用性	0.659	0.658	0.108	6.105	***	
使用意圖	←	使用態度	0.486	0.529	0.148	3.575	***	
使用意圖	←	知覺有用性	0.351	0.382	0.147	2.597	0.009**	
*表示p值<0.05,**表示p值<0.01,***表示p值<0.001								

資料來源:本研究整理

表七 研究假說檢定結果

假說	假說內容	檢定結果
H1	知覺易用性會顯著影響操作人員的知覺有用性	成立
H2	知覺易用性會顯著影響操作人員的使用態度	成立
H3	知覺有用性會顯著影響操作人員的使用態度	成立
H4	使用態度會顯著影響操作人員的使用意圖	成立
H5	知覺有用性會顯著影響操作人員的使用意圖	成立

資料來源:本研究整理

提升,將可提升操作人員的「知覺有用性」與 「使用態度」;相對的,如系統於設計或研改 時未將易用性納入考量,將導致操作人員的 「知覺有用性」與「使用態度」趨向負面。

現階段後勤資訊系統多數已經完成網頁 化,使操作手不必侷限於單一電腦主機才可 執行系統操作,提升系統的方便性,並且同時 各個系統依高階管理者之需求,建置許多新 的管制與管理功能,對於具備操作經驗人員 將可提升其「知覺易用性」;然而系統功能的 增加,亦使功能選項更佳繁瑣,將導致欠缺 操作經驗人員有較低的「知覺易用性」,研判 為「知覺易用性」偏低的原因之一,而此類操 作人員在系統未針對易用性研改的前題下, 就必須透過教育訓練與使用經驗,使操作人 員具備科技準備之能力,才可提升其對於後 勤資訊系統的「知覺易用性」。

(二)假設H3、H4、H5成立

「知覺有用性」會正向顯著影響操作者 的「使用態度」與「使用意圖」,另「使用態 度」亦正向顯著影響「使用意圖」,然而「使 用意圖」於系統設計階段難以直接控制,故 系統設計與後勤政策制定時將系統的有用性 納入考量,將可提高系統操作者的「使用態 度」,使操作手對於系統的「使用態度」趨於 正向;相對的,如系統於設計與政策制定時,

未將有用性納入考量,將導致操作人員的「使 用態度」趨向負面。

如郭俊良等人(2017)所述,系統與系 統間未整合的方式協同作業,多數系統產生 「資訊孤島」,與現代化供應鏈之概念背道而 馳,易造成資料不一致與發生人為錯誤。26就 現行用兵後勤系統管理規定,為即時掌握各 單位後勤能量狀況,各級業管人員須每日更 新存量現況,以第五類補給品為例,存量標 準係依據現有裝備與建制人員數量,按單位 屬性計算應屯之存量標準,並結算現屯彈藥 存量,在資訊孤島的現況下,作業人員必須 透過人工方式蒐集相關參數,再以彈藥資訊 系統輸出彈種存量報表,最終運用文書處理 軟體計算;然而上述作業過於繁複,鮮有作 業人員能完整的去調查與統計。前揭狀況尤 其於地區後勤支援單位又較一般部隊更為明 顯,如同「長鞭效應(bullwhip effect)」27般, 愈往上游變異性越大,而此狀況發生在各個 資訊系統間必須串聯之資訊,易產生資料不 一致與發生人為錯誤,不但造成高階決策者 資訊錯誤,亦無法提高基層作業人員的工作 效率,降低了對於後勤資訊系統的「知覺有用 性」。

二、建議

(一)教育訓練為提升「知覺易用性」的方

²⁶ 同註4。

²⁷ D. Simchi-Levi, P. Kaminsky and E. Simchi-Levi著,何應欽譯,《供應鏈設計與管理:全新臺灣案例 版》,第3版(臺北市:華泰文化,民國103年1月)。

法,使用人員具備科技準備程度,然而 後勤資訊系統使用群體並非特定單位、 階層、職務,且教育訓練手段不外乎 兵科訓練單位的流路訓練及一般部隊 的在職訓練(包含示範、講習、經驗移 交),其效果侷限,如能於系統設計階 段,即將使用者認知納入考量,並導入 設計一致性、明確回饋、視覺愉悅性與 實用性等觀念,28以降低使用者所需的 科技準備程度,可提升使用者的「知覺 易用性」。

(二)作業流程的簡化必須結合系統的整合, 而在執行系統整合前,必須全般檢視 所有作業流程,使所有作業流程概念相 近;過去許多研究已探討後勤資訊系 統整合,所使用整合技術包含企業資 源規劃、供應鏈作業參考模式、美國國 防部架構規範與整合性資訊系統架構 等,各項技術都有優劣,至於是否適用 國軍後勤現況,仍須由政策制定單位研 析,或委由專責單位進行評估,以選擇 最佳方案;若能有效簡化作業流程與系 統間之整合,預期可有效提升「知覺易 用性」。管理的目的在於資源的有效分 配,以避免重複且不必要行為產生資源

28 張欣雯,〈使用者中心之產品介面設計與研究—以手持式行動裝置設計為例〉(臺北:國立臺灣師範大學設計研究所在職進修碩士論文,西元2010年)。

浪費,資訊化的目標亦為如此,故不斷 的強調系統的整合,以消彌人工作業上 不必要之誤失,並追求資訊的時效是系 統建置的終極目標。

三、後續研究建議

本研究對象包含用兵後勤系統與通用後 勤系統,因此研究結果未針對特定後勤資訊 系統,建議未來可對特定的後勤資訊系統進 行研究,以提出更具體之建議;另科技接受 模式可依研究需要,加入不同外部變數,如資 訊科技、科技準備、使用經驗與組織環境等, 建議未來可依國軍作業現況納入外部變數, 設計出更適切的延伸科技接受模式,以進行 相關主題研究。

作者簡介

蔡沐騰少校,中正理工學院專95年班, 陸軍後勤正規班104年班,正修科技大 學經營管理碩士在職班106年班,國防 大學陸軍指揮參謀學院108年班,曾任 排長、分庫長,現任職陸軍後勤指揮部 彈藥處彈藥技術官。

作者簡介

陳鴻鈞中校,國防大學管理學院87年班,國防大學管理學院正規班89年班, 國防大學指參班99年班,現任職國防 大學管理學院國管中心後勤管理組指 參教官。

\