

對鐵陸軍数盲訓練之啟示

作者/王清安上校

提要

- 一、隨著網路科技發展,實體環境結合虛擬軟體的擴增實境,已被研究證明可提高個 人學習效益、減省教育成本支出,以及減輕教學單位人事負荷。擴增實境系統應 用已成為精進教育訓練未來發展趨勢。
- 二、2015年美國陸軍開始計劃將擴增實境系統應用於作戰部隊實戰訓練,其主要目的 希望透過擴增實境所提供之三維(3D)立體空間投影圖像,據以強化單兵射擊成效, 並透過創建之虛擬綜合訓練環境,以降低訓練成本支出。同時,構建聯合作戰空 間立體圖像,以精進聯合作戰效能。
- 三、回顧我陸軍推動數位教育及模擬機建置已有十餘年,然其效益卻僅限於單向性學 習。在2019年我陸軍推動志願役須具有多專多能的同時,參考美陸軍將擴增實境 應用於部隊訓練,建議我陸軍應積極投資購買擴增實境器材,以及將擴增實境應 用整合至地面指管系統,俾利強化我陸軍整體戰力。

關鍵詞:擴增實境、教育訓練、模擬訓練、虛擬圖像。

前言

隨著資訊網路科技的發展,各軍事強國為提升官兵訓練成效,已積極將攜增實境 (Augmented Reality, AR)系統應用於軍事訓練,其主要目的為希望透過建立三維立體空 間的虛擬訓練環境,克服以往平面(2D)圖像所無法提供的仿真戰場實況。據 2018 年時 任美國防部長馬提斯(Jim Mattis)表示,傳統訓練方法將無法為親臨前線的官兵,做好 作戰前的充分準備。同時馬提斯亦強調,未來參與前線作戰的第一線部隊,須在投入 戰場前完成 25 場不流血的戰鬥訓練,其重要手段為運用擴增實境系統,以創建模擬、 複雜虛擬的戰場景況,使官兵能於仿真戰場壓力下遂行戰鬥訓練,進而達到實戰化的 訓練體驗。¹事實上,美國防部已於 2015 年,將擴增實境系統導入部隊作戰訓練。根 據 2015 年美國《國防新聞》(Breaking Defense)報導,美國防部為因應國防預算遭刪減, 以及做好戰爭前置訓練準備,已採購擴增實境系統應用於部隊作戰訓練,以補足虛擬 實境技術(Virtual Reality, VR)無法使參訓人員體驗到仿真戰場真實感受, 進而增加參訓

Bob Scales, "Mattis's Infantry Task Force: Righting A Generational Wrong," breaking defense, https://breaking defense.com/2018/11/mattiss-infantry-task-force-righting-a-generational-wrong/, (November 26, 2018), 2019/2/18.

官兵實戰經驗及臨場反應能力。²由美陸軍積極將擴增實境系統運用於部隊訓練,已凸顯出擴增實境應用對提升部隊訓練成效,將是愈來愈重要的。

實戰化的模擬訓練環境,有助於提升部隊訓練成效。2018年底,我陸軍司令王信龍上將主持「108年戰備任務訓練城鎮作戰」時強調,各單位須將「仿真實戰」做為戰備任務訓練指導,並從嚴、從難,合理可行、循序漸進方式執行演練,進而提升部隊作戰能力。³另外,根據 2016年陸軍蔣河山研究表示,運用虛擬系統有助於提升軍事訓練,其項目包括協同作戰訓練,以及個人生存能力訓練等。⁴基此,本文採「文獻分析法」,首先瞭解擴增實境系統之定義與系統架構。其次,探討美軍擴增實境應用於部隊訓練。接續,檢視我陸軍現階段教育訓練不足之處,最後提供策進之道。

擴增實境系統之概述

擴增實境系統為透過資訊設備、軟體技術所創出的虛擬軟體結合實體環境。該項 科技應用教育訓練後,有助於個人學習效益及減輕教學單位人力負荷。

一、擴境實境系統定義與系統架構

擴境實境系統創建虛擬空間投影,其定義及系統攸關教育訓練應用發展。

(一)擴境實境系統之定義

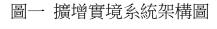
擴增實境系統為即時、互動技術,運用攝影機所拍攝的影像進行辦識分析,並以直接或間接方式將虛擬物件投影在真實場景的一種多媒體方式。根據 2010 年張鴻認為,擴增實境系統是介於「真實世界」與「虛擬世界」的概念,將真實世界的圖片、素材和資料,與電腦裡的虛擬世界結合,其產出的複合式影像,讓使用者同時看到真實世界的影像及虛擬世界的元素,並創造出彼此之間的互動。5另外,根據 2010 王曉璿博士表示,擴增實境系統為虛擬實境之延伸,是將現實的環境影像及電腦虛擬影像互相結合的一種技術,將虛擬的物體利用電腦演算後,構建在真實空間中,使虛擬物件融入生活場景中,讓使用者可以在親眼所見的實際環境中操作虛擬三維立體物件。6除此之外,根據我國 2017 年國防部出版的《國軍模式模擬與電腦兵棋要綱》指出,擴增實境係指將虛擬的影像擴增到真實的空間中,讓使用者看到一個虛擬與真實交織的世界。7因此,擴增實境系統即為透過電腦將影像、物件或場景完成製造後,使虛擬資訊融入於真實

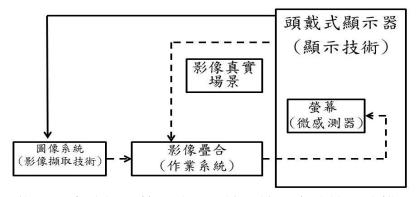
² SYDNEY J. FREEDBERG JR. "Marines Explore 'Augmented Reality," breaking defense, https://breakingdefense.com/2015/09/marines-explore-augmented-reality-training/, (September 1, 2015), 2019/2/18.

³ 黄庭,〈第4作戰區城鎮作戰示範觀摩 厚植防衛能量〉《青年日報》(臺北),2018年12月20日,版5。 4 蔣河山,〈淺析軍事電子遊戲在軍事訓練中的應用〉《陸軍通資半年刊》(桃園),第125期,陸軍通信電子資訊訓練中心,2016年4月,頁29。

⁵ 張鴻, 〈擴增實境, 商機無限〉《TRADE MAgazine》(臺北), 230 號, 2010 年 8 月, 頁 45。

⁶ 邱智偉、王曉璿,〈線上多人擴增實境系統架構設計探究〉(國立臺中教育大學數位內容科技學系碩士論文, 2010年6月),頁6。


⁷ 國防部整合評估司,《國軍模式模擬與電腦兵棋要綱》(台北:國防部訓次室,2017年11月9日),頁9-52。


世界中,讓使用者在視覺感官上,透過電腦顯示器感受到真實與虛幻的知覺。析言之, 擴增實境系統為真實世界環境結合虛擬物件資訊,讓使用者與現實世界環境產生感知 與即時互動,使其融入於仿真三維立體環境場景中。

(二)擴增實境系統架構

擴增實境為真實物理環境加上資訊數據所建構而成。擴增實境系統組成包括影像 擷取技術、作業系統、顯示技術、微感測器,以及無線網路通信技術等整合成智慧型 行動科技,呈現的方式區分為光學式透視之螢幕呈現,以及視訊式透視之頭戴顯示影 像。螢幕呈現是以攝影機所拍攝的影像進行處理,將虛擬物件疊加在真實環境影像上, 最後於螢幕上呈現。另頭戴式視訊顯示影像,先將虛擬物件與真實環境的畫面進行整 合,最後以視訊方式顯示與頭戴式顯示器的螢幕上。⁸除此之外,程式碼開發模式是以 Jave 語言或組合 API 進行應用程式建構。⁹因此,擴增實境系統為即時計算攝影點加入 圖像技術,透過影像疊合的作業系統,並與影像真實場景結合,由螢幕或頭戴式顯示 器呈現出虛擬立體空間影像。(如圖一)。

擴增實境系統示意圖

資料來源:1.陳俊臣、李鴻毅、蕭顯勝,〈擴用擴增實境技術建構互動學習環境-以國 立臺灣科學科育館為例〉《教育科技與學習》(臺北),第2卷第1期,2013年7月, 頁 157。2.邱智偉、王曉璿、〈線上多人擴增實境系統架構設計探究〉《國立臺中教育 大學數位內容科技學系碩士論文》,2010年6月,頁8。

二、擴境實境系統與教育訓練之關係

虚擬三維立體空間圖像與實景(物)的互動,可提升個人學習意願。同時,將因減 少實體裝備搬運及操作錯誤風險,進而降低裝備損壞。此外,透過無線網路異地同時

⁸ 陳俊臣、李鴻毅、蕭顯勝,〈運用擴增實境技術建構互動學習環境-以國立臺灣科學科育館為例〉《教育科技 與學習》(臺北),第1期第2卷,中華資訊與科技教育學會,2013年7月,頁157。

⁹ 同註 6。

連線操作,增加團隊彼此合作默契。

(一)提升個人學習效益

仿真的學習環境及即時互動學習,有助於提升個人學習意願及成效。根據 2013 年我國師範大學蕭顯勝教授表示,擴增實境系統應用於教育訓練,讓學習者透過與虛擬三維立體空間圖像進行互動學習,相較於傳統學習更可提升學習者較佳的專注力。 10 另外,根據 2016 年陸軍洪琬婷譯文,2013 年美陸軍所委商研發的「美國陸軍:驗證之地線上遊戲(America's Army: Proving Grounds)」系統,結合美軍實際作戰經驗後,使美國陸軍官兵透過穿戴式數位影像技術接受模擬訓練,可獲得近似實戰經驗,其結果除可降低官兵於戰場風險危安係數,更提供管理階層透過運用模擬科技,研擬創新訓練方式,提升整體作戰效能。 11 因此,擴增實境系統應用於教育訓練,有助於提升官兵學習興趣,增加個人訓練成效。換句話說,擴增實境系統應用於軍事教育訓練,透過仿真的戰場情景,有助於提升訓員戰場狀況處置。同時,降低人員風險危安因素。

(二)降低實作裝備損害風險

擴增實境系統所構建出的虛擬綜合訓練環境,將可減少實體裝備錯誤操作機率, 進而降低損害風險。據 2016 年陸軍蔣河山表示,虛擬實境技術和軍事戰術結合而成的 軍事訓練模擬系統,於近似實戰的虛擬戰場環境中,其效益能夠有效減少人員傷亡和 武器裝備損毀,並可達節約各種資源及降低訓練成本。¹²另外,根據 2015 年《美國防 新聞》報導,隨著未來作戰發展趨勢已朝向聯合作戰型態,強化空襲和砲擊下的處置 作為,對美陸軍確保部隊行動安全已至關重要。然受限於經費因素,昂貴組件只能使 用一次,如真實炸彈透過運用擴增實境系統運用於部隊訓練,可減少訓練投資成本。¹³ 故模擬全天候、全時段的戰役或戰場情境,可降低人員傷亡及訓練器材損壞。簡言之, 擴增實境系統的仿實戰化效果,可節約人事及訓練維護經費支出。

(三)強化聯合作戰效能

未來的作戰已是無戰不聯。共同平面作戰圖像,已無法滿足聯戰需求;發展立體化的作戰空間投影圖像,已成為未來聯合作戰取勝重要工具。根據 2016 年陸軍蔣河山研究指出,分散式架構(Distributed Architecture)的軍事訓練模擬系統,將分散不同區域的作戰部隊,透過通資系統連結起來進行的協同作戰,其效益有助於培養團隊意識和協同作戰觀念。¹⁴另外,2017 年陸軍張琪閔亦指出,透過模擬科技將隸屬不同地方的

¹⁰ 同註 8, 頁 177-178。

¹¹ 洪琬婷,〈美陸軍游戲工作室虛擬訓練環境與運用(The U.S. Army Game Studio's Virtual Training Environment)〉 《陸軍通資半年刊》(桃園),第 125 期,陸軍通信電子資訊訓練中心,2016 年 4 月,頁 49-50。

¹² 同註4。

¹³ 同註 2。

¹⁴ 同註 4。

部隊、裝備、人員、環境,以及電腦建構之虛擬部隊、虛擬戰場等納入戰術演訓,使參演者不會察覺其空間、人員及環境的變化差異,其結果有助於提升聯合作戰參演效能。¹⁵另外,值得注意的是 2015 年美國陸軍為減少戰場空間所需的戰場情報分析時間,以及提高參與兵推的第一線部隊更高度的參與感,已由美陸軍研究實驗室完成擴增實境版的軍用沙盤(Augmented Reality Sandtable, ARES)研發。該系統為投戴式顯示器、筆記型電腦,和由微軟所研發的 Kinect 系統等組建而成,其效益提供了改進戰場視覺的感官知能(如圖二)。¹⁶因此,擴增實境建立近似實戰之虛擬戰場環境,有助於參演官兵掌握各種戰術知識,以及遂行作戰部署與行動。同時,亦提高指揮官作戰指揮能力。簡言之,虛擬三維立體空間圖像,更能讓指揮官感受到第一線部隊所面臨的戰場景況,進而下達正確決心,其結果有助於強化三軍聯合作戰效能。

圖二 美國陸軍擴增實境軍用沙盤

資料來源:Rex Brynen, "Augmented reality sand tables," paxsims. Wordpress, https://paxsims.wordpress.com/2014/10/08/augmented-reality-sand-tables/, 2019/2/18.

總而言之,擴境實境系統為透過影像擷取技術、作業系統、顯示技術、微感測器,以及無線網路技術等整合成智慧型行動科技,使第一線作戰部隊與後方指揮官,同步看到虛擬三維立體空間圖像。對教育訓練而言,擴增實境系統創建的空間投影圖像,首先將因增加學習者與虛擬環境之互動學習能力,進而提升官兵個人學習成效。其次,減少值勤人員錯誤操作及人為搬運所造成的意外風險,降低裝備損壞情形發生。同時,間接減輕接訓單位人事負荷與訓場維護成本。最後,透過虛擬立體空間圖像,使學習者產生仿真的戰場覺知,配合虛擬的視覺畫面及真實景況的互動,有助於瞭解三軍火力支援狀況及接戰狀態,達到強化聯合作戰效能之目標。

¹⁵ 張琪閔、莊水平,〈由 3D 多維模擬訓練平臺淺論國軍部隊基礎訓練之研究〉《陸軍通資半年刊》(桃園),第 127 期,陸軍通信電子資訊訓練中心,2017 年 4 月,頁 101。

Michael Morozov Founder & CEO, "Augmented Reality in Military: AR Can Enhance Warfare and Training," jasoren, https://jasoren.com/augmented-reality-military/, 2019/2/18.

美軍擴增實境導入軍隊運用

一、美軍運用擴增實境技術導入部隊訓練

戰場狀況覺知(Situational Awareness)對未來戰爭取得勝利,至關重要。

(一)美軍運用擴增實境裝備之概述

圖三 增強型夜視鏡-雙筒望遠鏡 ENVG-B

資料來源: Michael Morozov Founder & CEO, "Augmented Reality in Military: AR Can Enhance Warfare and Training," jasoren, https://jasoren.com/augmented-reality-military/, 2019/2/18.

隨著未來作戰景況需求,第一線部隊與各階層指揮官須建立在共同作戰立體空間圖像基礎上。根據 2018 年美《國防新聞》報導,美陸軍為取代以往須低頭看手持 GPS設備,已於 2018 年 10 月完成「增強型夜視鏡-雙筒望遠鏡 ENVG-B」HUD 3.0 測試(如圖三)。該裝備能夠使佩戴者的視野範圍內,將障礙物呈現虛擬立體空間地形,並透過仿真訓練的場景環境,提供親臨前線的官兵清楚掌握自身、盟軍和敵軍的位置。 17事實上,美陸軍為克服以往 2D 所無法提供立體空間仿真環境,早在 2002 年由美國陸軍模擬訓練司令部(Simulation Training and Instrumentation Command, STRICOM)推動一項培訓計畫。該計畫規劃開發「戰場擴增實境系統(Battlefield Augmented Reality System, BARS)」,透過無線網路和頭戴式顯示器(Head-Mounted Display, HMD)實施通連,其功能使仿真系統的圖形看起來與實際環境一致。例如,建築物名稱,狙擊手圖標相鄰街道名稱。同時,「戰場擴增實境系統」可將物理上不同的武器載台整合到環境中。 18 故戰術擴增系統創建的虛擬立體空間投影圖像,已成為美陸軍十餘年推動現代化轉型最重要的國防政策之一。換句話說,美陸軍戰術擴增實境系統的部署,將如同飛行員之頭盔,為第一線部隊提供目標獲得,即為武器瞄準之結合。

SYDNEY J. FREEDBERG JR. "HUD 3.0: Army To Test Augmented Reality For Infantry In 18 Months," https://breakingdefense.com/2018/03/hud-3-0-army-to-test-augmented-reality-for-infantry-in-18-months, (March 29, 2018), 2019/2/18.

Mark A. Livingston, "An Augmented Reality System For Military Operations In Urban Terrain," Proceedings of the Interservice / Industry Training, Simulation, & Education Conference (I/ITSEC '02), Orlando, FL, December 2-5, 2002, pp.7.

除此之外,隨著資訊、網路科技發展,仿真的戰場景況對提升部隊訓練已至關重 要,其擴增實境系統整合至部隊訓練應用項目也相對需求增多。美陸軍運用官兵的戰 術擴增實境(Tactical Augmented Reality, TAR)系統,與護目鏡相同的方式安裝在官兵頭 盔上,透過無線網路資訊鏈結,至第一線部隊官兵之攜帶平板電腦安裝軍規的戰術攻 擊作業軟體(Android Tactical Assault Kit, ATAK)命令和控制作業軟體,使第一線部隊官 兵能正確掌握瞄準的目標和距離。19另根據 2018 年美《國防新聞》報導,美陸軍士兵 圖像識別系統的護目鏡(HUD 3.0),已結合先進夜視和擴增實境系統,其整合視覺擴增 實境系統(Integrated Vision Augmentation System, IVAS),除可提供佩戴者視野範圍內, 虛擬射擊位置的戰術數據。同時還能提供自動告警聲音,如發現坦克通知其他隊員(如 圖四)。²⁰故美陸軍第一線部隊透過戰術擴增系統,可提供第一線部隊透過頭載式頭盔 術擴增系統將為美陸軍第一線官兵提供更為安全的作戰環境。

圖四 美陸軍運用擴增實境系統裝備

資料來源: Sydney J. Freedberg Jr. "HUD.0: Army To Test Augmented Reality For Infantry In 18 Months," https://breaking.defense.com/2018/03/hud-3-0-army-to-test-augmentedreality-for-infantry-in-18-months/, (March 29, 2018); Sydney J. Freedberg Jr. "Guns, Drones, & Augmented Reality: Army Seeks Infantry Revolution," https://breakingdefense.com/2018/ 03/guns- drones-augmented-reality-army-seeks-infantry-revolution/,(March 16, 2018).

另外值得注意,為強化部隊作戰環境適應能力,仿真戰場的系統還需要有真實照 片與程式鏈結。根據 2018 年美陸軍為強化目標區偵蒐能力,已運用 360 度攝像器材在 目標區內部及周邊拍攝百餘張影像,或是無人機所拍攝的影像複製而來,並透過虛擬 立體空間的 Unity 程式語言,將影像連結至航點,最後通過應用軟體,讓使用者能夠 置身仿真的戰場景況。21故擴增實境系統所組成的景像,將是運用衛星或無人機所拍

¹⁹ 同註 16。

²⁰ SYDNEY J. FREEDBERG JR. "AI In Your Eye: Army Goggles Will ID Targets Automatically," breaking defense, https://breakingdefense.com/2018/11/ai-in-your-eye-army-goggles-will-id-targets-automatically/, (November 30, 2018), 2019/2/18.

²¹ John Spencer, Lionel Beehner, and Brandon Thomas,黄國賢譯,〈運用虛擬實境技術精進訓練成效(Putting

攝的真實環境,其意味仿真戰場空間已形塑出來。

(二)撥發數量及預算

要提升部隊戰力,即要有編列預算購買武器系統。根據 2018 年報導,美陸軍為提升部隊作戰能力,與美國微軟(Microsoft)公司簽訂約 4.8 億美元(約 145 億台幣)預算,採購擴增實境系統的軍事合同。該系統結合夜視和熱感應、測量呼吸和準備就緒等生命特徵,以及監測腦震盪、提供聽力保護。該系統預於 2020 年生產 2 萬 5 千部 HoloLens 耳機撥交美陸軍部隊使用。不僅如此,美陸軍計劃購買 10 萬餘台設備,撥發至美陸軍戰鬥部隊。²²此外,2019 年底美陸軍和海軍陸戰隊計劃購買 1 萬套「戰術擴增實境系統」(ENVG-B)撥發部隊使用,最終的目標是獲得 10 萬 8 千套,以滿足步兵、偵察兵、特種作戰人員需求。²³由美陸軍挹注經費約 4.8 億美元,委由微軟(Microsoft)採購擴增實境系統用於第一線部隊,凸顯出擴增實境系統所構建出的虛擬三維立體空間圖像,對美陸軍未來遂行作戰任務之重要性。

二、美軍擴增實境系統納入部隊作戰效益之特、弱點評估

隨著擴增實境系統應用於軍事領域,虛擬三維立體空間投影已對未來部隊訓練方式產生衝擊。評估其特、弱點,有助於瞭解系統是否適用於部隊。

(一)特點

1.提升單兵作戰效能

要提升單兵作戰效能,就須提供第一線部隊官兵能清楚掌握明確之目標。根據2017 年美國林德爾(Gerald Lynch)研究指出,擴增實境系統能夠減輕部隊在火力下的認知負荷(Reducing Cognitive Load),讓機組成員過濾掉90%或更多無用的資訊,以減輕第一線部隊官兵認知的負擔,並針對外在環境目標選擇太多,提供正確資訊操作數據(Manageable Actionable Data)。同時,擴增實境系統透過螢幕上顯示的數據,可減少攜式穿戴設備,使戰鬥員方便從事戰鬥動作。²⁴另外,根據2015 年陸軍洪琬婷譯文《美國陸軍感測器研究開創無限可能》指出,美軍所研發的感測器,可提供第一線部隊在作戰環境下,提供部隊動態、通信情報,以及可辨別威脅、啟動防護系統等資訊,對美軍人員及裝備提供保護能力。²⁵除此之外,2018 年美《國防新聞》報導,「增強型夜視鏡-雙筒望遠鏡 ENVG-B | HUD 3.0,已改變戰鬥員處理和理解戰場方式,透過擴增實

concepts of Future Warfare to the Test) 〉《國防譯粹》(臺北),第 45 卷第 11 期,國防部,2018 年 12 月,頁 37。 Emory Craig, "Microsoft lands augmented reality military contract," digital bodies, https://www.digitalbodies.net/augmented-reality/microsoft-lands-augmented-reality-military-contract/, (November 30, 2018), 2019/2/18.

²³ SYDNEY J. FREEDBERG JR. "Grunts To Get High-Tech Targeting Goggles In 2019," breaking defense, https://breakingdefense.com/2018/10/grunts-to-get-high-tech-targeting-goggles-in-2019/,(October 25, 2018), 2019/2/18.

Gerald Lynch, "AR warfare: How the military is using augmented reality," techradar, https://www.techradar.com/news/death-becomes-ar-how-the-military-is-using-augmented-reality, (Sep.16, 2017), 2019/2/18.

²⁵ 洪琬婷譯,〈美國陸軍感測器研究開創無限可能(Army Sensor Research Enables Future Capabilities)〉《陸軍通 資半年刊》(桃園),第124期,陸軍通信電子資訊訓練中心,2015年9月,頁139。

境系統所創建的現實世界中虛擬敵人和障礙物,使參訓官兵更能體驗在複雜虛擬的環 境中,遂行跳躍、跑步和爬行等動作,此舉將增加參訓官兵事後,在戰場上的狀況處 置及反應能力(如圖五)。²⁶由於人體的反射動作,是靠實務動作所累積記憶而成,擴增 實境系統運用於部隊戰、演訓後,有助於參訓官兵透過虛擬三維空間投影圖像,彷彿 置身於戰場中遂行各項戰技動作。換句話說,擴增實境系統有助於提升官兵作戰能力, 同時也減輕官兵投入戰場受傷的風險。

圖五 美陸軍運用擴增實境系統遂行

資料來源: SYDNEY J. FREEDBERG JR. "AI In Your Eye: Army Goggles Will ID Targets Automatically," https://breakingdefense.com/2018/11/ai-in-your-eye-army-goggleswill-id-targets-automatically/, November 30, 2018.

2.降低訓練總成本

孫子兵法曾云:「先處戰地而待敵者逸,後處戰地而趨敵者勞。」要掌握戰爭主導 權,其關鍵主因為先期掌握決戰地區。根據 Michael Morozov Founder 表示,「增強型 夜視鏡-雙筒望遠鏡 ENVG-B HUD 3.0 提供作戰部隊隨時可於駐地使用,且低成本、 安全「綜合訓練環境(Synthetic Training Environ-ment, STE)」, 仿真的戰場環境及虛擬敵 人進行戰鬥訓練,使受訓官兵如親臨戰場培養認知技能。²⁷另外,擴增實境系統形塑 出的綜合訓練環境,使參訓官兵能於仿真不同的戰場環境中,通過複雜的虛擬場景, 強化身體和精神上的抗壓力,透過不斷反複的訓練,降低參訓人員受傷的機率。²⁸除 此之外,擴增實境系統應用於部隊戰演訓後,以重複方式強化受訓學員狀況處置能力, 並透過虛擬化的訓練基礎,減少訓後回顧編組人員(After Action Review, AAR)所需費用。 29故擴增實境系統運用於軍事訓練,可降低訓練場地的維護費用、減少人員受傷的風

²⁶ SYDNEY J. FREEDBERG JR. "Virtual Training Will Save Real Army Lives: Close Combat Task Force," breakingdefense, https://breakingdefense.com/2018/09/virtual-training-will-save-real-army-lives-close-combat-task-force/, (September 19, 2018), 2019/2/18.


同註 16。

²⁸ Sarah Sicard, "How The Army Is Using Augmented Reality To Bolster Troop Readiness," task and purpose, https:// taskandpurpose.com/army-augmented-reality-troop-readiness, (August 08, 2017), 2019/2/18.

Mark A. Livingston, Lawrence J. Rosenblum, Dennis G. Brown, Handbook of Augmented Reality, 2011, "Military Applications of Augmented Reality," (Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC), pp.3-4

險。同時更縮減額外人事編組訓練回顧費用。簡言之,美陸軍面臨高科技帶來的高昂軍備競賽費用,採購擴增實境系統應用於部隊戰演訓(如圖六),已是必要選項之一。

資料來源: Bob Scales, "Mattis's Infantry Task Force: Righting A Generational Wrong," https://breakingdefense.com/2018/11/mattiss-infantry-task-force-righting-a-generational-wrong/,
November 26, 2018.

3.提升聯合作戰成效

要發揮聯合作戰統合戰力,就須構建第一線官兵至作戰區指揮官共同立體作戰空間圖像,以破除戰場迷霧。據 2017 年 Gerald Lynch 指出,通過使用穿戴式眼鏡和耳機的擴增實境系統,使佩戴者能夠掌握三維立體空間的虛擬資訊。同時透過自遠程無人飛機或其他部隊視訊回傳數據,使第一線部隊透過擴增實境系統,掌握作戰態勢感知(Operational and Situational Awareness, SA)。30另外,擴增實境系統所創建出的仿真戰場環境,可模擬三軍部隊戰術行動,提供第一線部隊的火力支援訓練,使參訓人員能在虛擬環境中掌握數據,強化參訓官兵瞭解三軍作戰場景。31不僅如此,根據 2018年 John Spencer表示,美軍為適應當代戰爭的實際狀況,在發起軍事行動前,運用衛星影像或無人機,針對欲滲透敵人目標所佔據地形,實施連續空拍資料,以創建仿真的虛擬環境,滿足未來軍事行動所需(如圖七)。32故擴增實境系統應用軍事訓練上,透過三維立體空間投影圖像,可提供美陸軍在採取戰術行動前,先期掌握目標區狀況。同時培養第一線部隊使用資訊能力,克服三軍部隊行動不一致的問題。

(二)弱點

1.擴增實境系統之通資系統尚未整合,影響作戰部隊決策判斷 虛擬三維立體空間圖像,雖有助於指揮官及第一線部隊掌握我、敵及盟軍動態。

³⁰ 同註 24。

³¹ 同註 26。

³² 同註 21, 頁 42。

然過多資料,將會造成決策狀況判斷不正確情形發生。根據 2018 美《國防新聞》報導, 擴增實境系統用於旅級部隊,所需無線頻寬是驚人的,且可能產生頻率相互干擾情形。 33另外,據 Michael Morozov Founder 表示,資訊數據太多將會出現資訊超載(Information Overload)現象。³⁴不僅如此,2018 年 Mark A. Livingston 亦表示,數據資訊提供給指揮 官到第一線部隊過多的戰況圖像,其結果將可能因資訊過載,使接戰官兵及指揮官無 法處理連貫戰場覺知資訊,進而增加部隊危險性。³⁵此外,據 2019 年報導,美國特戰 司令部(Special Operations Command, SOCOM)與「聯合採購專責工作小組(Joint Acquisition Task Force, JATF)」致力於用鈦合金打造的「戰術突擊輕型操作服(Tactical Assault Light Operator Suit, TALOS)」,無法於2018年達成實用化,其主因是擴增實 境系統、智慧型頭盔和通訊等各項次系統過於複雜,使整合上遭遇嚴重技術困難。³⁶由 資訊過載發生情形,已凸顯出美陸軍所用擴增實境系統技術,尚未發展到位。換句話 說,擴增實境系統尚未完成整合前,美陸軍運用擴增實境系統,還須注意通信和數據 對部隊所造成的影響。

圖七 三軍聯合部隊虛擬空間投影圖像

資料來源: Michael Morozov Founder & CEO, "Augmented Reality in Military: AR Can Enhance Warfare and Training," jasoren, https://jasoren.com/augmented-reality-military/, 2019/2/18.

2. 擴增實境系統裝備,對官兵身、心理產生副作用

虛擬三維立體空間圖像,雖有助於第一線部隊掌握戰場覺知,但若長時間使用, 極可能對官兵身體造成負作用。根據 2019 年《美國防新聞》報導,「增強型夜視鏡-雙筒望遠鏡 ENVG-B | HUD 3.0 擴增實境系統之目鏡能見視野約 40 度,雖是標準瞄準 鏡的兩倍寬,但只是肉眼 200 度以上弧度的一小部分,造成視野不夠廣闊。另因需攜

³⁵ 同註 29,頁3。

³⁶ 郭正原譯,〈不適戰鬥環境 美「鋼鐵人」計畫停擺〉《青年日報》(臺北),2019 年 2 月 17 日,版 8。

帶額外電池,該重量將會造成第一線部隊行動上不便。³⁷另外,根據 2016 年廖建興表示,擴增實境系統除造生高電量耗損外,亦可能對使用者造成生理上的衝擊,如頭載式顯示器對頭部及眼睛可能造成頭痛、視覺疲勞、暈眩症、聽力受損、輻射傷害等,甚而產生焦慮與認知失調等現象。³⁸故擴增實境系統所創建的虛擬三維空間投影圖像,雖有助於第一線部隊官兵掌握戰場空間的立體性,然電子裝備終究對官兵身、心理造成負作用之影響。

總體而言,美陸軍將擴增實境系統運用部隊訓練後,其訓練效益首先,因為虛擬 三維立體投影空間圖像,與官兵所產生的互動性,進而提升個人學習成效。其次,虛 擬綜合訓練環境,將可減少裝備搬運及人為操作錯誤風險。同時,間接也減少裝備損 壞、教學單位人力負荷,以及訓練場地維護費用。最後,提高參訓部隊對戰場環境的 認知能力,強化聯合作戰整體效能。然而,由於擴增實境系統技術尚未成熟,其系統 所產生更多的資訊過載,對指揮官及第一線部隊官兵產生決策衝擊,另裝備對官兵身、 心理亦可能產生副作用。

我國陸軍現行教育訓練之探討與建議

網路科技的進步,仿真戰場的綜合訓練環境,使參訓人員透過與虛擬仿真戰場的 互動性,較傳統單機模擬器及單向數位教學,更能滿足未來作戰需求。

一、我國陸軍教育訓練現況探討

(一)現行模擬器訓練已無法滿足訓練需求

隨著未來作戰型態朝向聯合作戰,建立三軍共同作戰立體空間圖像,已成為至關重要的問題。單機模擬器所提供的單向學習,已無法提升學習效率。據 2016 陸軍張琪閔表示,我陸軍自 2014 年起,於裝訓部建置之「組合型戰車訓練模擬器」(CM11 甲車及 M60A3 戰車射擊暨駕駛 32 套基礎型模擬器、152 套簡易型模擬器,一次最多可有二個排,八輛戰車同時進行對抗),其訓練效益僅可提供學員實際車輛加、減速與地形起伏感覺。然該模擬器最大問題為作戰環境是圖像式動畫而非實景,還須輔以人員誘導下達狀況協助操作。³⁹此外,2018 年底,我國國防部部長嚴德發先生主持「國軍 108年部隊工作策進會議」時強調,國軍戰訓任務首重「帶著敵情練兵」,各部隊必須以「超敵勝敵」為目標,秉持「仗在哪裡打,就在哪裡訓練」的原則,置重點於三軍聯合指管訓練、火協與兵種協同作戰機制,發揮聯合作戰效能。⁴⁰故現行我陸軍單機版的模擬器,僅有助於單項專長訓練,已無法滿足聯合作戰效能。⁴⁰故現行我陸軍單機版的模擬器,僅有助於單項專長訓練,已無法滿足聯合作戰率求。換句話說,現行我陸

³⁷ 同註 23。

³⁸ 廖建與,〈擴增及虛擬實境(AR/VR)之發展應用概論〉《IECO 報導年刊》,2014年3月,頁71。

³⁹ 同註 15,頁 93-94。

⁴⁰ 李忠軒,〈嚴部長:嚴守軍人核心價值 鍛鑄精實勁旅〉《青年日報》(臺北),2018年12月4日,版3。

軍所構建的模擬器,雖可協助參訓學員感受仿真的操作介面,但卻僅限於個人與裝備 的互動,而欠缺戰場仿真的戰況(如表一)。因此,面對未來複雜的聯合作戰戰場,無 法仿真提供三軍火力支援圖像,將對我陸軍遂行地面作戰產生挑戰。

		效益評估		
項次	項目	訓練效益(訓員)		机次式术
		優點	缺點	投資成本
	T-91 射擊訓練 模擬器	提供訓員熟悉射擊瞄 準動作要領,提升個人 射擊成效。	缺乏仿真綜合訓練環境,使訓員無法模擬敵 火下射擊反應,且欠缺 紀錄學習成果。	一、每年須編列
1	組合型戰車訓練模擬器	提供學員車輛加、減速 與地形起伏感覺,強化 學員機械操作能力。	缺失仿真綜合訓練環境,無法強化參訓人員 射擊能力及地空火力 空援申請支援。另浪費 師資人力輔助教學。	場地及器材 維護費。 二、人員返回訓 練中心時間 及交通工具
三	直升機作戰訓 練模擬器	覺,強化飛行員機械操	模擬器成本昂貴,訓練時間同時間僅能滿足 1 位飛行員施訓,訓練成效有限。	成本。

表一 我國陸軍模擬器訓練效益評估

資料來源:作者整理。

(二)推動擴增實境應用於我陸軍教育訓練,已刻不容緩

隨著我國兵役制度朝向全志願役發展,培養多專多能的志願役已成為我陸軍推動 年度戰、演訓最重要工作之一。此舉已對我陸軍各訓練中心,在師資人力及接訓容量 造成負擔。根據 2016 年陸軍張琪閔研究指出,國軍於 2010 年在南、北測考訓練中心 各興建一座戰場抗壓館,雖可提升官兵戰場抗壓及實戰能力的訓練,但以館內運作模 式,每日以 0900-1800 時規劃每梯次 80~90 人次,施訓時間為 70 分鐘,然就實際訓練 的時間僅有 40~50 分鐘,與國軍基層部隊操課時間相比,每梯次戰場抗壓訓練的時間 僅為平日訓練量的六分之一,對於提升訓練效益的幫助著實有限。⁴¹另外,根據 2017 年我國《國軍模式模擬與電腦兵棋要綱》指出,國軍建軍備戰訓練目標,應結合虛擬 實境、擴增實境、混合實境(MR)及雲端運算等技術優勢,導入至部隊模擬訓練與實 兵演練,以強化戰演訓執行成效。⁴²事實上,2011 年陸軍周佳達曾表示,電腦模擬軟 體輔助教學,可創造一個較佳的教學環境,其效益對訓練中心而言,可縮短學生受訓 時間,提升軍事教育訓練投資。另對官兵個人,可增加人員在單位服務機會,強化人

⁴¹ 同註 15,頁 97-98。

⁴² 同註 7, 頁 1-4。

員風險管理與裝備妥善率。此外,對建制單位可利用模擬軟體提高部隊訓練成效,精進部隊整體戰力。⁴³不僅如此,根據 2016 年黃彥翔表示,虛擬實境課程有助於提升使用者,增加系統載台、人機操作介面到課程內容實務經驗,此舉有助於使用者對操作程序的熟稔。⁴⁴由我陸軍教官綜合研究建議,發展虛擬教學已成為我陸軍推動教育革興最重要的手段。

總之,我陸軍教育訓練雖運用數位教材,提供部隊教育訓練十餘年之久。然就模擬機單向系統教學,已不符合時代所需,且我陸軍為貫徹 2019 年全志願役朝向多專多能訓練目標之要求,推動擴增實境系統應用於我陸軍教育訓練,已是刻不容緩(如表二)。

項目	美陸軍應用擴增實境系統	我陸軍模擬器及數位教學應用
目的	一、為撙節國防預算。 二、透過虛擬空間投影,提升第一線 作戰部隊心理抗壓及實務經驗。	提升官兵個人學習效益。
用途	一、研發擴增實境系統,應用沙盤推 演,靈活指參作業程序。 二、擴增實境系統應用第一線作戰部 隊偵察目標,強化官兵狀況處置。	應用於裝備操作、模擬高單價作戰武器載台。
效益	一、提升官兵學習效益。 二、減少人員傷亡。 三、減輕裝備損壞。 四、降低教育訓練單位人力負荷。 五、強化三軍聯合作戰效能。	一、提升官兵學習效益。 二、降低教育訓練單位人力負荷。

表二、美陸軍應用擴增實境系統與我陸軍教育訓練之差異比異

資料來源:作者整理。

二、策進作法

承上所述,為提升我陸軍教育訓練,參考美陸軍為提升部隊戰力,積極將 擴增實境運用於部隊訓練之經驗,故我陸軍應積極採購此系統應用於部隊訓練,並將 其納入我地面指管通資系統。

(一)積極爭取經費購買擴境實境器材,精進我陸軍教育訓練

虚擬立體空間投圖像結合實體環境,其所產出的互動性有助於提升我陸軍訓練成效。根據 2016 年陸軍蔣河山研究指出,虛擬軍事訓練可區分為戰鬥模擬訓練、戰術模

⁴³ 周佳達, 〈電腦模擬軟體教學對野戰數位交換機學習成效之影響〉《陸軍通資半年刊》(桃園),第 116 期, 陸軍通信電子資訊訓練中心,2011 年 9 月,頁94-95。

⁴⁴ 黄彦翔、張漢賓,〈發展虛實境維修訓練課程之精進研究〉《陸軍通資半年刊》(桃園),第126期,陸軍通信電子資訊訓練中心,2016年9月,頁80-81。

³⁴ 陸軍通資半年刊第 132 期/民國 108 年 9 月 1 日發行

擬訓練和戰略模擬訓練三種。其中戰鬥層級訓練,為培養新進人員正確之裝備操作知 識領域;戰術模擬訓練,為針對官兵施以技術複訓,以及中高階領導人員指揮、協調 能力培訓;戰略模擬訓練,為提升中、高階層,提升決策及思考等能力。⁴⁵另外值得 注意,據2018年美國《國防新聞》報導,美陸軍為因應未來作戰需求,其中重大變革 之一,為利用擴增實境提升部隊訓練成效。46同年,美國防新聞另則報導,美陸軍以 步兵為例,原需訓練兩週的課程,經擴增實境系統應用於部隊測試後,有六分之一的 官兵在經過四個小時的訓練,即認為有幫助他們學習能力。47此外,根據我國《國軍 模式模擬與電腦兵棋要綱》指出,軍種訓練需求應結合最新科技技術,如虛擬實境、 擴增實境或混合實境等,並納入五年兵力整建編列預算項目。⁴⁸故建議我陸軍應積極 爭取經費購買擴境實境系統應用於教育訓練,以提升我陸軍整體戰力,並依作戰需求 區分略、術、鬥、技等層次,將此系統導入我陸軍部隊訓練。(如表三)

表三 我陸軍建置擴增實境導入部隊訓練預劃項目

分類別項次	區層級	擴增實境系統導入 系統應用規劃	預期目標與效益
	戰略 (聯合作戰)	結合第一線作戰部 隊需求,建置擴增實 境頭盔	一、縮減命令下達時間。透過虛擬綜合訓練環境,提供第一線部隊與指揮官共同圖像,減少三軍溝通所需時間。二、增加作戰效能。透過虛擬綜合訓練環境,整合三軍共同圖影及資訊,有助掌握敵人行動,提升聯合火力精準打擊,以及作戰部署
	戰術 (兵種協同 作戰)	建置擴增實境沙盤	一、強化參演人員狀況處置。以往兵棋推動受限於兵科本位,推演結果無法客觀。透過虛擬三維立體空間投影圖像,以及時戰損回饋,有助強化參訓人員於行動、反應及反制等各項作為。 二、縮減建置沙盤及時間成本。傳統沙盤或圖上推演,需要人工繪制混合障礙透明圖(Intelligence Preparation of the Battlefield, IPB),以旅級為例,約4-8小時。然擴增實境可構建虛擬綜合訓練環境,使用者可隨時隨地依作戰任務需求選擇,其障礙圖約10-20分鐘,有助於提升官兵作業效率。

⁴⁵ 同註 4, 頁 38。

⁴⁶ SYDNEY J. FREEDBERG JR. "Guns, Drones, & Augmented Reality: Army Seeks Infantry Revolution," breakingdefense, March16,2018,https://breakingdefense.com/2018/03/guns-drones-augmented-reality-army-seeks-infantryrevolution/, (March 16, 2018), 2019/2/18.

同註 23。

⁴⁸ 同註 7, 頁 2-12。

=	戰鬥 (組合訓 練、綜合教 練)	建置擴增實境 系統平台	一、強化兵科專業多人操作訓練成效。透過擴增系統將實境及虛擬結合後,提供訓員異地操作,有助於提升組合默契。 二、提升訓員心理抗壓。仿真的戰場環境有助於訓員,在此戰場景況中,強化心理抗壓及身理反應。
四	戰技 (單兵武器 操作)	建置擴增實境系統平台	一、提升訓練品質。透過擴增實境之行動學習及實體、虛擬軟體互動,有助於提升訓員學習效率。 二、減少兵監訓量負荷,達成國軍志願役多專多能之訓練目標。建置擴增實境系統後,訓練週期預期可縮減 2/3,有助提升兵監訓量,滿足部隊專長施訓。 三、減少裝備損壞。反複操作是訓練成功不二法門。然裝備壽期卻無法避免,擴增實境系統導入部隊訓練,裝備損壞情形將降低,預期將減少裝備維修成本。

資料來源:作者整理。

(二)貫徹國防自主政策,擴增實境系統整合至地面指管系統

無法取得技術先進,其意味著將無法獲得戰術優勢。隨著科技的發展,未來的戰 場已是多領域戰場。然現階段我國共同作戰圖像仍屬於 2D 平面戰場,其所產出的數 據資訊已無法滿足各軍種需求。根據 2016 年陸軍洪琬婷譯文,為增加我陸軍幕僚指參 作業程序,與領導職幹部指揮程度與應變能力,在我陸軍營、連級作戰會議發展上, 應運用立體虛擬角色,以提升陸軍集體決策能力。49另外值得注意,2018 年我國廣達 電腦已與以色列的擴增實境公司 Lumus 合作,為智慧眼鏡製造鏡頭,並預於 2019 年 開始量產。該報導亦指出,廣達電腦已於2016年對該公司推行了4.500萬美元的投資。 50此外,2018 年底英國皇家為使艦橋人員能即時掌握資訊,做出更正確的判斷,其海 軍投資2700萬美元(約新臺幣8.4億元)委英國軍工大廠貝官公司研發的擴增實境系統, 並預於 2019 年初實施測試。該系統期望利用 AR 技術,即時提供由雷達、聲納及感測 器資訊,並透過人工智慧(AI)協助艦橋人員做出正確決策。同時貝官公司正與戴爾公 司合作,研發安全性較高的無線網路通訊系統,使系統運作無後顧之憂。⁵¹因此,在 國防政策推動國防自主化下,我陸軍應爭取與民間網路科技公司合作建置擴增實境系 統,並納入我陸軍專案,俾利提升聯合作戰效能。

此外,科技載具的改變,對戰術、戰法勢必將有所衝擊。根據 2018 年底,總統

⁴⁹ 同註 11, 頁 53。

⁵⁰ Atkinson,〈廣達攜手 Lumus 搶攻蘋果擴增實境裝備商機〉《科技新報》,https://technews.tw/2017/12/05/quantalumus-apple/, 2017年12月5日,(檢索日期:2019/2/18)。

⁵¹ 王能斌,〈貝宜研發擴增實境套件 明年測試〉《青年日報》(臺北),2018年 12 月7日,版9。

蔡英文女士主持「108年上半年陸海空軍將官晉任布達暨授階典禮」時強調,賦予晉任將官3項任務。其中,建軍和用兵思維要更創新;治軍和演訓作為要務實,以精進國軍戰訓本務。⁵²因此,建議將擴增實境系統應用,納入年度戰術、戰法研討,以集思廣義迎接數位化作戰場景到來。

結論

2018 年美陸軍為因應未來作戰需求,其中推動重大變革之一,即為利用擴增實境系統提升部隊訓練成效。回顧美陸軍自 2002 年,推動擴增實境系統導入部隊戰、演、訓,期透過虛擬三維空間投影圖像以提升官兵訓練成效,並在模擬的綜合訓練環境,以降低整體訓練經費支出。此外,趨近於實況演練將可提升第一線部隊官兵處置能力。但令人驚訝的是,擴增實境技術已不再是運用到兵棋推演、教育訓練,而是提升作戰整體戰力之工具。因此,2019 年我國募兵制度朝向全志願役型態發展,推動官兵具備多專多能,已是我陸軍年度訓練重要工作之一。同時,為強化戰演訓任務,遵「仗在那裡打,就在那裡訓」為戰備指導方向,並參照美陸軍將擴增實境系統應用於部隊成功經驗,我陸軍應從積極爭取經費購買擴境實境器材,以精進教育訓練,並貫徹國防自主政策,將擴增實境系統整合至地面指管系統等兩個面向,據以策進我陸軍教育訓練;其預期效益,將可為陸軍每個訓練中心提供更好的教育資源,並減輕人力訓練負荷。同時,結合民間科技能量研發能力,以建構一支可恃的戰力。另隨著 5G 網路、移動式裝置與穿戴式科技效能的躍進,已逐漸改變軍事模擬訓練與未來戰場上的應用,建議我陸軍應將擴增實境及延展實境(Extended Reality, XR)」納入未來我陸軍 5 年兵力整建需求項目,以及年度戰術戰法研究主軸,進而推動我陸軍科技練兵之新思維。

參考文獻

- 一、蔣河山,〈淺析軍事電子遊戲在軍事訓練中的應用〉《陸軍通資半年刊》(桃園), 第 125 期,陸軍通信電子資訊訓練中心,2016 年 4 月。
- 二、張琪閔、莊水平,〈由 3D 多維模擬訓練平臺淺論國軍部隊基礎訓練之研究〉《陸軍通資半年刊》(桃園),第 127 期,2017 年 4 月。
- 三、黃彥翔、張漢賓,〈發展虛實境維修訓練課程之精進研究〉《陸軍通資半年刊》(桃園),第126期,陸軍通信電子資訊訓練中心,2016年9月。
- 四、陳俊臣、李鴻毅、蕭顯勝,〈運用擴增實境技術建構互動學習環境-以國立臺灣科學科育館為例〉《教育科技與學習》(臺北),第1期第2卷,中華資訊與科技教

⁵²劉濰菘、張晏彰、黄庭、陳俊鈞、傅啟禎,〈勇敢邁進3任務 堅守國家區域安全〉《青年日報》(臺北),2018 年12月26日,版3。

育學會,2013年7月。

- 五、周佳達,〈電腦模擬軟體教學對野戰數位交換機學習成效之影響〉《陸軍通資半年刊》(桃園),第 116 期,陸軍通信電子資訊訓練中心,2011 年 9 月。
- 六、邱智偉、王曉璿, 〈線上多人擴增實境系統架構設計探究〉《國立臺中教育大學 數位內容科技學系碩士論文》, 2010年, 6月。
- 七、張鴻,〈擴增實境,商機無限〉《TRADE MAgazine》(臺北),230 號,2010 年 8 月。
- 八、John Spencer, Lionel Beehner, and Brandon Thomas, 黃國賢, 〈運用虛擬實境技術精進訓練成效(Putting concepts of Future Warfare to the Test)〉《國防譯粹》(臺北), 第 45 卷第 11 期,國防部, 2018 年 12 月。
- 九、廖建興,〈擴增及虛擬實境(AR/VR)之發展應用概論〉《IECQ 報導年刊》,2014 年 3 月。
- 十、黄庭,〈第4作戰區城鎮作戰示範觀摩 厚植防衛能量〉《青年日報》(臺北),2018 年12月20日。
- 十一、郭正原譯,〈不適戰鬥環境 美「鋼鐵人」計畫停擺〉《青年日報》(臺北),2019 年2月17日。
- 十二、劉維菘、張晏彰、黃庭、陳俊鈞、傅啟禎,〈勇敢邁進 3 任務 堅守國家區域安全〉《青年日報》(臺北),2018年12月26日。
- 十三、Mark A. Livingston, Lawrence J. Rosenblum, Dennis G. Brown, Handbook of Augmented Reality, "MilitaryApplicationsofAugmentedReality," Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC, 2011.

作者簡介

王清安上校,中正理工學院 88 年班、陸軍官校軍售英儲班 91 年班、陸軍通信電子資訊學校正規班 175 期、國防大學陸軍學院 98 年班、國防大學戰院暨戰研所 107 年班。曾任排長、連長、通參官、營長、主任教官、軍團組長;現任陸軍通信電子資訊訓練中心學員生總隊部總隊長。