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Start-up Identification of a Pulsating Heat Pipe
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ABSTRACT

The adaptability of high-performance heat transfer devices becomes increasingly crucial along
with increasing demand. Among the developed designs, pulsating heat pipes (PHP) constitute a class
of adaptable cooling tools that perform much better than traditional ones. PHPs are noted to be unique
for their unsteady flow oscillations that are a result of the irregular distribution of the stream of liquid
slug and vapor plug. Results from experiments have shown that sensitive oscillations in start-up
procedures have a significant effect on the thermal performance of PHPs.

The authors executed the present study with the objective of deriving a nonlinear autoregressive
network with exogenous inputs (NARX) modeling means for investigating approaches of identifying
PHP start-up procedures in the frequency domain and also in the time domain. Thus, discrete-time
models were reasonably estimated and nonlinear generalized frequency response functions (GFRFs)
aimed at outlining the PHP dynamics were further developed. To determine nonlinear influences
exerted on PHP mass and heat transport processes under assorted operating conditions, higher-order
GFRFs were broadly analyzed on the basis of observed nonlinear coupling determined to exist
between assorted input spectral components.
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I.INTRODUCTION

With the intensifying diverseness of electronic
device functions, miniaturization and
congregation of components have resulted in
high power densities in the electronics industry.
To meet critical requirements of thermal
management, heat transfer designs with high
capacity have been developed to maintain the
reliability and performance of electronic
products [1-3]. Among studies executed on
two-phase heat transfer designs, Akachi et al. [4]
proposed a promising heat pipe, called a
pulsating heat pipe (PHP), which can operate
without a capillary wick structure and be
fabricated from a capillary metal tube bent into
turns. The development of diagnosis strategies
for PHPs known for featuring thermal instability
could become highly promising for vaporization
heat transfer devices owing to their passive
thermal control. Compared with traditional
capillary pumped loops as well as heat pipes,
PHPs were demonstrated to exhibit more
reliable gravitational field operation, higher
capacity for heat transmission, and greater
simplicity in terms of structure [5,6].

For analyzing the dynamic performance of
PHPs, scholars have previously executed
experimental explorations aimed at flow pattern
visualization for ascertaining the operating
mechanism of PHPs [7-9]. They have found that
both sensible heat and latent heat combine to
form net heat transfer in PHPs. Sensible heat
dominates the overall heat transfer if the slug
flow regime dominates the flow field. However,
the proportion of latent heat increases as the slug
flow converts to annular flow, improving the
PHP performance. Changes in flow patterns
elucidate the discrimination in the formation of
isolated bubbles, expansion and coalescence of
bubbles, slug flow, and annular flow. Compared
with synchronous measurements, the oscillating
features of PHPs were clarified by probing flow
patterns [10]. Thus, the casualty of these
measured temperature responses can be regarded
as corresponding information of the operating
mechanism of a PHP.

Modeling through semiempirical correlations
has become the most promising approach in
multiphysics coupled problems, but this
approach still involves numerous limitations in
practical applications. Theoretically,
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practitioners  have previously established
statistical methods as well as empirical
equations aimed at assessing two-phase flow for
the purpose of forecasting heat transmission in a
PHP [11-13]. Such assessments have been
conceded by  researchers as  merely
approximations because little is known about
PHP dynamics. Accordingly, for ironing out
uncertain  challenges emanating in PHP
manufacturing processes, additional studies on
this topic must still be executed. Steady-state
PHP operation—occurring after PHPs have
cleared start-up steps and consequently function
in stable mode—has constituted the ground for
constructing most black-box models [14,15].
Nevertheless, the simulation as well as the
modeling of PHP initiation steps has not been
adequately probed by scholars.

Because of the significance of PHP start-up
steps and the influence exerted by such steps on
PHP sustainability and performance, relevant
scholars in this field have been stimulated to
execute research on PHPs [16-18]. Start-up
procedures are even marred by unanticipated
events engendered by intricate PHP dynamics.
Research executed for indirectly or directly
probing PHP start-up modeling is limited, as
ascertained by the author’s literature review. In
fact, the start-up scenarios depend on the
vapor/liquid condition in the heating section [19].
Although start-ups under different conditions
involve different liquid superheating levels in
the heating section, temperature overshoot
extents, and start-up times, they should not
ultimately  affect steady-state operations.
Actually, some start-ups were reported to lead to
relatively high steady-state temperatures, with
some even failing to start the circulation process
[20,21]. Accordingly, the two-phase dynamics
inherent in the heating section exert considerable
influences on the unanticipated heat seepage
traveling to the cooling section.

Analyzing black nonlinear systems is crucial,
although relevant research executed previously
has typically described nonlinear systems by
applying linear approaches; this unfavorable
practice is attributable to intricacy of estimation
procedures  [22-24].,  Practitioners  have
developed  corresponding  theories  and
administered them to an extensive category of
nonlinear  systems on the basis of
Volterra—Wiener functional series



representations [25]. Volterra and Wiener’s
research work has constituted the footing for
considerable explorations executed on the

efficacious estimation of physical system kernels.

Gain expansion/compression, desensitization,
plus cross modulation—all created within
frequencies—could occur in tandem in reality,
engendering nonlinear occurrences in the
frequency domain [26,27]. A prerequisite to
probing nonlinear systems is a scheme for
outlining such systems’ dynamic performance by
employing input—output (I/O) measurements,
and this has been the objective of nonlinear
modeling.

For the purpose of simulating as well as
modeling chaotic systems, relevant practitioners
in the field have extensively implemented
artificial neural networks (ANNs)—known to be
data-driven models and to constitute vital
approaches for modeling black-box
systems—with machine learning techniques
[28,29]. ANNs find primary application in
revealing the relationships between system
variables through the employment of gauged
system performance data or model (based on
physics)—derived data. Thus, ANNs have been
regarded as good alternatives to conventional
approaches for system diagnosis. A typical ANN
comprises several simple and interconnected
processing units. The units’ layers are organized
to ensure that data inputted at the input layer
reaches the output layer after traversing through
a single or through several intermediate layers.
ANNSs provide an option to address complex and
ill-defined problems and are used in many
engineering applications, because they offer
more reasonable solutions. This study
established an ANN-based nonlinear
autoregressive network with exogenous inputs
(NARX) modeling means suitable for nonlinear
system diagnosis in the discrete-time domain
[30-32].  Generalized frequency response
functions (GFRFs) derived from the NARX
models could be used to illustrate the PHP
dynamics from the viewpoint of energy.

II. EXPERIMENTAL

The experimental setup in the executed study
comprised a power supply unit, designed PHP,
and high-speed data acquisition system (Fig. 1).
The geometric configuration of this PHP was
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symmetrical, and a copper -capillary tube
constituted the entirety of the pipe; the tube’s
measured wall thickness and inner diameter
were determined to be 1 and 3 mm, respectively.
Furthermore, the PHP dimensions were 135 mm
x 135 mm % 320 mm, and an 8-mm bending
radius was measured for the 16 U-turns made in
either end. A 70-mm heating section was
covered and the rest of tube as the cooling
section was exposed to the environment. An
electrical power supply unit (GITEK Electronics,
model GR-11H12H, Taiwan) was used to apply
a heat source through a Ni—Cr coil (Omega
Engineering, model NIC80, USA) wrapped
around the heating section at equivalent 3-mm
intervals. A three-way valve mounted on the
PHP was employed to facilitate vacuuming and
filling the PHP with working medium using a
syringe. The vacuum of the PHP was kept at
10—2 Torr before the working medium was filled.
Deionized (DI) water was chosen for the
working medium for safety considerations and
its high merit number relative to other cooling
media. A medium filling ratio of 50% was
chosen, and the net DI water loaded into the
PHP was weighed wusing an electronic
microbalance (Shinko Electric Industries, model
HT-220E, Japan), with minimal uncertainty of
+0.01 g.
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Fig. 1. (a) Photo and (b) schematic of the established
setup of the designed PHP system employed for
thermal analysis.

The PHP was tested in vertical bottom heating
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mode without any auxiliary cooling design. A
range of stable voltage output (2-220 V) was
acquired by regulating the electrical power
supply unit. An unchanging heat flux boundary
condition relevant to the heating section was
engendered by the established heating setup in
this study; 40, 80, and 120 W served as the
heating powers for the test. After the heat was
absorbed by the heating section, it was directly
transferred throughout the cooling section
through conduction via the solid tube and
convection via the working medium and finally
released to the environment. A total of three
calibrated T-type thermocouple wires connected
to the data acquisition system (Graphtec
Corporation, model GL240, Japan) at equivalent
75-mm intervals were employed. The locations
of each of the mentioned thermocouples were
distributed along the cooling section: that is, Ta,
Tb, and Tc. Every experiment was conducted for
exactly 10 min, and all the temperature data
were sampled at a time interval of 0.2 s under a
26°C + 1°C environment. The PHP performance
was evaluated in terms of the entire thermal
resistance, represented by

R=(Ta-(Tb+Tc)/2)/0, (1)
where Qin is the heat input and the overline
represents mean value.

I. MODELING STRATEGY

Modeling the effect exerted on nonlinear
stochastic dynamical systems has been of
interest for academia. Through the execution of
nonlinear regression with an ANN, massive
historical time series can be trained, and such a
nonlinear system can then be represented as a
discrete-time NARX model. The introduced
ANN based on radial basis functions (RBFs)
[33-35] was noted to be constituted by a hidden
layer involving j neurons, an input layer
involving m nodes (corresponding vector form
denotation: u(r) = [u, (1), ,u, (1), and an output
layer involving n nodes (corresponding vector
form denotation:  y(1)=[y (1), ¥, ()] All
mentioned input nodes are connected by using
the same unity weight to all hidden layer
neurons. By contrast, all mentioned nodes

constituting the hidden layer are connected by
using different weights to the output nodes (Fig.
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2). In this ANN structure, by typically executing
a Gaussian-type function [36,37], each neuron
determines the span from its center to the input;
via nonlinearity, the neuron subsequently
transmits the derived scalar. The nth hidden
neuron’s output is typically presented as follows:
QUM —qjll), ()

with ® ( ) and cj representing the
nonlinear basis function and the center of the
hidden layer’s jth node, respectively.

yZ(r)l - = y,,(f)

»i(0)

output layer

hidden layer

input layer

Fig. 2. Nonlinear multiple-input and multiple-output
functional ANN structure.

A NARX model with a single input—single
output feature is typically presented as follows:

yt)=a + Ff[y(t -0, Lyt - ", You(t—d), " ,ut-d-n)l
3)

Here, d, n,, n,, and [ represent the time
delay for the system, maximum lag for input,
maximum time lag for output, and nonlinearity
degree, respectively. In addition, y(¢), o , u(f),
and F[+] denote the system output, constant
vector term aimed at accounting for mean levels,
system input, and nonlinear function that is
vector valued, respectively.

A critical task in modeling is the derivation
of a NARX model that can yield a nonlinear
system’s representation parsimoniously.
Moreover, the structure of such a derived model
ought to be adequate; this is because achieving
this requirement ensures that the entirety of the
dynamics can be adequately detailed and that
overfitting and numerical problems are evaded.
An orthogonal estimator constitutes a
noncomplex as well as efficacious method
enabling the estimation of each individual model



coefficient. Each individual model term’s
contribution to the output of a system can be
manifested using the error reduction ratio (ERR)
[38,39], which is typically presented as follows:

S g/w](r)
ERR, = =

—x100%
N 5 r N —|~
>y (r)—;TLZ y(r)J
c=1 =1 , (4)

where N, g, and w, denoting the number of

implemented observations, coefficients, and
auxiliary model terms, respectively. Such an
auxiliary model is established in a manner that

ensures the orthogonality of the w, terms to

the data records.

The term demonstrating the largest ERR
(i.e., the term identified as having the largest
contribution to residual variance reduction) is
identified via a forward-regression algorithm at
each step. An information criterion serves as the
trigger applied to halt the procedure. The Akaike
information criterion (AIC) [40,41] exemplifies
such a criterion, which is typically presented as
follows:

AIC = Nloge(aj)Jr kp »
2

©)

where k and o representing a factor of

penalty and the variance of p-term-model-related
residuals, respectively. The derived model
forestalls solution trapping in local minima—a
problem common in ANN-based
models—because it is inherently nonlinear with
regard to its variables but is linear with regard to
its parameters. Residuals obtained for a
nonlinear system is unpredictable when using all
nonlinear and linear combinations of previous
outputs and inputs. However, through model
validation testing, expressed as follows, the
convergence of the residuals in the learning
process can be determined:

$.()=0(r),r#0, (6)
$,.(2)=0 .V, (7
Blun ) (F)=0 57T (3)
By =0T ©)
¢ . (£)=o0 Y120, (10)

where a 95% confidence interval being assumed
in these residual validations and 4 (r) =

Ela(t-t)b(f)]. In addition, u(z), J(z), the prime
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symbol, and &(7) in the foregoing equations
denote the input sequence, Kronecker delta
[42,43], mean removal (i.e., mean has been
omitted), and residue sequence, respectively.
This modeling strategy was based on
experimental data, including the effect of noise.
By contrasting real and model outputs, this study
derived the deviation of the model using the
RMSD [44,45]—which estimates the deviation
of model-forecast values from real wvalues
obtained in the modeled environment—and
square value of Bravais—Pearson correlation
coefficient (R’) [46]. The individual deviations
estimated in the RMSD are actually residuals
and are combined in the estimation process to
realize one measure of predictive power. Here,
the normalized RMSD (NRMSD) served as one
of criteria employed to evaluate model accuracy,
and its expression form is detailed subsequently:

> (o,-»)

i=1

RMSE = ;
N
RMSD
NRMSD = —————, (11)
where y is the " simulated value

corresponding to o and o the i” observed

value.

R’ is a suitable measure of association
when couples of continuous data follow a
bivariate normal distribution. When there is a
complete association, two straight lines overlap
with a positive slope (i.e., R° = 1), signifying a
perfect simulated result without deviation. R’ is
another criterion to confirm the accuracy of
models; its expression form is

N ( i__) Oi_;
%y »( ) 1)

S (5, = [ (0, = 0)

where o and y are mean values of observed

and simulated results, respectively.

For linear systems, spectral analysis is an
entrenched and extensively executed process in
engineering. Traditionally, spectral densities and
frequency response functions have been
estimated using the fast Fourier transform
algorithm and window functions. However, most
systems in actual-world problems are, to some



Chih-Cheng Chou et al.
Start-up Identification of a Pulsating Heat Pipe

extent, nonlinear, and unfortunately, applying
linear spectral estimation procedures to data
generated from nonlinear systems can introduce
significant errors. A qualified NARX model
mapped into the frequency domain and can
precisely illustrate a system’s nonlinear as well
as linear features. From the vantage point of
energy transfer, GFRFs are used for PHP
dynamics diagnosis. By definition, GFRFs
constitute products of multidimensional Fourier
transforms of kernels [47,48] and are derived
using a Volterra series:

=y 0, (13)

=1
where the ,(z) is the n"-order output
typically being
. I

YI(I):J "‘J.:hl(rl,"' 7)) H u(i-t,)dr,,n>0 ,(14)

o
i=1

where t and &, (7,,",z,) are known to

constitute system time lag and Ith-order impulse
response, respectively. An Ith-order GFRF can
be derived by directly administering a
multidimensional ~ Fourier  transform  to

h,(z,.,”" ,7,). The definition of the mentioned

function is

@

-

Ji hl (Tw ) ’Tz )e’ﬂ"’(’w’w . /’I’)drl >
15)
Subjecting Eq. (15) to an inverse transform

subsequently yields its corresponding nonlinear
Ith-order impulse response:

H(f, dr

1

L df,

(16)

The system’s Ith-order output can be

derived by substituting Eq. (16) into Eq. (14)

and performing several processes of integration
on z, LT :

l

1 [ T (e s
(27) 7

where the input spectrum is represented by
U (s ). The well-known form of the foregoing

()= (17)

equation in the frequency domain can now be
derived by executing the multidimensional
Fourier transform on either side of Eq. (17):

(18)

14

Thus, for a typical /"-order subsystem that

is homogeneous, H (£, 1) and
h (z,,,z,) are, respectively, frequency- and
time-domain representations of equivalent

transfer functions that are not reliant on the input
excitation. For GFRF computation, u(:) 1is

postulated as being the total value of K sinusoids
u(t)=

jlufit
el
where «, denotes the amplitude. The Ith-order

(19)

k=1

output could be acquired by substituting Eq. (19)
into Eq. (14):

1 I
0= [ e TS e s

i=l k=1
. - 1

ake/zm,(' -',)J~ .[ h[ ([“,., ’[,)1—[ aﬂe””“(m‘)dr’
) ” i=1

(20)
Inputting Eq. (15) into Eq. (20) yields the
following:

K
k=

K

Ciam(fy e )
y(1)=3 ) ]e T
k=

1)
The Fourier transform executed for Eq. (21)
becomes an aggregation of delta functions when

a, = 1 (corresponding to the entirety of £ = 1,
2,...,)and K=1:

|:al<, 7 aA,H/ (-fk, T

1 1

() = X (g, e T (22)

The invariance property of GFRFs to
system input is highly desirable, because it
enables the characterization of nonlinear systems
without a priori knowledge of inputs. Thus, the
advantage of GFRFs can be utilized to reveal the
PHP dynamics by capturing the sensitive
spectral effects engendered by parameter
variations, thus providing valuable insights into
system behavior.

IV. RESULT AND DISCUSSION

The proposed PHP was determined to
manifest features of unstable motion, which are
similar to those of Lorenz chaos [49,50].
Heating applied to the bottom of the heating
section causes uneven pressure among the
parallel tubes and then induces fluid oscillations,
forming the operating mechanism of PHPs.
These  self-maintained  flow  oscillations



influence the liquid film thickness determined
for the vapor and liquid phases of the working
medium on the internal surface. This drop in
thickness determined for the liquid film can be
regarded as a switch for the transition of flow
patterns, resulting in intermittent flow dynamics.

80 100

oM MW
[ o Mobpyl

5 |/
30 Z VJ\,\,{\J\*\NA\N»’”‘I\\/J¥ ;
30|

MMJMM o JW «

/

temperature response ( c)
°
3

40W  —Tc—Tb—Ta 80W —Tc—Tb—Ta

20 : - -
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
observed data observed data

(a) 40W (b) SOW

120W —Tc—Tb—Ta

0 500 1000 1500 2000 2500 3000
observed data

(c) 120W
Fig. 3. Temperature variations derived for Ta, Tb, and
Tc.

Fig. 3 shows the temperature responses
determined for Ta, Tb, and Tc at low, medium,
and high heating powers of 40, 80, and 120 W.
At initial operation, nuclear pool boiling could
be recognized to be a main heat transfer
mechanism of the PHP due to the stable
enhancement of the observed temperatures.
Since consistent flow oscillations occurred,
latent heat dominated the transfer mechanism.
During normal operation, the temperature
variations indicated that flow pattern in the PHP
changed transiently and repeatedly due to the
thermal equilibrium of the PHP. At 40 W, the
noted slug flow was determined to oscillate with
obvious temperature variations at 85 s (Fig. 3(a)).
However, a tiny increment was found in Tc
before 120 s, showing the PHP was unable to
operate entirely until the aggregated heat energy
was large enough to vaporize the working
medium to drive the flow. When the set heating
power surpassed 80 W, the flow oscillated much
faster, representing vapor plug disintegration
into more fragments. On account of the
foregoing experimental results, one can
conclude that the effect of thermal instability
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was enhanced with heating powers (Fig.
3(c)-(c)). Such assorted thermohydrodynamics
engender vapor plugs and liquid slugs unevenly
distributed over the entirety of a system; just
some tiny thermal instability can engender
frequent changes in the plug and slug flow
directions. As determined from the last 1500
observed data, the entire thermal resistances of
the PHP derived via Eq. (1) were 0.74, 0.26, and
0.14 °C/W for the three foregoing heating
powers. This validates this PHP to be suitable
for managing an extensive range of heat sources.

40w 80w

To

Te

200 300 400 500
observed data

(b) 8O0W

100

0 100 200 300

observed data

(a) 40W

400 500

120W

0 100 200 300

(c) 120W
Fig. 4. Temperature variations derived for Ta, Tb, and
Tc during initial operation of PHP.

400 500

The study selected the initial 100 s of each
measurement, including the duration from
stagnation to quasi—steady state, for modeling
the casualty of temperatures in the PHP start-up
(Fig. 4). Temperatures increased steadily at the
low heating power of 40 W (Fig. 4(a)), showing
that temperature hysteresis occurred and that this
start-up procedure was mainly dominated by
thermal conduction. Due to low heat input and
gravity effects blocking the flow oscillation, the
tube flow was maintained in liquid phase. When
the heating level was set to surpass 80 W,
sensitive temperature variations, but without
overshoots, were noted in the start-up procedure
(Fig. 4(c)—(c)). This informed that an adequate
heating power for vapor influx realization can
not only enable gravity resistance but also pump
liquid slug. The phase transition of the applied
working medium became more severe than



Chih-Cheng Chou et al.
Start-up Identification of a Pulsating Heat Pipe

before because the vapor plugs broke into
fragments and the flow speed increased. With
the enhancement of convection effects, more
dramatic oscillations occurred and overcame the
surface tension; the corresponding flood could
change the shape of the vapor-liquid interface.
This changed the pressure distribution and
therefore the fluid movement direction.

As noted above, during the operation of the
PHP, flow convective boiling and nucleate
boiling could intensify two-phase interactions,
leading to complicated flow movements with a
sporadic distribution of vapor plugs and liquid
slugs. To understand the PHP dynamics in
start-up procedures, an efficacious NARX model
was established. Because order selection and
time delay settings were noted to be important to
the nonlinearity of the model structure, this
study set the utmost time lag for output as well
as input to 20 through trial and error. In addition,
the most 15 important terms were selected, and
other candidate terms were discarded by
defining the threshold value of the ERRs.
Because the ERR computation and parameter
estimation were conducted concurrently to
identify the importance of each individual
NARX model term, the structure terms were all
ordered depending on their measured input to
the global mean squared prediction error. The
models listed in Table 1 through 3 represent the
cause-effect relations of Ta(t)-Tb(t) as well as
Tb(t)-Tc(t), for the heat transfer process through
the lower and upper halves of the cooling
section. These diagnostic models, named as Tb(t)
and Tc(t), consisting of historical temperature
time series were noted to exhibit a common
feature of self-prediction involving the
forecasting of the most important term one step
in advance before the output value. Some cubic
terms were assessed in the model Tc(t), implying
that more intensive conjugate heat transfer
existed in the upper cooling section as the
heating power increased. The model validation
tests executed in this study revealed all models
to be reasonable (Fig. 5); this is due to the fact
that the convergence degrees determined for 50
lagged residuals for Egs. (6)—(10) were almost
within the defined 95% confidence interval. To
demonstrate the models’ capacity to simulate
physical PHP behavior during start-up
procedures, the simulation-derived results were
compared against the measured results (Fig. 0).
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With the exception of some tiny deviations, over
97% of the simulation-derived results were
determined to be within a relative error of less
than £30% (Fig. 7). The satisfactory agreement
levels were also confirmed by NRMSD and R2,
with the NRMSD values being estimated to be
within a tiny range of 0.01825-0.06695 and R2
values being noted to be within the range of
0.96870-0.99954 and to follow a positive slope.
Thus, the black-box method executed in this
study for transient assessment has promise for
use in procedures aimed at deriving diagnostic
data for PHPs. Further research work can be
performed on the capacity of the applied NARX
model to execute forecasts multiple steps in
advance for optimizing PHP design.
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Fig. 7. Correlation determined between observed and
simulated Tb(t) and Tc(t).

When discrete-time NARX models are
being subjected to mapping in the frequency
domain, the energy spectra representing PHP
dynamics can be revealed by GFRFs. First-order
GFRFs are just single-frequency spectra without
nonlinear effects. Although multiperiodic
features can be ideally found, these linear
features cannot fully describe the operating
mechanism of a chaotic PHP, such as that
designed in the current study. To recognize the
nonlinearity of PHP dynamics, the highest
GFRF for each model was proposed to be
analyzed (Fig. 8). These nonlinear effects were
emphasized as resonances on the responding
surfaces, which suggested the PHP possessed
nonlinear dynamics around these frequency
features. These resonances became ridges and
antiresonances became valleys, allowing for
further understanding of the energy aggregation
and expansion during the PHP start-up
procedure. The negative frequency axis depicted
in Fig. 8 is theoretically a mirror image of the
positive frequency axis. Here, the sampling rate
of each measurement was 5.0 Hz, and
multiplying this rate by the resonance frequency
that was normalized could yield the distinct
actual values. Quite different from the
observations noted for the first-order GFRFs, the
output energy at these frequency ranges was
produced by the heat transfer mechanism of the
PHP, causing a strong intermodulation between
the frequencies. There were many cross ridges,
but the main ridges dominated the nonlinear
effects on energy transition. At 40 W, only a
distinct resonance peak at 0 Hz was recognized
in the lower cooling region. However, a
deduction in this paper is that heat could not
efficiently transfer to the upper section due to
the antiresonance spectrum (Fig. 8(a)). At 80 W,
energy aggregations at nearly +£5.75 Hz
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gradually formed in the upper section, signifying
that more heat was transferred to the top through
a regular mode of transfer (Fig. 8(a)). When the
heating power was scaled up to 120 W, dense
spectra of narrow resonances appeared, with the
spectra being recognized at 0 and £5 Hz in the
lower section and at 0 and £10 Hz in the upper
section (Fig. 8(c)). Compared with the obtained
thermal resistances, such a statistically

demonstrated coherence in resonance noted in
could engender

the start-up procedure a

favorable PHP performance.
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. magnitude

T — Tc
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(b) 8OW

a
Ta —> Tb s W
424210
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f1*4f2°=1.0
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Fig. 8. Resonance spectra for heat transfer in lower
and upper cooling sections.

Table 1. NARX models for diagnosing PHP dynamics
at 40 W.

model terms coefficient ERR Star}dgrd
deviation

Th(t-1) +8.18400E-01 | 9.99990E-01 0.11405
Ta(t-2)Ta(t-3) +2.08840E-03 1.54460E-06 0.00113
Tb(t-3)Tb(t-3) +3.60740E-03 | 4.80120E-07 0.00109
77777 +3.71330E+00 | 4.66460E-07 0.07430
Ta(t-1)Ta(t-8) -8.50310E-03 3.39860E-07 0.00470
Ta(t-1)Ta(t-3) -4.56110E-03 1.70770E-07 0.00177
Ta(t-14)Ta(t-14) -6.02890E-03 9.13010E-08 0.00254

Tb(t) | Ta(t-1)Ta(t-5) +4.13180E-04 | 8.85700E-08 0.00026
Ta(t-2)Ta(t-2) -4.33760E-03 6.40780E-08 0.00298
Ta(t-8)Ta(t-14) +8.11130E-03 | 6.26700E-08 0.00428
Ta(t-1)Ta(t-1) +4.03180E-03 | 5.98890E-08 0.00283
Ta(t-2)Ta(t-14) +6.63880E-03 | 4.89780E-08 0.00552
Ta(t-1) Ta(t-13) | +8.89980E-02 | 3.90000E-08 0.14646
Ta(t-15) -4.09700E-04 3.17170E-08 0.00022
Ta(t-14) -7.21120E-02 2.07850E-08 0.13290
Te(t-1) -1.99410E+00 | 9.99210E-01 0.46170
Te(t-2) -4.34360E+00 | 4.83320E-04 0.37251
Te(t-3)Te(t-3) +2.89210E-02 | 5.84630E-05 0.07322
Te(t-3) -1.38090E+00 | 4.33180E-05 0.19614
Te(t-1)Te(t-1) +7.60550E-01 1.97600E-05 0.52082
Tb(t-14)Tb(t-14) +7.87450E-05 1.94570E-05 0.00490
Tb(t-1)Thb(t-15) -2.23990E-03 6.05010E-06 0.00713

Te(t) | ————— +1.25200E+02 | 5.92730E-06 0.31972
Tb(t-6)Th(t-15) | +1.74160E-03 | 5.07420E-06 0.00656
Tb(t-2)Th(t-15) | +1.78220E-03 | 3.47450E-06 0.00867
Tb(t-4)Thb(t-15) -1.39840E-03 3.18420E-06 0.00762
Te(t-2)Te(t-2) +7.99860E-01 | 3.14330E-06 0.62961
Te(t-1)Te(t-2) -1.43800E+00 | 2.58890E-06 0.41378
Tb(t-13)Tb(t-15) +1.00040E-03 | 2.42010E-06 0.00833
Tb(t-12)Tb(t-15) -7.09400E-04 2.06130E-06 0.00789
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model terms coefficient ERR Star.ld:.ird
deviation

Th(t-1) +9.87190E-01 9.99670E-01 0.10525
Ta(t-13) +4.91430E-02 | 3.79920E-05 0.02717
Th(t-2) -2.53470E-01 1.28860E-05 0.13946
Th(t-5) +1.84240E-01 8.96160E-06 0.10266
Ta(t-4)Ta(t-4) +3.05000E-02 | 8.66170E-06 0.01060
Ta(t-7)Ta(t-8) +1.77270E-04 | 4.70450E-06 0.00067
Ta(t-15) +5.98320E-02 | 4.57480E-06 0.02971
Tb(t) | Ta(t-5)Ta(t-5) +1.81390E-02 | 4.27010E-06 0.00916
Th(t-4) -1.94230E-01 3.91960E-06 0.12970
Ta(t-2)Ta(t-2) -1.38240E-02 3.41940E-06 0.00396
Th(t-3) +1.64300E-01 1.82470E-06 0.10199
Ta(t-4)Ta(t-5) -6.20610E-02 1.72180E-06 0.02124
Ta(t-1)Ta(t-4) +1.42320E-03 1.26080E-06 0.00095
Ta(t-2)Ta(t-5) +2.62970E-02 | 7.43550E-07 0.00805
Ta(t-6)Ta(t-8) -8.55510E-04 6.60580E-07 0.00087
Te(t-1) +9.68650E-01 9.99870E-01 0.02215
Th(t-4) -1.36820E-01 1.01070E-05 0.15060
Te(t-5)Th(t-2) -1.86820E-02 5.16370E-06 0.02012
Th(t-5) +1.12690E-01 3.38020E-06 0.09149
Te(t-4)Th(t-4)Thi(t-8) -1.17620E-03 2.98840E-06 0.00039
Te(t-2)Th(t-1)Th(t-4) | +5.55450E-05 | 2.65820E-06 0.00003
Te(t-4)Th(t-1)Th(t-5) | +8.21120E-04 | 2.34630E-06 0.00048
Te(t) | Th(t-3) +1.08320E-02 1.39730E-06 0.08328
Te(t-5)Th(t-4)Th(t-8) | +1.23990E-03 1.24310E-06 0.00039
Te(t-5)Th(t-1)Thi(t-5) -9.04840E-04 1.23390E-06 0.00049
Te(t-3)Th(t-1)Thi(t-6) -3.78680E-07 9.47540E-07 0.00002
Te(t-4)Th(t-2) +2.04910E-02 | 8.64180E-07 0.01993
Te(t-3)Th(t-7)Thi(t-8) -1.61560E-05 7.64660E-07 0.00001
Te(t-2)Th(t-3)Thi(t-8) -4.28750E-05 6.44450E-07 0.00003
Th(t-6)Tb(t-8) +4.22300E-04 | 4.37020E-07 0.00043

Table 3. NARX models for diagnosing PHP dynamics
at 120 W.

model terms coefficient ERR Star,ld?rd
deviation

Tb(t-1) +4.80680E-01 9.99280E-01 0.27148
Ta(t-1)Ta(t-1) +7.34480E-04 | 3.54670E-05 0.00044
Th(t-2) +1.15520E+00 | 2.29450E-05 0.55217
Thb(t-1)Tb(t-3) +8.54460E-03 1.49640E-05 0.00366
Th(t-3) -8.20980E-01 1.33750E-05 0.36506
Ta(t-9) -1.66460E-01 1.27850E-05 0.07869
Ta(t-15) +2.69530E-01 1.18730E-05 0.13212

Tb(t) | Ta(t-3)Ta(t-4) -2.43310E-03 1.15690E-05 0.00088
Th(t-2)Th(t-2) -1.04270E-02 8.39190E-06 0.00372
Ta(t-2)Ta(t-5) +2.48160E-03 | 5.69370E-06 0.00113
Ta(t-3)Ta(t-15) -2.07410E-03 5.12350E-06 0.00149
Ta(t-2)Ta(t-6) -1.06210E-03 2.83330E-06 0.00099
Ta(t-10) +9.11610E-02 | 2.59290E-06 0.07987
Ta(t-13) -5.10410E-02 2.01980E-06 0.06224
Tb(t-3)Ta(t-3) +4.63400E-03 1.60700E-06 0.00292
Te(t-1) +9.20850E-01 9.99600E-01 0.06234
Te(t-1)Te(t-1)Th(t-8)|  +4.73310E-06 1.87000E-05 0.00005
Te(t-2)Te(t-2)Te(t-2) | -2.36940E-05 1.16210E-05 0.00005
Te(t-2)Te(t-2)Th(t-9)|  +5.36190E-05 | 7.40940E-06 0.00007

Te(t) | Tb(t-10) -4.52450E-01 6.82750E-06 0.12830
Th(t-3)Th(t-9)Tb(+9) | +4.23060E-05 | 5.27120E-06 0.00003
Th(t-9) +4.58490E-01 | 4.88810E-06 0.12956
Tb(t-2)Tb(t-6) -1.39190E-03 4.56690E-06 0.00217
Th(t-1)Tb(t-4)Tb(t-8) -1.04140E-04 4.09540E-06 0.00006

19

TH(-2)Tot-4)Th(-6) | -6.03920E-05 | 3.97280E-06 | 0.00003
Te(t-1)Th(t-8) | +5.68870E-03 | 3.69750E-06 | 0.00193
To(-3)To(t-10)Tb(t-10)|  +9.97650E-05 | 3.65970E-06 | 0.00004
To(t-DTe(t-DTe(t) | -9.65940E-05 | 3.07020E-06 | 0.00005
Tb(t-3)Tb(t-7) | -5.19430E-03 | 2.78620E-06 | 0.00139
Tbit-1) +2.99970E-02 | 1.77600E-06 | 0.05552
V. CONCLUSIONS
The presented PHP with hollow cylindrical
configuration was developed for
high-performance thermal management. The
experiment validated that flow circulation
throughout the start-up procedure with

multiperiodic oscillations not only functioned as
the key factor activating the PHP but also
characterized and influenced the PHP
performance.

This executed study proposes new means
through which PHP dynamics can be diagnosed
via NARX modeling. The ANN-based realistic
modeling means produced reasonable results
accomplished via massive training data and
several algorithms. All the models in this study
were determined to be efficacious because more
than 97% of simulated results were within a
relative error less than £30%. This demonstrates
that the proposed modeling means is useful to
locate and diagnose the thermal instability of
PHPs. Moreover, the merit of this modeling
means in providing diagnostic information can
be utilized in controller design for the PHP
start-up procedures.

The employed GFRFs provided a method
of feature visualization to capture and explain
nonlinear frequency-domain phenomena in
various PHP dynamic states. Accordingly, the
PHP dynamics could be characterized as being
complicated patterns of resonances on
multidimensional energy spectra. This resonance
analysis based on the theory of Volterra series
can be used as a recognition technique to
diagnose the intrinsic features of PHPs.
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