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ABSTRACT 

The adaptability of high-performance heat transfer devices becomes increasingly crucial along 
with increasing demand. Among the developed designs, pulsating heat pipes (PHP) constitute a class 
of adaptable cooling tools that perform much better than traditional ones. PHPs are noted to be unique 
for their unsteady flow oscillations that are a result of the irregular distribution of the stream of liquid 
slug and vapor plug. Results from experiments have shown that sensitive oscillations in start-up 
procedures have a significant effect on the thermal performance of PHPs.  

The authors executed the present study with the objective of deriving a nonlinear autoregressive 
network with exogenous inputs (NARX) modeling means for investigating approaches of identifying 
PHP start-up procedures in the frequency domain and also in the time domain. Thus, discrete-time 
models were reasonably estimated and nonlinear generalized frequency response functions (GFRFs) 
aimed at outlining the PHP dynamics were further developed. To determine nonlinear influences 
exerted on PHP mass and heat transport processes under assorted operating conditions, higher-order 
GFRFs were broadly analyzed on the basis of observed nonlinear coupling determined to exist 
between assorted input spectral components. 
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 . INTRODUCTION 

With the intensifying diverseness of electronic 
device functions, miniaturization and 
congregation of components have resulted in 
high power densities in the electronics industry. 
To meet critical requirements of thermal 
management, heat transfer designs with high 
capacity have been developed to maintain the 
reliability and performance of electronic 
products [1 3]. Among studies executed on 
two-phase heat transfer designs, Akachi et al. [4] 
proposed a promising heat pipe, called a 
pulsating heat pipe (PHP), which can operate 
without a capillary wick structure and be 
fabricated from a capillary metal tube bent into 
turns. The development of diagnosis strategies 
for PHPs known for featuring thermal instability 
could become highly promising for vaporization 
heat transfer devices owing to their passive 
thermal control. Compared with traditional 
capillary pumped loops as well as heat pipes, 
PHPs were demonstrated to exhibit more 
reliable gravitational field operation, higher 
capacity for heat transmission, and greater 
simplicity in terms of structure [5,6].  

For analyzing the dynamic performance of 
PHPs, scholars have previously executed 
experimental explorations aimed at flow pattern 
visualization for ascertaining the operating 
mechanism of PHPs [7 9]. They have found that 
both sensible heat and latent heat combine to 
form net heat transfer in PHPs. Sensible heat 
dominates the overall heat transfer if the slug 
flow regime dominates the flow field. However, 
the proportion of latent heat increases as the slug 
flow converts to annular flow, improving the 
PHP performance. Changes in flow patterns 
elucidate the discrimination in the formation of 
isolated bubbles, expansion and coalescence of 
bubbles, slug flow, and annular flow. Compared 
with synchronous measurements, the oscillating 
features of PHPs were clarified by probing flow 
patterns [10]. Thus, the casualty of these 
measured temperature responses can be regarded 
as corresponding information of the operating 
mechanism of a PHP. 

Modeling through semiempirical correlations 
has become the most promising approach in 
multiphysics coupled problems, but this 
approach still involves numerous limitations in 
practical applications. Theoretically, 

practitioners have previously established 
statistical methods as well as empirical 
equations aimed at assessing two-phase flow for 
the purpose of forecasting heat transmission in a 
PHP [11 13]. Such assessments have been 
conceded by researchers as merely 
approximations because little is known about 
PHP dynamics. Accordingly, for ironing out 
uncertain challenges emanating in PHP 
manufacturing processes, additional studies on 
this topic must still be executed. Steady-state 
PHP operation occurring after PHPs have 
cleared start-up steps and consequently function 
in stable mode has constituted the ground for 
constructing most black-box models [14,15]. 
Nevertheless, the simulation as well as the 
modeling of PHP initiation steps has not been 
adequately probed by scholars.  

Because of the significance of PHP start-up 
steps and the influence exerted by such steps on 
PHP sustainability and performance, relevant 
scholars in this field have been stimulated to 
execute research on PHPs [16-18]. Start-up 
procedures are even marred by unanticipated 
events engendered by intricate PHP dynamics. 
Research executed for indirectly or directly 
probing PHP start-up modeling is limited, as 

 In 
fact, the start-up scenarios depend on the 
vapor/liquid condition in the heating section [19]. 
Although start-ups under different conditions 
involve different liquid superheating levels in 
the heating section, temperature overshoot 
extents, and start-up times, they should not 
ultimately affect steady-state operations. 
Actually, some start-ups were reported to lead to 
relatively high steady-state temperatures, with 
some even failing to start the circulation process 
[20,21]. Accordingly, the two-phase dynamics 
inherent in the heating section exert considerable 
influences on the unanticipated heat seepage 
traveling to the cooling section. 

Analyzing black nonlinear systems is crucial, 
although relevant research executed previously 
has typically described nonlinear systems by 
applying linear approaches; this unfavorable 
practice is attributable to intricacy of estimation 
procedures [22-24]., Practitioners have 
developed corresponding theories and 
administered them to an extensive category of 
nonlinear systems on the basis of 
Volterra Wiener functional series 
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representations [25]. Volterra an
research work has constituted the footing for 
considerable explorations executed on the 
efficacious estimation of physical system kernels. 
Gain expansion/compression, desensitization, 
plus cross modulation all created within 
frequencies could occur in tandem in reality, 
engendering nonlinear occurrences in the 
frequency domain [26,27]. A prerequisite to 
probing nonlinear systems is a scheme for 

employing input output (I/O) measurements, 
and this has been the objective of nonlinear 
modeling.  

For the purpose of simulating as well as 
modeling chaotic systems, relevant practitioners 
in the field have extensively implemented 
artificial neural networks (ANNs) known to be 
data-driven models and to constitute vital 
approaches for modeling black-box 
systems with machine learning techniques 
[28,29]. ANNs find primary application in 
revealing the relationships between system 
variables through the employment of gauged 
system performance data or model (based on 
physics) derived data. Thus, ANNs have been 
regarded as good alternatives to conventional 
approaches for system diagnosis. A typical ANN 
comprises several simple and interconnected 

to ensure that data inputted at the input layer 
reaches the output layer after traversing through 
a single or through several intermediate layers. 
ANNs provide an option to address complex and 
ill-defined problems and are used in many 
engineering applications, because they offer 
more reasonable solutions. This study 
established an ANN-based nonlinear 
autoregressive network with exogenous inputs 
(NARX) modeling means suitable for nonlinear 
system diagnosis in the discrete-time domain 
[30-32]. Generalized frequency response 
functions (GFRFs) derived from the NARX 
models could be used to illustrate the PHP 
dynamics from the viewpoint of energy. 

. EXPERIMENTAL 

The experimental setup in the executed study 
comprised a power supply unit, designed PHP, 
and high-speed data acquisition system (Fig. 1). 
The geometric configuration of this PHP was 

symmetrical, and a copper capillary tube 

measured wall thickness and inner diameter 
were determined to be 1 and 3 mm, respectively. 
Furthermore, the PHP dimensions were 135 mm 
× 135 mm × 320 mm, and an 8-mm bending 
radius was measured for the 16 U-turns made in 
either end. A 70-mm heating section was 
covered and the rest of tube as the cooling 
section was exposed to the environment. An 
electrical power supply unit (GITEK Electronics, 
model GR-11H12H, Taiwan) was used to apply 
a heat source through a Ni Cr coil (Omega 
Engineering, model NIC80, USA) wrapped 
around the heating section at equivalent 3-mm 
intervals. A three-way valve mounted on the 
PHP was employed to facilitate vacuuming and 
filling the PHP with working medium using a 
syringe. The vacuum of the PHP was kept at 
10 2 Torr before the working medium was filled. 
Deionized (DI) water was chosen for the 
working medium for safety considerations and 
its high merit number relative to other cooling 
media. A medium filling ratio of 50% was 
chosen, and the net DI water loaded into the 
PHP was weighed using an electronic 
microbalance (Shinko Electric Industries, model 
HT-220E, Japan), with minimal uncertainty of 
±0.01 g.  

 
(a) 

 
(b) 

Fig. 1. (a) Photo and (b) schematic of the established 
setup of the designed PHP system employed for 
thermal analysis. 

The PHP was tested in vertical bottom heating 
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mode without any auxiliary cooling design. A 
range of stable voltage output (2 220 V) was 
acquired by regulating the electrical power 
supply unit. An unchanging heat flux boundary 
condition relevant to the heating section was 
engendered by the established heating setup in 
this study; 40, 80, and 120 W served as the 
heating powers for the test. After the heat was 
absorbed by the heating section, it was directly 
transferred throughout the cooling section 
through conduction via the solid tube and 
convection via the working medium and finally 
released to the environment. A total of three 
calibrated T-type thermocouple wires connected 
to the data acquisition system (Graphtec 
Corporation, model GL240, Japan) at equivalent 
75-mm intervals were employed. The locations 
of each of the mentioned thermocouples were 
distributed along the cooling section: that is, Ta, 
Tb, and Tc. Every experiment was conducted for 
exactly 10 min, and all the temperature data 
were sampled at a time interval of 0.2 s under a 
26°C ± 1°C environment. The PHP performance 
was evaluated in terms of the entire thermal 
resistance, represented by 

/ 2 / inR T a T b T c Q ,          (1)                                 

where Qin is the heat input and the overline 
represents mean value. 

. MODELING STRATEGY 

Modeling the effect exerted on nonlinear 
stochastic dynamical systems has been of 
interest for academia. Through the execution of 
nonlinear regression with an ANN, massive 
historical time series can be trained, and such a 
nonlinear system can then be represented as a 
discrete-time NARX model. The introduced 
ANN based on radial basis functions (RBFs) 
[33-35] was noted to be constituted by a hidden 
layer involving j neurons, an input layer 
involving m nodes (corresponding vector form 
denotation: 

1( ) [ ( ), , ( )]mu t tu u t, ( )], (( ), and an output 
layer involving n nodes (corresponding vector 
form denotation: 

1( ) [ ( ), , ( )]ny t ty y t, ( )], (( . All 
mentioned input nodes are connected by using 
the same unity weight to all hidden layer 
neurons. By contrast, all mentioned nodes 
constituting the hidden layer are connected by 
using different weights to the output nodes (Fig. 

2). In this ANN structure, by typically executing 
a Gaussian-type function [36,37], each neuron 
determines the span from its center to the input; 
via nonlinearity, the neuron subsequently 
transmits the derived scalar. The nth hidden 

  
( U(t cj ),                      (2)              

with ( ) and cj representing the 
nonlinear basis function and the center of the 

jth node, respectively.  

 
Fig. 2. Nonlinear multiple-input and multiple-output 
functional ANN structure. 

A NARX model with a single input single 
output feature is typically presented as follows: 

( ) [ ( 1), , ( ), ( ), , ( )]y uy t t t n t d t d nF y y u u( )](( ) ( )) ( (, ( ), ( ), ,) , (( ), ( ), ,) (

 (3) 
Here, d, nu, ny, and  represent the time 

delay for the system, maximum lag for input, 
maximum time lag for output, and nonlinearity 
degree, respectively. In addition, y(t), , u(t), 
and F[ ] denote the system output, constant 
vector term aimed at accounting for mean levels, 
system input, and nonlinear function that is 
vector valued, respectively.  

A critical task in modeling is the derivation 
of a NARX model that can yield a nonlinear 
syste
Moreover, the structure of such a derived model 
ought to be adequate; this is because achieving 
this requirement ensures that the entirety of the 
dynamics can be adequately detailed and that 
overfitting and numerical problems are evaded. 
An orthogonal estimator constitutes a 
noncomplex as well as efficacious method 
enabling the estimation of each individual model 
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contribution to the output of a system can be 
manifested using the error reduction ratio (ERR) 
[38,39], which is typically presented as follows: 

2 2

1
2

2

1 1

( )

1 0 0 %
1

( ) ( )

N

i i

i
N N

g w

E R R

y y
N ,   (4)                               

where N, ig , and iw  denoting the number of 
implemented observations, coefficients, and 
auxiliary model terms, respectively. Such an 
auxiliary model is established in a manner that 
ensures the orthogonality of the iw  terms to 
the data records.  

The term demonstrating the largest ERR 
(i.e., the term identified as having the largest 
contribution to residual variance reduction) is 
identified via a forward-regression algorithm at 
each step. An information criterion serves as the 
trigger applied to halt the procedure. The Akaike 
information criterion (AIC) [40,41] exemplifies 
such a criterion, which is typically presented as 
follows: 

2A IC lo g eN k p ,               (5)                                                

where k and 2  representing a factor of 
penalty and the variance of p-term-model-related 
residuals, respectively. The derived model 
forestalls solution trapping in local minima a 
problem common in ANN-based 
models because it is inherently nonlinear with 
regard to its variables but is linear with regard to 
its parameters. Residuals obtained for a 
nonlinear system is unpredictable when using all 
nonlinear and linear combinations of previous 
outputs and inputs. However, through model 
validation testing, expressed as follows, the 
convergence of the residuals in the learning 
process can be determined:  

( ) , 0 ,                    (6)                                   

( ) 0
iu

, ,                     (7)                       

'
( ) 0

i ju u
, ,                   (8)                     

'2'
( ) 0

i ju u
, ,                     (9)                      

'2
( ) 0

iu

, 0 ,                 (10) 

where a 95% confidence interval being assumed 
in these residual validations and ( )a b

= 
E[a(t- )b(t)]. In addition, u( ), ( ), the prime 

symbol, and ( ) in the foregoing equations 
denote the input sequence, Kronecker delta 
[42,43], mean removal (i.e., mean has been 
omitted), and residue sequence, respectively.  

This modeling strategy was based on 
experimental data, including the effect of noise. 
By contrasting real and model outputs, this study 
derived the deviation of the model using the 
RMSD [44,45] which estimates the deviation 
of model-forecast values from real values 
obtained in the modeled environment and 
square value of Bravais Pearson correlation 
coefficient (R2) [46]. The individual deviations 
estimated in the RMSD are actually residuals 
and are combined in the estimation process to 
realize one measure of predictive power. Here, 
the normalized RMSD (NRMSD) served as one 
of criteria employed to evaluate model accuracy, 
and its expression form is detailed subsequently: 

2

1

( )
N

i i
i

o y

R M S E
N

,  

m a x m in

R M S D
N R M S D

o o
,                 (11)            

where iy  is the ith simulated value 

corresponding to io  and io  the ith observed 
value.  

R2 is a suitable measure of association 
when couples of continuous data follow a 
bivariate normal distribution. When there is a 
complete association, two straight lines overlap 
with a positive slope (i.e., R2 = 1), signifying a 
perfect simulated result without deviation. R2 is 
another criterion to confirm the accuracy of 
models; its expression form is 

2 1

2 2

1 1

( )

( ) ( )

N

i i
i

N N

i i
i i

y y o o

R

y y o o

,   (12)           

where o  and y  are mean values of observed 
and simulated results, respectively.  

For linear systems, spectral analysis is an 
entrenched and extensively executed process in 
engineering. Traditionally, spectral densities and 
frequency response functions have been 
estimated using the fast Fourier transform 
algorithm and window functions. However, most 
systems in actual-world problems are, to some 
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extent, nonlinear, and unfortunately, applying 
linear spectral estimation procedures to data 
generated from nonlinear systems can introduce 
significant errors. A qualified NARX model 
mapped into the frequency domain and can 
precisely illustrate 
as linear features. From the vantage point of 
energy transfer, GFRFs are used for PHP 
dynamics diagnosis. By definition, GFRFs 
constitute products of multidimensional Fourier 
transforms of kernels [47,48] and are derived 
using a Volterra series: 

1

( )   ( )l
l

y t y t ,                         (13) 

where the ( )ly t is the nth-order output 
typically being  

1
1

( ) ( ), ,   
l

l l l l l
i

y t u th dh (((((((( , 0n ,(14) 

1 , ,l lh l,,  are known to 
constitute system time lag and lth-order impulse 
response, respectively. An lth-order GFRF can 
be derived by directly administering a 
multidimensional Fourier transform to 

1 , ,l lh l,, . The definition of the mentioned 
function is  

1 12

1 1 1
, , , , , ,l lj f f

l l l l l
H f f h e d dlj f2

f h e d d1 1, l lj f f1 1 llf llf f1 1 le d de d, , , ,,
j f2j 2 ff1 1f1 1 lf lf l

(15) 
Subjecting Eq. (15) to an inverse transform 

subsequently yields its corresponding nonlinear 
lth-order impulse response: 

1 1
2

1 1 1

1
, , , , , ,

2

l l
j f f

l l l l ln
h H f f e d f d f

f1
l l

j f f2
lH f f e d f d f1 1, , , ,, , l l

j f f
1 1 l

f ff
,

ff

        (16) 
-order output can be 

derived by substituting Eq. (16) into Eq. (14) 
and performing several processes of integration 
on 

1 , , ll, : 

2

1

1

1
, ,

2

i

l
j f t

l l l i in

i

y t H f f U f e d fUH f f, , ,  (17) 

where the input spectrum is represented by 
i

U f . The well-known form of the foregoing 
equation in the frequency domain can now be 
derived by executing the multidimensional 
Fourier transform on either side of Eq. (17): 

1 1

1

, , , ,
l

l l l l i

i

Y f f H f f U ff H f f U f, , , ,         (18) 

Thus, for a typical lth-order subsystem that 
is homogeneous, 

1 , ,l lH f f lf, l,  and 

1 , ,l lh l,,  are, respectively, frequency- and 
time-domain representations of equivalent 
transfer functions that are not reliant on the input 
excitation. For GFRF computation, ( )tu  is 
postulated as being the total value of K sinusoids 

2

1

 k

K
j f t

k

k

u t a e ,                      (19)              

where 
ka  denotes the amplitude. The lth-order 

output could be acquired by substituting Eq. (19) 
into Eq. (14): 

2

1

11

, ,  k i

l K
j f t

l l l k i

ki

y t h a e dh , , , 

2 2

1

1 1 1 1

, ,k i i k i i

l

l lK K
j f t j f t

k l l k i

k k i i

a e h a e d
j f t j f t2 2 k ik if t2 kk2 k ik i2

a e
f t2

h , ,
j 2

a e ki ij f2 k i if k i i

                                (20) 
Inputting Eq. (15) into Eq. (20) yields the 

following: 
1

1 1

2

1 1

, , , k k l

l l

l

K K
j f f t

l k k l k k
k k

y t a a H f f e
f tkj f

a a H f f e
j f2

a a H f fa a H f fa a H f, , ,k k l k kk k l k, , ,a a H f fa a H fa a H fa a H f

                                (21) 
The Fourier transform executed for Eq. (21) 

becomes an aggregation of delta functions when 
ka = 1 (corresponding to the entirety of k = 1, 

 , l) and K = l: 

1

1

2

1 1

, , k kl

l

l

l l
j f f t

l l k k
k k

y t H f f e
f tk1k1

j f k1H f f e, ,l k kl k , ,
f kj 2 , (22)             

The invariance property of GFRFs to 
system input is highly desirable, because it 
enables the characterization of nonlinear systems 
without a priori knowledge of inputs. Thus, the 
advantage of GFRFs can be utilized to reveal the 
PHP dynamics by capturing the sensitive 
spectral effects engendered by parameter 
variations, thus providing valuable insights into 
system behavior. 

. RESULT AND DISCUSSION 

The proposed PHP was determined to 
manifest features of unstable motion, which are 
similar to those of Lorenz chaos [49,50]. 
Heating applied to the bottom of the heating 
section causes uneven pressure among the 
parallel tubes and then induces fluid oscillations, 
forming the operating mechanism of PHPs. 
These self-maintained flow oscillations 
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influence the liquid film thickness determined 
for the vapor and liquid phases of the working 
medium on the internal surface. This drop in 
thickness determined for the liquid film can be 
regarded as a switch for the transition of flow 
patterns, resulting in intermittent flow dynamics.  

 
(a) 40W                (b) 80W 

 
(c) 120W 

Fig. 3. Temperature variations derived for Ta, Tb, and 
Tc. 

Fig. 3 shows the temperature responses 
determined for Ta, Tb, and Tc at low, medium, 
and high heating powers of 40, 80, and 120 W. 
At initial operation, nuclear pool boiling could 
be recognized to be a main heat transfer 
mechanism of the PHP due to the stable 
enhancement of the observed temperatures. 
Since consistent flow oscillations occurred, 
latent heat dominated the transfer mechanism. 
During normal operation, the temperature 
variations indicated that flow pattern in the PHP 
changed transiently and repeatedly due to the 
thermal equilibrium of the PHP. At 40 W, the 
noted slug flow was determined to oscillate with 
obvious temperature variations at 85 s (Fig. 3(a)). 
However, a tiny increment was found in Tc 
before 120 s, showing the PHP was unable to 
operate entirely until the aggregated heat energy 
was large enough to vaporize the working 
medium to drive the flow. When the set heating 
power surpassed 80 W, the flow oscillated much 
faster, representing vapor plug disintegration 
into more fragments. On account of the 
foregoing experimental results, one can 
conclude that the effect of thermal instability 

was enhanced with heating powers (Fig. 
3(c)-(c)). Such assorted thermohydrodynamics 
engender vapor plugs and liquid slugs unevenly 
distributed over the entirety of a system; just 
some tiny thermal instability can engender 
frequent changes in the plug and slug flow 
directions. As determined from the last 1500 
observed data, the entire thermal resistances of 
the PHP derived via Eq. (1) were 0.74, 0.26, and 
0.14 °C/W for the three foregoing heating 
powers. This validates this PHP to be suitable 
for managing an extensive range of heat sources. 

 
(a) 40W                (b) 80W 

 
(c) 120W 

Fig. 4. Temperature variations derived for Ta, Tb, and 
Tc during initial operation of PHP. 

The study selected the initial 100 s of each 
measurement, including the duration from 
stagnation to quasi steady state, for modeling 
the casualty of temperatures in the PHP start-up 
(Fig. 4). Temperatures increased steadily at the 
low heating power of 40 W (Fig. 4(a)), showing 
that temperature hysteresis occurred and that this 
start-up procedure was mainly dominated by 
thermal conduction. Due to low heat input and 
gravity effects blocking the flow oscillation, the 
tube flow was maintained in liquid phase. When 
the heating level was set to surpass 80 W, 
sensitive temperature variations, but without 
overshoots, were noted in the start-up procedure 
(Fig. 4(c) (c)). This informed that an adequate 
heating power for vapor influx realization can 
not only enable gravity resistance but also pump 
liquid slug. The phase transition of the applied 
working medium became more severe than 
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before because the vapor plugs broke into 
fragments and the flow speed increased. With 
the enhancement of convection effects, more 
dramatic oscillations occurred and overcame the 
surface tension; the corresponding flood could 
change the shape of the vapor liquid interface. 
This changed the pressure distribution and 
therefore the fluid movement direction.  

As noted above, during the operation of the 
PHP, flow convective boiling and nucleate 
boiling could intensify two-phase interactions, 
leading to complicated flow movements with a 
sporadic distribution of vapor plugs and liquid 
slugs. To understand the PHP dynamics in 
start-up procedures, an efficacious NARX model 
was established. Because order selection and 
time delay settings were noted to be important to 
the nonlinearity of the model structure, this 
study set the utmost time lag for output as well 
as input to 20 through trial and error. In addition, 
the most 15 important terms were selected, and 
other candidate terms were discarded by 
defining the threshold value of the ERRs. 
Because the ERR computation and parameter 
estimation were conducted concurrently to 
identify the importance of each individual 
NARX model term, the structure terms were all 
ordered depending on their measured input to 
the global mean squared prediction error. The 
models listed in Table 1 through 3 represent the 
cause-effect relations of Ta(t) Tb(t) as well as 
Tb(t) Tc(t), for the heat transfer process through 
the lower and upper halves of the cooling 
section. These diagnostic models, named as Tb(t) 
and Tc(t), consisting of historical temperature 
time series were noted to exhibit a common 
feature of self-prediction involving the 
forecasting of the most important term one step 
in advance before the output value. Some cubic 
terms were assessed in the model Tc(t), implying 
that more intensive conjugate heat transfer 
existed in the upper cooling section as the 
heating power increased. The model validation 
tests executed in this study revealed all models 
to be reasonable (Fig. 5); this is due to the fact 
that the convergence degrees determined for 50 
lagged residuals for Eqs. (6) (10) were almost 
within the defined 95% confidence interval. To 

physical PHP behavior during start-up 
procedures, the simulation-derived results were 
compared against the measured results (Fig. 6). 

With the exception of some tiny deviations, over 
97% of the simulation-derived results were 
determined to be within a relative error of less 
than ±30% (Fig. 7). The satisfactory agreement 
levels were also confirmed by NRMSD and R2, 
with the NRMSD values being estimated to be 
within a tiny range of 0.01825 0.06695 and R2 
values being noted to be within the range of 
0.96870 0.99954 and to follow a positive slope. 
Thus, the black-box method executed in this 
study for transient assessment has promise for 
use in procedures aimed at deriving diagnostic 
data for PHPs. Further research work can be 
performed on the capacity of the applied NARX 
model to execute forecasts multiple steps in 
advance for optimizing PHP design. 

 
(a) Ta Tb             (b)Tb Tc 

 
(c)Ta Tb             (d)Tb Tc 

 
(e)Ta Tb             (f)Tb Tc 

Fig. 5. Convergence of 50 lagged residuals by means 
of model validation tests, where (a) and (b) are for 40 
W, (c) and (d) are for 80 W, and (e) and (f) are for 120 
W. (tests a~e are followed as Eq. (6)~(10)) 
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(a) 40 W 

 
(b) 80 W 

 
(c) 120 W 

Fig. 6.Comparison of the simulated and measured 
Tb(t) and Tc(t). 

 
(a) 40W 

 
(b) 80W 

 
(c) 120W 

Fig. 7. Correlation determined between observed and 
simulated Tb(t) and Tc(t). 

When discrete-time NARX models are 
being subjected to mapping in the frequency 
domain, the energy spectra representing PHP 
dynamics can be revealed by GFRFs. First-order 
GFRFs are just single-frequency spectra without 
nonlinear effects. Although multiperiodic 
features can be ideally found, these linear 
features cannot fully describe the operating 
mechanism of a chaotic PHP, such as that 
designed in the current study. To recognize the 
nonlinearity of PHP dynamics, the highest 
GFRF for each model was proposed to be 
analyzed (Fig. 8). These nonlinear effects were 
emphasized as resonances on the responding 
surfaces, which suggested the PHP possessed 
nonlinear dynamics around these frequency 
features. These resonances became ridges and 
antiresonances became valleys, allowing for 
further understanding of the energy aggregation 
and expansion during the PHP start-up 
procedure. The negative frequency axis depicted 
in Fig. 8 is theoretically a mirror image of the 
positive frequency axis. Here, the sampling rate 
of each measurement was 5.0 Hz, and 
multiplying this rate by the resonance frequency 
that was normalized could yield the distinct 
actual values. Quite different from the 
observations noted for the first-order GFRFs, the 
output energy at these frequency ranges was 
produced by the heat transfer mechanism of the 
PHP, causing a strong intermodulation between 
the frequencies. There were many cross ridges, 
but the main ridges dominated the nonlinear 
effects on energy transition. At 40 W, only a 
distinct resonance peak at 0 Hz was recognized 
in the lower cooling region. However, a 
deduction in this paper is that heat could not 
efficiently transfer to the upper section due to 
the antiresonance spectrum (Fig. 8(a)). At 80 W, 
energy aggregations at nearly ±5.75 Hz 
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gradually formed in the upper section, signifying 
that more heat was transferred to the top through 
a regular mode of transfer (Fig. 8(a)). When the 
heating power was scaled up to 120 W, dense 
spectra of narrow resonances appeared, with the 
spectra being recognized at 0 and ±5 Hz in the 
lower section and at 0 and ±10 Hz in the upper 
section (Fig. 8(c)). Compared with the obtained 
thermal resistances, such a statistically 
demonstrated coherence in resonance noted in 
the start-up procedure could engender a 
favorable PHP performance. 

 

 
(a) 40W 

 

 
(b) 80W 

 

 
(c) 120W 

Fig. 8. Resonance spectra for heat transfer in lower 
and upper cooling sections. 

Table 1. NARX models for diagnosing PHP dynamics 
at 40 W. 

model terms coefficient ERR Standard 
deviation 

Tb(t) 

Tb(t-1)  +8.18400E-01 9.99990E-01 0.11405 
Ta(t-2)Ta(t-3) +2.08840E-03 1.54460E-06 0.00113 
Tb(t-3)Tb(t-3)   +3.60740E-03 4.80120E-07 0.00109 

 +3.71330E+00 4.66460E-07 0.07430 
Ta(t-1)Ta(t-8) -8.50310E-03 3.39860E-07 0.00470 
Ta(t-1)Ta(t-3) -4.56110E-03 1.70770E-07 0.00177 
Ta(t-14)Ta(t-14) -6.02890E-03 9.13010E-08 0.00254 
Ta(t-1)Ta(t-5) +4.13180E-04 8.85700E-08 0.00026 
Ta(t-2)Ta(t-2) -4.33760E-03 6.40780E-08 0.00298 
Ta(t-8)Ta(t-14) +8.11130E-03 6.26700E-08 0.00428 
Ta(t-1)Ta(t-1) +4.03180E-03 5.98890E-08 0.00283 
Ta(t-2)Ta(t-14) +6.63880E-03 4.89780E-08 0.00552 
Ta(t-1) Ta(t-13) +8.89980E-02 3.90000E-08 0.14646 
Ta(t-15) -4.09700E-04 3.17170E-08 0.00022 
Ta(t-14)     -7.21120E-02 2.07850E-08 0.13290 

Tc(t) 

Tc(t-1)         -1.99410E+00 9.99210E-01 0.46170 
Tc(t-2)         -4.34360E+00 4.83320E-04 0.37251 
Tc(t-3)Tc(t-3)    +2.89210E-02 5.84630E-05 0.07322 
Tc(t-3)         -1.38090E+00 4.33180E-05 0.19614 
Tc(t-1)Tc(t-1)    +7.60550E-01 1.97600E-05 0.52082 
Tb(t-14)Tb(t-14)  +7.87450E-05 1.94570E-05 0.00490 
Tb(t-1)Tb(t-15)  -2.23990E-03 6.05010E-06 0.00713 

 +1.25200E+02 5.92730E-06 0.31972 
Tb(t-6)Tb(t-15)  +1.74160E-03 5.07420E-06 0.00656 
Tb(t-2)Tb(t-15)  +1.78220E-03 3.47450E-06 0.00867 
Tb(t-4)Tb(t-15)  -1.39840E-03 3.18420E-06 0.00762 
Tc(t-2)Tc(t-2)    +7.99860E-01 3.14330E-06 0.62961 
Tc(t-1)Tc(t-2)    -1.43800E+00 2.58890E-06 0.41378 
Tb(t-13)Tb(t-15)  +1.00040E-03 2.42010E-06 0.00833 
Tb(t-12)Tb(t-15)   -7.09400E-04 2.06130E-06 0.00789 
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Table 2. NARX models for diagnosing PHP dynamics 
at 80 W. 

model terms coefficient ERR Standard 
deviation 

Tb(t) 

Tb(t-1)        +9.87190E-01 9.99670E-01 0.10525 
Ta(t-13)       +4.91430E-02 3.79920E-05 0.02717 
Tb(t-2)        -2.53470E-01 1.28860E-05 0.13946 
Tb(t-5)        +1.84240E-01 8.96160E-06 0.10266 
Ta(t-4)Ta(t-4)  +3.05000E-02 8.66170E-06 0.01060 
Ta(t-7)Ta(t-8)  +1.77270E-04 4.70450E-06 0.00067 
Ta(t-15)       +5.98320E-02 4.57480E-06 0.02971 
Ta(t-5)Ta(t-5) +1.81390E-02 4.27010E-06 0.00916 
Tb(t-4)  -1.94230E-01 3.91960E-06 0.12970 
Ta(t-2)Ta(t-2) -1.38240E-02 3.41940E-06 0.00396 
Tb(t-3)         +1.64300E-01 1.82470E-06 0.10199 
Ta(t-4)Ta(t-5) -6.20610E-02 1.72180E-06 0.02124 
Ta(t-1)Ta(t-4)  +1.42320E-03 1.26080E-06 0.00095 
Ta(t-2)Ta(t-5) +2.62970E-02 7.43550E-07 0.00805 
Ta(t-6)Ta(t-8)    -8.55510E-04 6.60580E-07 0.00087 

Tc(t) 

Tc(t-1)   +9.68650E-01 9.99870E-01 0.02215 
Tb(t-4)  -1.36820E-01 1.01070E-05 0.15060 
Tc(t-5)Tb(t-2) -1.86820E-02 5.16370E-06 0.02012 
Tb(t-5) +1.12690E-01 3.38020E-06 0.09149 
Tc(t-4)Tb(t-4)Tb(t-8)  -1.17620E-03 2.98840E-06 0.00039 
Tc(t-2)Tb(t-1)Tb(t-4)  +5.55450E-05 2.65820E-06 0.00003 
Tc(t-4)Tb(t-1)Tb(t-5) +8.21120E-04 2.34630E-06 0.00048 
Tb(t-3)   +1.08320E-02 1.39730E-06 0.08328 
Tc(t-5)Tb(t-4)Tb(t-8) +1.23990E-03 1.24310E-06 0.00039 
Tc(t-5)Tb(t-1)Tb(t-5)  -9.04840E-04 1.23390E-06 0.00049 
Tc(t-3)Tb(t-1)Tb(t-6)  -3.78680E-07 9.47540E-07 0.00002 
Tc(t-4)Tb(t-2) +2.04910E-02 8.64180E-07 0.01993 
Tc(t-3)Tb(t-7)Tb(t-8)  -1.61560E-05 7.64660E-07 0.00001 
Tc(t-2)Tb(t-3)Tb(t-8) -4.28750E-05 6.44450E-07 0.00003 
Tb(t-6)Tb(t-8)   +4.22300E-04 4.37020E-07 0.00043 

Table 3. NARX models for diagnosing PHP dynamics 
at 120 W. 

model terms coefficient ERR Standard 
deviation 

Tb(t) 

Tb(t-1)    +4.80680E-01 9.99280E-01 0.27148 
Ta(t-1)Ta(t-1)  +7.34480E-04 3.54670E-05 0.00044 
Tb(t-2)        +1.15520E+00 2.29450E-05 0.55217 
Tb(t-1)Tb(t-3) +8.54460E-03 1.49640E-05 0.00366 
Tb(t-3)        -8.20980E-01 1.33750E-05 0.36506 
Ta(t-9) -1.66460E-01 1.27850E-05 0.07869 
Ta(t-15)    +2.69530E-01 1.18730E-05 0.13212 
Ta(t-3)Ta(t-4)  -2.43310E-03 1.15690E-05 0.00088 
Tb(t-2)Tb(t-2)  -1.04270E-02 8.39190E-06 0.00372 
Ta(t-2)Ta(t-5)  +2.48160E-03 5.69370E-06 0.00113 
Ta(t-3)Ta(t-15) -2.07410E-03 5.12350E-06 0.00149 
Ta(t-2)Ta(t-6)  -1.06210E-03 2.83330E-06 0.00099 
Ta(t-10)       +9.11610E-02 2.59290E-06 0.07987 
Ta(t-13)       -5.10410E-02 2.01980E-06 0.06224 
Tb(t-3)Ta(t-3)   +4.63400E-03 1.60700E-06 0.00292 

Tc(t) 

Tc(t-1) +9.20850E-01 9.99600E-01 0.06234 
Tc(t-1)Tc(t-1)Tb(t-8) +4.73310E-06 1.87000E-05 0.00005 
Tc(t-2)Tc(t-2)Tc(t-2) -2.36940E-05 1.16210E-05 0.00005 
Tc(t-2)Tc(t-2)Tb(t-9) +5.36190E-05 7.40940E-06 0.00007 
Tb(t-10) -4.52450E-01 6.82750E-06 0.12830 
Tb(t-3)Tb(t-9)Tb(t-9) +4.23060E-05 5.27120E-06 0.00003 
Tb(t-9) +4.58490E-01 4.88810E-06 0.12956 
Tb(t-2)Tb(t-6)  -1.39190E-03 4.56690E-06 0.00217 
Tb(t-1)Tb(t-4)Tb(t-8)   -1.04140E-04 4.09540E-06 0.00006 

Tb(t-2)Tb(t-4)Tb(t-6)   -6.03920E-05 3.97280E-06 0.00003 
Tc(t-1)Tb(t-8)   +5.68870E-03 3.69750E-06 0.00193 
Tb(t-3)Tb(t-10)Tb(t-10) +9.97650E-05 3.65970E-06 0.00004 
Tc(t-1)Tc(t-1)Tc(t-1) -9.65940E-05 3.07020E-06 0.00005 
Tb(t-3)Tb(t-7) -5.19430E-03 2.78620E-06 0.00139 
Tb(t-1) +2.99970E-02 1.77600E-06 0.05552 

. CONCLUSIONS 

The presented PHP with hollow cylindrical 
configuration was developed for 
high-performance thermal management. The 
experiment validated that flow circulation 
throughout the start-up procedure with 
multiperiodic oscillations not only functioned as 
the key factor activating the PHP but also 
characterized and influenced the PHP 
performance.  

This executed study proposes new means 
through which PHP dynamics can be diagnosed 
via NARX modeling. The ANN-based realistic 
modeling means produced reasonable results 
accomplished via massive training data and 
several algorithms. All the models in this study 
were determined to be efficacious because more 
than 97% of simulated results were within a 
relative error less than ±30%. This demonstrates 
that the proposed modeling means is useful to 
locate and diagnose the thermal instability of 
PHPs. Moreover, the merit of this modeling 
means in providing diagnostic information can 
be utilized in controller design for the PHP 
start-up procedures. 

The employed GFRFs provided a method 
of feature visualization to capture and explain 
nonlinear frequency-domain phenomena in 
various PHP dynamic states. Accordingly, the 
PHP dynamics could be characterized as being 
complicated patterns of resonances on 
multidimensional energy spectra. This resonance 
analysis based on the theory of Volterra series 
can be used as a recognition technique to 
diagnose the intrinsic features of PHPs. 
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