─羅裕耀─

各國野戰炊爨車研析與我軍精進作為—運用C-A評估法與質量混合多準則(EVAMIX)分析

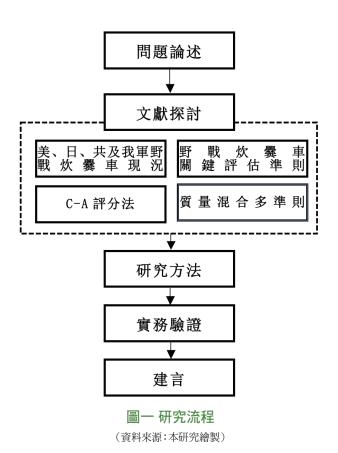
提要

- 一、快速與機動是現代作戰對於後勤補給的基本要求,亦是戰場熱食追送的基本條件,必 須建構相對應之野戰炊爨車,方可有效熱食追送給予前線官兵,對於穩定軍心及提升官 兵士氣有其顯著效果。
- 二、本研究藉蒐羅有關共軍與美、日軍相關野戰炊爨車發展概況、近期設計與我軍現行野 戰炊爨車等相關資料,運用C-A評估法與質量混合多準則方法評估,獲取共軍野戰主食 加工車為現今較佳之野戰炊爨車,藉由客觀數據分析我軍與共軍野戰炊爨車差異,以 提供我軍精進建言。
- 三、現行野戰炊爨車依據高科技化戰爭需要,須朝總體貨櫃化、重量輕量化、裝備模組化、 車輛小型化、燃料多元化、增設濾水裝置、改善供電系統等方向發展,共軍新一代野戰 炊爨車均符合發展方向;針對我國軍現有野戰炊爨車,本研究提出小型貨櫃化、濾水設 施建構、電路改善與炊爨燃料多元化之建議,以改善現行野戰膳食作業,進而提升國軍 戰力。

壹、前言

古有云:「兵馬未動,糧草先行」;兵家韜 略一書提及「師行糧從,軍需最要」,11949年 中共建政後,依據國共內戰及韓戰的經驗, 體認軍隊膳食對部隊士氣及戰力的重要性 無可取代。拿破崙曾經說過:「士氣在很大 程度上取決於士兵的伙食」;另美軍野戰膳 食手冊將野戰膳食區分供給標準(Feeding Standards)、野戰廚房(Field Kicthens)及野 戰醫療 (Field Hospitals) 等三個部分,2 美軍 曾分析如果一個月持續食用野戰口糧 (Meal, Ready-to-Eat, MRE),人員體重減少3公斤,因 為野戰口糧僅提供足夠熱量,無法提供足夠 營養,故要求於連續作戰20天後,要野戰口 糧與熱食交錯提供,3方可有效支應作戰, 顯現野戰廚房重要性。現今各國部隊以野戰 炊爨車(或牽引車)為主要作業器具,再者, 共軍針對野戰炊爨車,結合民間汽車產業開 發一系列野戰炊爨車,已配發至所屬部隊執 行野炊作業。反觀我國軍現行野炊作業,除 海軍添購食勤車執勤外,陸軍仍處於埋鍋造

飯階段,然我國以中小企業立國,各類型餐車 改裝均有一定能力,鑑此,本次研究採用C-A 評估法與質量混合多準則方式,然此次研究 限制在於資料獲取不易及國軍無相關餐車 車輛設計專家等考量,僅針對中國知網⁴獲 取共軍野戰炊爨車相關文獻、美軍野戰膳食 手冊、日本自衛隊需品科野外炊具規格手冊 及我軍食動車操作手冊作為評估依據,依序 運用野戰炊爨車關鍵評估準則針對美、日、 中共及我軍食動車現況實施評估,獲取最佳 野戰炊爨車屬性;並與我軍野戰炊爨車進行 特、弱點研析,參考相關專家針對野戰炊爨 車設計改善等文獻,最後依據結果提出我軍 精進作為,以改善我軍野戰炊爨車,研究流 程如圖一。


貳、文獻探討

一、美、日、中共及我軍野戰炊爨車發 展現況

(一)美軍野戰炊爨車5

美軍於1999年推出MKT99野戰炊爨車,

- 1 何曉明、何順進,《兵家韜略》(湖北:武漢大學出版社,西元2007年1月)。
- 2 Headquarter, Department of the Army, Army Field Feeding and Class I Operations. (Washington, Department of the Army press, 2015), p. 5.
- 3 Hill N., Fallowfield J., Price S., Wilson D., "Military nutrition: maintaining health and rebuilding injured tissue," Philos Trans R Soc Lond B Biol Sci., No. 366 (2011), p. 231-240.
- 4 中國知網係由中國學術期刊電子雜誌社於1996年創建,其內容包含軍事、經濟、醫療等等相關學術期刊。
- 5 同註2。

尺寸為4,343×2,330×2,330mm,重量2.8公 噸,建置烤盤、MBU燃料爐,冰箱、野戰爐 灶、電動切肉機、電動切菜機、電動開罐器等 設備,可使用各種油料作為燃料,可於每小時 提供250人份,設備須完成展開方可實施烹 煮,適用於攝氏-0℃至35℃的各種氣候,須採 外接電源供電;且機動採3.5噸載重車實施牽 引,如圖二。

(二)日本自衛隊野戰炊爨車6

日本自衛隊於1960年代,由伸誠商事研

發野外炊具1號,並於2010年研改野外炊具1 號(22改),尺寸為4,595×2,310×3,340mm, 重量為2.5公噸,可於1小時內完成250人餐 份,設置發電機、冷凍櫃、6口方型爐灶及濾 水裝置,如圖三。設備須完成展開方可實施 烹煮,適用於攝氏-0℃至35℃的各種氣候,可

圖二 美軍MKT99野戰炊爨車 (資料來源:同註2)

圖三 日本自衛隊野外炊具1號(22改) (資料來源:同註6)

張相洪、穆軍、〈國內外軍用炊事車簡介二〉《商用汽車》(北京),1999年第3期,西元1999年3月,頁46-48 °

使用各種油料作為燃料,可採取自主發電與 外接電源,須運用3.5噸載重車實施機動牽 引。

(三)共軍野戰炊爨車7

共軍於1999年以後,隨著汽車工業發展、新技術應用,成功開發自行式野戰炊爨車、野戰主食加工車、XCT97A-炊事牽引車等3項(分析如表一),有效提高野戰炊爨車機動性能與行駛安全,並建構模組化,增加裝備靈活度,以有效提供各類型部隊及時與完整野戰膳食支援,相關設備說明如後:

- 1.自行式野戰炊爨車:尺寸為7,788×2,500×3,300mm,重量9.9公噸,編配營級建制單位,可行進間執行炊爨作業。每小時可完成330人份飯菜,於海拔2,500米以下、攝氏-41至46度、八級風及下雨、雪等狀況均可使用,設備區分為主食灶、副食灶、和麵機、切菜機、冰箱、抽油煙機、儲物櫃、調理臺等,採自主發電與外接電源供電,操作人員計4員,可用各種油料作為炊爨燃油,並設置自動淨水裝置,可針對各種水源過濾。
- 2.野戰主食加工車:尺寸為7,700×2,500 ×3,300mm,總重量為10.5公噸,設備 計有和麵機、饅頭機、壓麵機、餅鐺、

蒸箱、鋁制鍋爐等,由6人操作,每小時900人份餐點。適用於攝氏-25℃至35℃的各種氣候和海拔3,000米以下的地區。主要裝備陸軍建制團(旅)生活服務中心和相當於團(旅)後勤的部隊及海、空軍場站。可採自主發電與外接電源等兩種供電模式,爐灶可運用各種油料,有設置進、濾水裝置。

3.XCT97A-牽引車:為XCT97-炊事拖車改良型,總重量為2公噸、尺寸為3,400×2,200×2,500mm,適用於攝氏-25℃至42℃的各種氣候條件和海拔3,000米以下的地區使用,設備須展開始可作業,採用外接電源實施供電,運用各種油料作為燃油,無設置進、濾水裝置。

(四) 我軍野戰炊爨車⁸

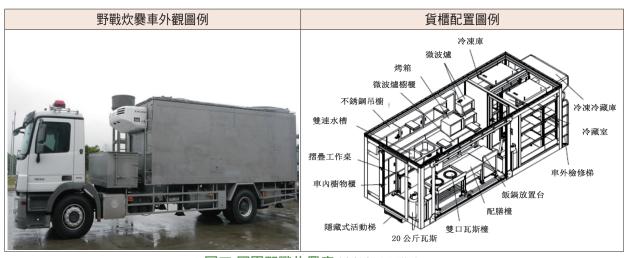
我國空軍(防空飛彈指揮部)於民國99 年購置野戰炊爨車6臺可區分底盤和貨櫃,其 尺寸為9,690×2,500×3,668mm,總重量為18 公噸、操作人員計3員,採用瓦斯作為燃料; 於1小時完成70人份。貨櫃區分烹調室、冷凍 室、冷藏室、車外儲物櫃、車外護欄組、車外 燈系等部分。可以採取自主發電及外接電源 等兩種方式實施供電,未設置濾水裝置,如 圖四。

- 7 王友林、郭相杰,《誘人的戰爭拐杖—軍需裝備發明史》(北京:解放軍出版社,西元1999年10月),頁 191-195。
- 8 食勤車操作手冊(國防部),民國102年8月21日,頁13-14。

ングールンは大阪の大力が大							
型號類別	自行式野戰炊爨車	野戰主食加工車	XCT97A-牽引車				
圖例							
尺寸(mm)	7,788×2,500×3,300	7,700×2,500×3,300	3,400×2,200×2,500				
重量	9.9公噸	10.5公噸	2公噸				
機動方式	自力機動	自力機動	牽引式				
操作人員	4員	6員	4員				
作業能量	330人份/小時	900人份/小時	150人份/小時				
適應環境	可於海拔2,500米以下、攝氏 -41至46度、八級風及下雨、 雪等狀況均可使用	適用於攝氏-25℃至35℃的各種氣候條件和海拔3,000米以下的地區	適用於攝氏-25℃至35℃的各種氣候條件和海拔3,000米以下的地區				
可否行進作業	可	可	否				
供電方式	自主發電 外接電源	自主發電 外接電源	外接電源				
炊爨燃料	汽、柴、煤油	汽、柴、煤油	汽、柴、煤油				
濾水裝置	有	有	無				
支援單位	營級建制單位	陸軍建制團(旅)生活服務中 心和相當於團(旅)後勤的部 隊及海、空軍場站	營級建制單位				

表一共軍現今野戰炊爨車分析表

資料來源:參考註7及註16研究整理


二、野戰炊爨車關鍵評估準則

野戰炊爨車為部隊在平、戰時執行膳食 供應任務之工具,特別於野戰條件下炊爨絕 非易事,以往須考量衛生、水源、食材保存及

用火方式等因素,然現今發展方向朝重量減 輕化、尺寸小型化、裝備模組化、通用化、總 體貨櫃化、燃料多元化、增設濾水裝置、改善 供電系統等面向,9、10根據文獻所述,可歸納

⁹ 王書勤,〈流動的軍中"美食城"(下)—野戰炊事車發展趨勢面面觀〉《輕兵器》(北京),2003年第9 期,西元2003年9月,頁40-41。

¹⁰ 王龍杰,〈炊事車設計要點分析〉《湖北理工學院學報》(湖北),第29卷第5期,西元2013年10月,頁14-17 °

圖四 國軍野戰炊爨車(資料來源:同註8)

區分尺寸、噸重性、機動方式、作業能量、環 境適應、供電方式、炊爨燃料及濾水裝置等8 項評估準則,摘述如后:

- (一)尺寸:阿克曼轉向原理11係指車輛於轉 向過程中,沿單一轉向中心實施旋轉, 這樣車輪才可順利過彎,說明車輛尺 寸越大,迴轉半徑越大,意謂車輛尺寸 影響進入城鎮作戰難易度,本研究依 據前述理論,採取裝備長度作為尺寸 評量基準。
- (二) 噸重性: 黃定政與于鵬學者(2011) 強調野戰炊爨車需要較高之機動 性,才可隨作戰部隊迅速轉移與機

- 動。12然機動性與噸重性為權衡關係 (Trade-off Relationship),意味著車 輛越重則機動性越差,於本研究以噸 重作為評估。
- (三)機動方式: 江洪海學者(2011)指出現 代戰爭具有高度機動性與時效性等兩 大特點,13對於野戰炊爨車須達到前述 特點,必須具備可以與部隊同時機動 與機動速度快之能力,在此評估區分 自力機動與牽引式等兩種。
- (四)作業能量:Peter Drucker於1966年於《The Effective Executive: The Definitive Guide to Getting the Right》一書定義效率
- 11 黄靖雄,《汽車原理》(臺北:正工出版社,西元1989年)。
- 12 黄定政、于鵬,〈炊事車戰場熱食保障利器〉《物流技術與應用(貨運車輛)》(北京),2011年第5期, 西元2011年5月,頁102-104。
- 13 江洪海,〈我軍飲食裝備發展趨勢探析〉《法制與社會》(雲南),2007年12期,西元2007年4月,頁 795。

(Effective)以最少的資源,獲得最大 產出,14於此研究定義為作業能量,為 一小時之內可產出多少餐份。

- (五)環境適應:江洪海(2007)指出高科技 戰爭具戰場空間廣闊性之特點,15對於 野戰炊爨車而言,需短時間內運送到受 補單位或伴隨部隊機動至營輜重,意 味要求野戰炊爨車可長途運輸與適應 不同環境條件,方可有效支應作戰。
- (六)供電方式:現行野炊作業中,考量衛生 與爐灶供火穩定性,需要穩定電源供 應,此時會採取自主發電與外接電源 等兩種,以確保野炊作業不中斷。
- (七) 炊爨燃料: 經研究顯示, 使用燃料多元 化可增加野戰炊爨車戰場適應力,16、

- 17、18現今各國軍隊野戰炊爨車均使用 多種燃料,而且可有減少作戰區域燃 料侷限性對於野戰炊爨車之影響,以 提高野戰炊爨車持續熱食追送能力。
- (八) 濾水裝置:人體70%由水分組成,若人 不吃飯不喝水可存活7-10天,若有水 供應可存活2個月之久,由此可見人生 命與水之維繫具有重要性,對於戰時 活動量大之軍人亦是如此,如遇戰場 景況,乾淨水源獲取不易,要求各種野 戰炊爨車加裝濾水裝置。19、20、21

三、C-A評分法

C-A評分法22為Churchman與Ackoff (1954)所提出的計畫評估方法,屬於一種 古典評估方法,在本研究則運用C-A評分法

- 14 Peter F. Drucker, The Effective Executive: The Definitive Guide to Getting the Right. (New York: HarperCollins Publishers).
- 15 同註13。
- 16 繩以健、何永水,〈我軍新一代連用野戰炊事拖車〉《現代軍事》(北京),1999年第3期,西元1999年3 月,頁54-55。
- 17 同註13。
- 18 郭威、劉志剛,〈淺析野戰飲食裝備發展趨勢〉《才智》(吉林),2013年第18期,西元2013年6月,頁 256 °
- 19 王政、仁寶海,〈炊事車水路系統結構設計〉《專用汽車》(湖北),2011年第1期,西元2011年1月,頁67-68。
- 20 王政、王雪麗、温明、王瑞江、〈小型炊事車總體設計〉《專用汽車》(湖北),2013年第4期,西元2013年 4月,頁91-93。
- 21 陳鵬、曹文娟、王沙晶、張振龍,〈一種多功能野外炊事車的研究與開發〉《移動電源與車輛》(甘肅), 2016年第4期,西元2016年12月,頁13-16。
- 22 Churchman, C. W. and Ackoff, R. L., "An Approximate Measure of Value," Journal of the Operations Research Society of America, Vol. 2, No. 2 (1954), p. 172-182.

獲取評估準則之權重,其區分兩個階段,分述如后:

(一)第一階段

- 1.決定評估準則順序:已確認m個評估準則,依據其重要性進行排序 $(C_pC_2,...C_m)$,由此 可知 C_1 最重要, C_2 為較為重要,依此類推, C_m 為最不重要。
- 2.給予評估準則得分:將最重要準則 C_i 律定100分,其他準則分別給予相對適切得分,重 要性較低的準則得分不可超過較高之準則,並同時滿足以下關係。

- 3.進行配對比較:
 - (1) 將最重要準則C,與其他準則進行配對比較,搜尋較具偏好之組合,再行針對C,的得 分實施校正,若採多位專家評估時,可運用多數決策法獲取較具偏好配對組。
 - (2) 令k=1,首先去除最重要準則Ck,再針對次重要準則Ck+1與其他(m-k-1)個評估準則 之不同組合,進行配對比較,搜尋較具偏好之組合,據以調整Ck+1得分,其過程同上 所述。
- (3) 若k=m-1,即除去(m-3) 個排列在前面的評估準則,且比較Cm-2與(Cm-1,Cm) 組合的 配對比較與Cm-2得分調整作業。
- 4.得分歸一化:將每個評估準則校正後得分相加,再執行各評估準則得分歸一化,即為評 估準則的權重 $(W_1,W_2,...,W_m)$,即

$$w_j = \frac{V_j}{\sum_{k=1}^m V_k}, \quad \forall j \quad \cdots \qquad (2)$$

此時 $0 < W_i < 1$,而且 $\sum w_i = 1$ 。

(二)第二階段

1.獲取量化績效值

針對每個評選方案 $A_i(i=1,2,...,n)$ 在m個評估準則下的績效值 $g_i(A_i)$,給予[0,1]之間的得 分,獲得得分矩陣E為:

$$E=[g_i(A_i)], \underline{\exists}g_i(A_i) \in [0,1]$$

若以評估準則Ci達成值可用客觀量化數據評估,接續運用以下方法將各方案績效值轉換 成[0,1]間數值:

$$g_j(A_i) = \frac{X_{ij} - \min_i \{X_{ij}\}}{\max_i \{X_{ij}\} - \min_i \{X_{ij}\}}, \quad \forall j \cdots$$
 (3)

計算每個方案加權得分 $S_i(i=1,2,...,n)$,即依據以下公式獲取:

$$S_i = \sum_{j=1}^m w_j g_j(A_i), \quad \forall j....(4)$$

3.進行得分排序

依據每個方案S;排定大小實施排序、S;越大則代表方案越好、應排序於前、即

四、質量混合多準則(EVAMIX)

荷蘭學者Voogd於1989年提出質化與量化多準則評估方法,因為該法不但可以考慮質化 準則,又可兼顧量化準則,是屬於一種較新的評估方式,23本評估方法區分為5個作業程序,依 序如后:

(一)區分評估準則為量化與質化兩大類

將m個評估準則區分量化 (m_1) 與質化 (m_2) 準則兩大類,分以集合C與O表示如后:

$$C=\{C_i\mid j=1,2,...,m_1,\ X_{ij}$$
,取基數值}·······(6)

$$O=\{C_j\mid j=1,2,\ldots,m_2,\ X_{ij}$$
,取基數值}-------(7)

並滿足 $m=m_1+m_2$ 之狀況。

(二)優越程度的量測

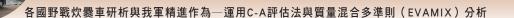
其中m。個質化評估準衡量值,屬序數資料,並利用名義範疇符號(++,+,0,-,--)實施評量, 因同時考慮量化與質化兩種準則,須採取兩種優勢衡量方法:

1.量化優勢衡量法

針對量化準則,採優勢得分 α_{ii} ,其表示方案A,優於方案A,程度,其函數關係為:

$$\alpha_{ii\prime} = \ (X_{ij}, X_{i\prime j}, w_j) \ , \forall j \in \mathcal{C} \cdots \cdots (8)$$

其中W表示量化準則C。之權重。


2.質化優勢衡量法

針對質化準則,採優勢得分 αiii, ,其表示方案A, 優於方案A, 程度, 其函數關係為:

$$\alpha_{ii'} = (X_{ij}, X_{i'j}, w_j) , \forall j \in 0....(9)$$

其中W表示質化準則C。之權重。

Voogd, H. "Multicriteria evaluation with mixed qualitative and quantitative data," Environment and Planning (London), B9 (1989), p. 117-129.

(三)優越程度歸一化

1.量化優越程度歸一化

本研究歸一化方式採取相減加總法,其公式如后:

$$g_j(A_i) = \frac{X_{ij} - X_j^-}{X_i^+ - X_i^-}, \quad \forall j \in C$$
 (10)

其中表示方案A,於量化評估準則C,的歸一化評估值,且滿足下列條件:

其中 X_i^+ 與 X_i^- 分別表示於量化準則 C_i 下,n項方案之最大評估值與最小評估值,即為

$$X_i^+ = \max_i \{X_{ij}\}, \ \forall j \in C$$
 (12)

$$X_j^- = \min_i \{X_{ij}\}, \quad \forall j \in C \quad \cdots \tag{13}$$

2.質化優越程度歸一化

於質化準則方面,序數優勢得分 α_{ii} ,可運用質化準則的權重及成對方案 $(A_{i},A_{i'})$ 之比 較,定義如后:

$$\alpha_{ii'} = \{\sum_{j \in O} [w_j sgn(X_{ij} - X_{i'j})]^{\gamma}\}^{1/\gamma}, \gamma = 1,3,5....(14)$$

其中Wi表示質化準則的權重,成對方案(Ai,Ai)評估值比較定義如后:

$$sgn(X_{ij} - X_{i'j}) = \begin{cases} +1, if X_{ij} > X_{i'j} \\ 0, if X_{ij} \sim X_{i'j} \\ -1, if X_{ij} \prec X_{i'j} \end{cases}$$
 (15)

(四)計算各方案整體優越程度

1.依(10) 公式取得成對方案 $(A_{i}, A_{i'})$ 量化標準得分 $d_{ii'}$ 。

2.依據 (17) 公式獲得成對方案 $(A_{i},A_{i'})$ 質化標準得分 $\delta_{ii\prime}$ 。

$$\delta_{ii'} = \alpha_{ii'} \left(\sum_{i} \sum_{j} |\alpha_{ii'}| \right)^{-1} \qquad (17)$$

3.最後進行各方案整體優越程度評估,依據(18)公式成對方案 $(A_{i'}A_{i'})$ 的總優勢得分 $m_{ii'}$ 。

$$m_{ii\prime} = w_c \mathbf{d}_{ii\prime} + w_o \delta_{ii\prime}, \ \forall ii'......(18)$$

(五)計算各方案相對評估分數

1.取得n個方案的得分值S;本研究採取相減加總法,可依據(19)公式計算獲得:

$$S_{i} = \frac{1}{N} \sum_{i'} m_{ii'}, \quad \forall i \qquad (19)$$

2.求取n個方案的最後排序R_i(i=1,2,...,n),接續依據(20)公式取得每個方案於每一排序

位置次數。

$$f_{ir} = \sum_{h=1}^R A_{ir}^h, \ \forall ir \eqno(20)$$

3.其中 A_{ir}^{h} 表示第h個專家評估後獲得 A_{ir} 方案排序於第 r 順位的次數 f_{ir} 。

4.依據(22)公式每個方案最後排序,選取最後排序第1方案即為最佳方案。

EVAMIX對於現今決策者或評估人員所 面臨的複雜評估問題,具有很高適用性,24考 量本研究目的與需求,相關類似研究多採取 AHP、EVAMIX及PROMETEE等3種準則評估 方法,針對評選方案進行研析、評選,上述評 估方法具有以下共通特性:1.間斷模式,即為 方案數目是有限個;2.採以成對比較為基礎; 3.具有理論基礎,冀使主觀評估客觀化。但各 評估方法有其不同適用情況及缺點,茲分別 比較其優缺點,如表二所示。25

由此可知各方法皆於其評選操作上之優 勢,但亦有無法兼顧之缺點所在。故於不同 領域之應用上,其評選方法之選取,常須仰賴 於決策者在其實際應用需求及目的後之主觀 判斷。26

於本研究之中,由於野戰炊爨車決策因 素經常錯綜複雜,於長期評估下,野戰炊爨車 評選為多準則之需求,因此,決策者於其中扮 演領航者及整合者之角色,於經驗上之判斷 或主觀偏好,對於野戰炊爨車評選之規劃將 深具重要性,並對最終之多準則評選結果或 决策之制定,佔有極大之影響。基此,本研究 採用EVAMIX方法為評選方案之分析排序方 法,使其評選結果得以符合此領域現況,而

²⁴ 鄧振源,《多準則決策分析:方法與應用》(臺北:鼎茂圖書出版股份有限公司,民國101年10月),頁347-377。

²⁵ 陳義清,〈多準則評估法在路線選擇上之應用—以第二條高速公路中部路段為例〉(臺南:國立成功大 學交通管理(科學)研究所碩士論文,西元1989年)。

²⁶ 洪正民,〈新草嶺潭集水區優先整治區域評選之研究〉(臺中:逢甲大學土地管理學系碩士論文,西元 1999年)。

各國野戰炊爨車研析與我軍精進作為—運用C-A評估法與質量混合多準則(EVAMIX)分析

表二 AHP、EVAMIX及PROMETEE比較表

評估方法	AHP	EVAMIX	PROMETEE
優點	 能同時間考慮量化及質化準則 模式操作簡易,容易表現其階層式結構 偏好結構可用一致性檢定結果是否合理 	 能同時間考慮量化及質化準則 數字型資訊,決策者較容易判斷其優劣順序 可考量實際方案對應之量測值 	 各準則函數型態可依據決策者偏好而訂定,將使評選模式更具彈性,並符合實需 評選結果具有全順序,可使決策者瞭解各評選方案之優先順序及差距並易做抉擇 可考量實際方案對應之量測值
缺點	1. 未考慮與實際方案對應之量 測值 2. 偏好強度關係,必須要滿足 其遞移性 3. 若評比次數過多,容易使決 策者發生混淆,並容易產生 反感 4. 學者專家在評估非專長項目 時,權重數之給予將有其爭 議性	 將所有準則透過固定函數加以 計算,與實際情況不符 若以極佳權重法取得準則權 重,將倚賴決策者或評估人員 主觀判斷各準則重要順序,似 有不妥 值化準則未加量化,只以好、無 差異、壞來表示,略顯不足 	1. 未考慮質化準則 2. 不易取得決策者或評估人員偏好資訊

資料來源:同註25

C-A評分法僅作為準則權重之計算方法。

參、方案評選

一、評選流程

本研究針對野戰炊爨車評選準則,應 用C-A評分法,取得評估準則之權重,另運用 EVAMIX將其相關準則數據評量,結合C-A評 分法獲取各準則權重,並加以計算,獲取各方 案得分與排序,再依據最佳方案與我國軍野 戰炊爨車特、弱點研析,最後依據結果提出 我軍精進作為與未來建軍建言。

二、C-A評分法獲取準則權重

(一)決策專家學經歷研析

本研究決策專家計3員,平均服役年資 19.6年,均有指參班或研究所以上之學歷,且 歷練過聯兵旅、軍團級經參官或後勤官;曾 執行單位野炊、熱食追送任務與參與聯勇、 旅對抗及山隘行軍等演訓任務,為野戰炊爨 車準則評估符資人員,專家學經歷如表三。

(二)決定評估準則、方案及相關條件

本研究針對野戰炊爨車評估準則與美、 日、中共及我軍現行野戰炊爨車,歸納其相 關方案評估準則與條件,詳如表四。

(三)運用C-A評分法獲取準則之權重

1. 決定評估準則順序,本研究評估準則

量、環境適應、供電方式、炊爨燃料 及濾水裝置等8種,依序設為 $C_{l_1}C_{2}$... 計尺寸、噸重性、機動方式、作業能 C_8 ,接續由3位專家作準則排序,結

表三專家學、經歷一覽表

類別	服役年資	學歷	經歷	執行任務
專家1	21年	戰院	排長、連長、後勤官、參 謀主任	山隘行軍、特戰基地、演訓任務
專家2	19年	指參班	排長、副連長、經理官、 經參官	聯勇操演、長勝、長青及長泰操演,戰車營基地演訓
專家3	19年	研究所	排長、副連長、後勤官、 經參官	聯勇操演、長青、長泰操演及砲兵營基地演訓

資料來源:本研究整理

表四 方案評選準則與條件表

國籍	美國	日本		中共		中華民國
型號類別	A _i MKT99 野戰炊爨車	A ₂ 野外炊具1號 (22改)	A ₃ 自行式 野戰炊爨車	A ₄ 野戰主食 加工車	A₅ XCT97A- 牽引車	A _。 國軍 野戰炊爨車
C₁ 尺寸	4,343 mm	4,595 mm	7,788 mm	7,700 mm	3,400 mm	9,690 mm
C ₂ 重量	2.8公噸	2.5公噸	9.9公噸	10.5公噸	2公噸	18公噸
C₃ 機動方式	牽引式	牽引式	自力機動	自力機動	牽引式	自力機動
C ₄ 作業能量	250人份/ 小時	250人份/ 小時	330人份/ 小時	900人份/ 小時	150人份/ 小時	70人份/ 小時
C ₅ 環境適應	適用於攝氏-0℃至 35℃的各種氣候	適用於攝氏-0℃至 35℃的各種氣候		適用於-25至35℃ 的各種氣候條件 和海拔3,000米 以下地區	適用於-25℃至 35℃的各種氣候 條件和海拔3,000 米以下的地區	未於高山地區驗證
C _。 供電方式	外接電源	自主發電 外接電源	自主發電 外接電源	自主發電 外接電源	外接電源	自主發電 外接電源
C ₇ 炊爨燃料	各種油料	各種油料	各種油料	各種油料	各種油料	瓦斯
C ₈ 淨水裝備	無	有	有	有	無	無

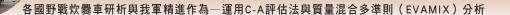
各國野戰炊爨車研析與我軍精進作為—運用C-A評估法與質量混合多準則(EVAMIX)分析

果詳如表五。

- 2.3位專家分別依據自我決定準則順序 與評分,將最重要準則設定得分為 100分,其餘準則分別給予相對適切 之得分;重要程度較低的準則得分不 可超過重要程度較高的準則得分,結 果如表六所示。
- 3.進行各項準則重要性之配對比較與配 分校正,依據3位專家初步個別評估 準則重要性之得分與順序再進行配 對比較,三人均有不同觀點,於此採
- 取多數決法的過半原則,只要兩位專 家持相同看法,須將準則得分加以調 整,因配對比較筆數過多,決策專家 建議各項準則比較其中兩項重要性, 以減少作答時間與維持作答耐性,確 維決策品質,例如 $V_4>(V_8+V_3)$ 意謂 準則4得分設為100;另準則4得分大 於準則8與準則3總分,3位專家評斷 結果如表七。
- 4.依據綜合判斷結果,發現上述3種狀 況不能滿足:

表五 評估準則排序

步驟一	1	2	3	4	5	6	7	8
專家1	C ₄	C ₈	C ₃	C ₂	C ₁	C ₅	C ₆	C ₇
專家2	C ₃	C ₄	C ₈	C ₂	C ₅	C ₆	C ₇	C ₁
專家3	C ₄	C ₈	C ₇	C ₆	C ₃	C ₂	C ₁	C ₅


資料來源:本研究整理

表六 綜合得分表

步驟二	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆	C ₇	C ₈
專家1	72	75	80	100	68	62	55	85
專家2	60	80	100	90	76	72	65	83
專家3	66	70	76	100	60	82	85	90
平均得分	66.00	75.00	85.33	96.67	68.00	72.00	68.33	86.00
排序	8	4	3	1	7	5	6	2
綜合得分	68	77	88	100	70	74	71	89

表七 準則重要性配對比較表

評估準則		個別判斷結果		A#114 B
配對比較	專家1	專家2	專家3	多數決結果
V ₄ > (V ₈ +V ₃)	X	X	X	X
V ₄ > (V ₈ +V ₂)	X	X	X	X
V ₄ > (V ₈ +V ₆)	X	X	X	X
V ₄ > (V ₈ +V ₇)	X	X	X	X
V ₄ > (V ₈ +V ₅)	X	X	X	X
V ₄ > (V ₈ +V ₁)	X	X	0	X
V ₄ > (V ₃ +V ₂)	X	X	X	X
V ₄ > (V ₃ +V ₆)	X	0	X	X
V ₄ > (V ₃ +V ₇)	X	X	X	X
V ₄ > (V ₃ +V ₅)	0	X	X	X
V ₄ > (V ₃ +V ₁)	X	X	0	X
V ₄ > (V ₂ +V ₆)	X	X	X	X
$V_{4} > (V_{2} + V_{7})$	X	0	X	X
$V_{4} > (V_{2} + V_{5})$	0	X	X	X
$V_{4} > (V_{2} + V_{1})$	X	X	0	X
$V_{4} > (V_{6} + V_{7})$	X	0	X	X
$V_{4} > (V_{6} + V_{5})$	0	X	X	X
$V_{4} > (V_{6} + V_{1})$	X	X	0	X
$V_4 > (V_7 + V_5)$	X	X	0	X
$V_4 > (V_7 + V_1)$	0	0	0	0
$V_{4} > (V_{5} + V_{1})$	0	0	0	0
$V_4 > (V_3 + V_2)$	X	X	X	X
V ₄ > (V ₃ +V ₆)	X	X	X	X
$V_4 > (V_3 + V_7)$	X	X	X	X
$V_{4} > (V_{3} + V_{5})$	X	X	X	X
$V_4 > (V_3 + V_1)$	X	X	X	X
V ₈ > (V ₂ +V ₆)	X	0	X	X
$V_8 > (V_2 + V_7)$	0	X	X	X
$V_8 > (V_2 + V_5)$	X	X	0	X
$V_8 > (V_2 + V_1)$	0		X	
$V_8 > (V_6 + V_7)$	X	X	0	X
$V_{8} > (V_{6} + V_{5})$	0	X	X	X
V ₈ > (V ₆ +V ₁)	X	0	X	X
$V_8 > (V_7 + V_5)$	0	X		X
$V_8 > (V_7 + V_1)$	X	X	0	X

評估準則		個別判斷結果					
配對比較	專家1	專家2	專家3	多數決結果			
$V_{8} > (V_{5} + V_{1})$	0	0	0	0			
V ₈ > (V ₂ +V ₆)	X	X	X	X			
V ₈ > (V ₂ +V ₇)	X	X	X	X			
$V_8 > (V_2 + V_5)$	X	X	X	X			
V ₈ > (V ₂ +V ₁)	X	X	X	X			
$V_3 > (V_6 + V_7)$	X	X	X	X			
$V_3 > (V_6 + V_5)$	X	X	X	X			
V ₃ > (V ₆ +V ₁)	X	X	X	X			
$V_{3} > (V_{7} + V_{5})$	X	X	X	X			
$V_3 > (V_7 + V_1)$	X	X	X	X			
$V_{3} > (V_{5} + V_{1})$	×	X	×	X			
$V_2 > (V_6 + V_7)$	×	X	×	X			
$V_2 > (V_6 + V_5)$	×	X	×	X			
$V_{2} > (V_{6} + V_{1})$	×	X	×	X			
$V_2 > (V_7 + V_5)$	×	X	×	X			
$V_{2} > (V_{7} + V_{1})$	×	X	×	X			
$V_2 > (V_5 + V_1)$	×	X	×	X			
V ₆ > (V ₇ +V ₅)	X	×	X	X			
V ₆ > (V ₇ +V ₁)	X	×	X	X			
V ₆ > (V ₅ +V ₁)	X	X	X	X			
$V_{7} > (V_{5} + V_{1})$	X	X	×	×			

資料來源:本研究整理

- (1) V₄>(V₇+V₁) 不合,因為100> (71+68=139)不合。
- (2) V₄>(V₅+V₁) 不合,因為100> (70+68=138)不合。
- (3) $V_8>(V_5+V_1)$ 不合,因為89> (70+68=138)不合。

針對上述三項不合之配對比較,僅需要 同時調整C₄與C₈之綜合得分,因C₄之得分

至少大於139分,為便於計算,將С₄得分 從100分調整至145分,同時將C₈得分從 89分修正為140分,餘準則得分值不變接續 實施再次調整,使C₄準則145分調整為100 分,餘準則依據比例調整,最後依據調整後 的得分,進行歸一化步驟,獲得8個評估準 則權重,如表八。

歸一值 評估準則 目前評分 調整得分 重調整得分 C₁尺寸 68 70 0.098 48 C2重量 74 77 51 0.103 C。機動方式 88 71 0.099 C4作業能量 100 145 100 0.201 C₅環境適應 70 48 0.098 70 C。供電方式 74 74 51 0.103 C₇炊爨燃料 71 71 49 0.099 C。淨水裝備 140 97 0.199 89

表八 評估準則得分配對調整與權重

資料來源:本研究整理

(四)運用EVAMIX計算,獲取各項準則之評分

- 1.評估方案計有6個可行方案 $A=\{A_i \mid i=1,2,...,6\}$, 評估準則計 有8項{ $C=\{C_i \mid j=1,2,...,8\}$;6個可 行方案於8個評估準則之評估值為 $X_{ii}(i=1,2,...,6;j=1,2,...,8)$,可同時構 成一個評估矩陣 G_{ii} 。
- 2.評估準則8個,其中區分量化準 則3個(C_1,C_2,C_4);質化準則5個 $(C_3, C_5, C_6, C_7, C_8)$,於5個質化準則之 衡量值,屬於序數資料,運用名義範 疇符號 (++,+,0,-,--) 表示之, 名義範疇 符號說明如表九。27
- 3.本研究之準則權重則運用C-A評分法 所獲得之權重作為依據;納入各方案 混合型評估資料,如表十。
- 4.進行優勢衡量

表九 名義範疇符號表

範疇符號	衡量值
++	極佳
+	頗佳
0	普通
-	頗差
	極差

資料來源:同註24

(1) 針對量化準則 (C_1, C_2, C_4) , 運用 (10) 公式求取歸一化值 $g_i(A_i)$,因 尺寸 (C_1) 與重量 (C_2) 等2個評估準 則數值越大,代表更不利於野炊作 業,應採取公式(23)計算,以符合評 估準則;進行單位歸一化轉換,詳如 表十一。

$$g_j(A_i) = 1 - \frac{x_{ij} - x_j^-}{x_j^+ - x_j^-}, \ \forall j \in \mathcal{C} \dots \dots \dots \dots (23)$$

- 各國野戰炊爨車研析與我軍精進作為—運用C-A評估法與質量混合多準則(EVAMIX)分析
- 準得分,可獲得基數優勢得分表,如 表十二。
 - 用(14)及(15)公式取得成對方案 $(A_i, A_{i'})$ 質化得分,可得序數優勢得 分表,如表十三。

表十 方案評估資料

評估準則	權重	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆
C ₁ 尺寸 (mm)	0.098	4,343	4,595	7,788	7,700	3,400	9,690
C ₂ 重量(公噸)	0.103	2.8	2.5	9.9	10.5	2	18
C ₃ 機動方式	0.099	-	-	++	++	-	++
C4作業能量(人份/小時)	0.201	250	250	330	900	150	70
C ₅ 環境適應	0.098	0	0	++	+	+	
C。供電方式	0.103		++	++	++		++
C ₇ 炊爨燃料	0.099	++	++	++	++	++	-
C ₈ 淨水裝備	0.199		++	++	++		

資料來源:本研究整理

表十一 量化準則歸一化評估值

量化準則	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆
C ₁	0.85	0.81	0.30	0.32	1	0
C ₂	0.95	0.97	0.51	0.47	1	0
C ₄	0.22	0.22	0.31	1	0.10	0

資料來源:本研究整理

表十二 量化準則基數優勢得分表

	A ₁	A_2	A ₃	A ₄	A ₅	A ₆
A ₁	-	0.002	0.081	-0.055	0.004	0.225
A ₂	-0.002	-	0.079	-0.057	0.002	0.224
A_3	-0.081	-0.079	-	-0.137	-0.077	0.144
A_4	0.055	0.057	0.137	-	0.060	0.281
A_5	-0.004	-0.002	0.077	-0.060	-	0.221
A ₆	-0.225	-0.224	-0.144	-0.281	-0.221	-

各國野戰炊爨車研析與我軍精進作為一運用C-A評估法與質量混合多準則(EVAMIX)分析

5.進行標準化優勢衡量

(1) 依據(16)公式獲得量化準則 之基數標準化優勢得分表d_{ii'} (i,i'=1,2,3,4,5,6;i≠i'),詳如表十

四。

(2) 依據(17)公式獲取序數標準化優 勢得分表 δ_{ii} (i,i'=1,2,3,4,5,6;i), 詳如表十五。

表十三 質化準則序數優勢得分表

	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆
A ₁	-	-0.302	-0.499	-0.499	-0.098	-0.005
A ₂	0.302	-	-0.197	-0.197	0.204	0.297
A_3	0.499	0.197	-	0.098	0.499	0.396
A ₄	0.499	0.197	-0.098	-	0.401	0.396
A ₅	0.098	-0.204	-0.499	-0.401	-	-0.005
A ₆	0.005	-0.297	-0.396	-0.396	0.005	-

資料來源:本研究整理

表十四 基數標準化優勢得分表

	A ₁	A ₂	A ₃	A ₄	A ₅	A ₆
A_1	-	0.001	0.025	-0.017	0.001	0.068
A ₂	-0.001	-	0.024	-0.017	0.001	0.068
A ₃	-0.025	-0.024	-	-0.041	-0.023	0.044
A ₄	0.017	0.017	0.041	-	0.018	0.085
A ₅	-0.001	-0.001	0.023	-0.018	-	0.067
A ₆	-0.068	-0.068	-0.044	-0.085	-0.067	-

資料來源:本研究整理

表十五 序數標準化優勢得分表

	A ₁	A ₂	A ₃	A_4	A_5	A ₆
A ₁	-	-0.037	-0.061	-0.061	-0.012	-0.001
A ₂	0.037	-	-0.024	-0.024	0.025	0.036
A_3	0.061	0.024	-	0.012	0.061	0.048
A_4	0.061	0.024	-0.012	-	0.049	0.048
A ₅	0.012	-0.025	-0.061	-0.049	-	-0.001
A ₆	0.001	-0.036	-0.048	-0.048	0.001	-

6.進行總優勢衡量

量化權重 $W_c = 0.402$ 與質化權重 $W_o = 0.598$,接續導入以下公式,即可獲得總優勢得分表 $m_{ii'}$,如表十六。

 $m_{iii} = 0.402 d_{iii} + 0.598 \delta_{iii}, \forall (i, i') \cdots (24)$ 7.計算各方案評估分數與進行方案排序 依 (19) 公式獲取各方案評估分數 S_1 (i=1,2,3,4,5,6),即為:

$$S_1 = \frac{1}{6} \sum_{i} m_{ii} = \frac{1}{6} (-0.072) = -0.012$$

$$S_2 = \frac{1}{6} \sum_{i'} m_{ii'} = \frac{1}{6} (0.060) = 0.010$$

$$S_3 = \frac{1}{6} \sum_{i} m_{ii} = \frac{1}{6} (0.095) = 0.016$$

$$S_4 = \frac{1}{6} \sum_{i} m_{ii} = \frac{1}{6} (0.173) = 0.029$$

$$S_5 = \frac{1}{6} \sum_{i} m_{ii} = \frac{1}{6} (-0.046) = -0.008$$

$$S_6 = \frac{1}{6} \sum_{i} m_{ii} = \frac{1}{6} (-0.211) = -0.035$$

從上述各方案評估分數,可知 $S_4=S_3$ > S_2 > S_5 > S_1 > S_6 , 即為 A_4 > A_3 > A_2 > A_5 > A_1 > A_6 ; 意謂共軍野戰主食加工車為最佳野戰炊爨車,接續於下一節結果研析

部分,以共軍野戰主食加工車與我軍野戰 炊爨車實施分析比較,並提供相關建軍觀 點,進以提升野炊作業能量。

肆、結果研析

一、比較與分析

依據第參節分析可得知共軍野戰主食加工車為目前較佳野戰炊爨車,接續針對國軍野戰炊爨車與共軍野戰主食加工車等2輛可自主機動的野戰炊爨車進行比較,區分尺寸、噸重性、作業能量、環境適應、可否行進作業、供電方式、炊爨燃料及濾水裝備等方面研析,冀以獲取國軍野戰炊爨車特、弱點,摘陳如后(如表十七):

(一)尺寸:共軍野戰主食加工車 (7,700×2,500×3,300mm)較國軍野 戰炊爨車(9,690×2,500×3,668mm) 較小,意味國軍野戰炊爨車實施機動 轉移時較不易,且無法有效穿梭各鄉 鎮鄉、縣道,以致國軍野戰炊爨車對城

#		火肉	/百	赤加	归	ハ	=
বছ 🗆	「 ハ	"活"	寧	李华	1冊	ח	'বড়

	A ₁	A ₂	A ₃	A ₄	A_5	A ₆
A ₁	-	-0.022	-0.026	-0.043	-0.007	0.027
A ₂	0.022	-	-0.005	-0.021	0.015	0.049
A_3	0.026	0.005	-	-0.009	0.027	0.046
A_4	0.043	0.021	0.009	-	0.037	0.063
A ₅	0.007	-0.015	-0.027	-0.037	-	0.026
A ₆	-0.027	-0.049	-0.046	-0.063	-0.026	-

鎮作戰膳食支援任務,達成率較低。

- (二) 噸重性: 就研析而言, 國軍野戰炊爨車 頓重性為最大(18公噸),顯示其機動 性較差。
- (三)作業能量:共軍野戰主食加工車餐份 數最多(900人份/小時),國軍野戰炊 爨車餐份數最少(70人份/小時),主因 於鍋具大小影響作業能量,共軍為32 吋大鍋,國軍為12吋小鍋,相對作業能 量較低。
- (四)環境適應:經研析,國軍野戰炊爨車迄 今,未至高山偏遠地區實施測試,無法 獲悉適應能力,然共軍野戰主食加工 車可適應各種天候與地形。
- (五)可否行進作業:就研析,國軍炊爨作 業,須將車輛停妥後才可實施作業;另 共軍則可行駛中作業,並於抵達所望地

- 點直接供應餐點。
- (六)供電方式:現行野炊作業中,考量衛生 與爐灶供火穩定性,需要穩定電源供 應,此時會採取自主發電與外接電源等 兩種,經研析,我國與共軍野戰炊爨車 均採自主發電與外接電源,然我國野戰 炊爨車於實際操作,仍需發電機採外 接電源,進而影響作業。
- (七) 炊爨燃料: 共軍考量於作戰時, 瓦斯獲 取不易與減少作戰區域燃料侷限性,野 戰主食加工車採多元燃料(汽、柴、煤 油),國軍野戰炊爨車則採取瓦斯為燃 料部分。
- (八) 瀘水裝置: 共軍考量戰、演訓或救災支 援時,乾淨水源獲取不易,要求各種野 戰炊爨車加裝濾水裝置,故於野戰主 食加工車裝置進濾水裝置,俾利於任

表十七 共軍與國軍野戰炊爨車分析表

區分	共軍	我國		
型號類別	野戰主食加工車	國軍野戰炊爨車		
尺寸 (mm)	7,700×2,500×3,300	9,690×2,500×3,668		
重量	10.5公噸	18公噸		
機動方式	自力機動	自力機動		
操作人員	6員	4員		
作業能量	900人份/小時	70人份/小時		
環境適應	適用於-25℃至35℃的氣候條件 和海拔3,000米以下	高山地區未實施驗證		
可否行進作業	可	否		
供電方式	自主發電、外接電源	自主發電、外接電源		
炊爨燃料	柴油	瓦斯		
濾水裝備	有	無		

資料來源:本研究參考註7及註8研究整理

何戰況獲取乾淨水源,國軍野戰炊爨車 則運用工兵群新式淨水裝備過濾後,再 將過濾水源運送至作業場地,如運水 車遭敵攻擊,將無法獲取水源,影響炊 爨作業。

二、我軍弱點研析

從上得知,我國野戰炊爨車車長較長與 噸重較大,不利於城鎮作戰,影響設施轉移 與前進開設作業效率;於作業能量部分,國 軍野戰炊爨車僅可提供一個連級以下(70人 餐份/小時)需求,無法滿足營級需求;再者, 國軍野戰炊爨車無法實施行進間作業;另 如遇發電機燃油不足,無法運用自主發電、 需外接電源之時,其電源轉接器為三相四線 220V接頭,非市面上現行樣式,電源恐獲取 不易;基於戰略考量,國外野戰炊爨車使用 燃料適用各種油料,我軍野戰炊爨車炊爨燃 料為瓦斯,如遇作戰之時,燃料恐有斷炊情 事;現未至高山地區實施測評,如遇高山救 災情事,將無法遂行災區膳食供應任務,再 者,炊爨作業需要乾淨水源,然我國野戰炊 爨車無加設濾水器,戰時需靠工兵群給水站 提供水源,綜合上述,共軍野戰主食加工車 相對來說較國軍野戰炊爨車更可有效支應 戰、演訓機動膳食,並滿足各種野戰情況下 的膳食需求。

伍·我軍因應作法及建軍備戰 建言

就我軍而言,現採守勢作戰,需於城鎮之中防衛攻勢時,有效提供熱食追送,有鑑於此,相關學者提出野戰炊爨車發展朝總體貨櫃化、重量輕量化、裝備模組化、車輛小型化、燃料多元化、增設濾水裝置、改善供電系統等面向。²⁸

一、總體貨櫃化

總體貨櫃設計目的,便於各種車輛拖 吊機動、裝卸操作簡便和便於疏散、隱蔽、 擴充組合簡便,提高其機動性與戰場適應 性,²⁹其貨櫃採取密閉式輕型結構(尺寸 3,050×2,050×2,000mm),內搭配炊事設 備、發電機、配電箱、水線系統與油路系統, 其中大鍋設計為鍋徑60公分大鍋,並設置兩 灶口。³⁰

二、重量輕量化

高科技戰爭條件下,野戰炊爨車須具良 好機動性與長途運送能力,為滿足前述功能 要求,須完成重量輕量化,設備應採用新式 材料,使其輕量化與提升防蝕性,可提升機 動力與延長使用壽命。

三、裝備模組化

模組化為尺寸與零附件進行標準化設

- 28 同註9、10。
- 29 同註18。
- 30 同註20。

計,以達組裝方便、維修迅速及安裝簡便等 特性,所以裝備模組化可增加裝備靈活度、 便於維修與料件獲得,更有利於經濟規模生 產,提高設備品質,大幅降低生產成本。

四、車輛小型化

野戰炊爨車採取小型化,可具有較高機 動性與隱蔽性,以因應城鎮作戰,建議採用 3.6公尺貨櫃(其迴轉半徑為13.59公尺),便 於一般縣道行駛(寬度為15公尺),更可有效 至各類建築物(建築物間隔為16公尺)執行 隱、掩蔽措施,確保裝備安全,以有效執行熱 食追送。

五、燃料多元化

使用燃料多元化可增加野戰炊爨車戰 場適應力,減少作戰區域燃料侷限性,如遇 作戰景況,瓦斯獲得不易,柴油獲取較為方 便,應建置可用多元燃料之爐灶,因應作戰 所需;另考量如至高山地區救災之時,需考 量高山對於炊事作業之影響,主要在於氣壓 對於水沸點降低及燃燒不完全,主要原因在 於高山空氣稀薄導致噴燃機風壓降低,以致 霧化性減弱,造成點火困難或無法點火,31 建議使用大風量與多扇葉鼓風機(風量為 140至200m3/h及扇葉為6瓣)及壓力鍋,滿 足高山炊事作業。32

六、增設濾水裝置

考量水源獲取不易與空間有限,建議 於車上設計3個儲水槽,貨櫃前方設置2個大 水槽(110公升)、調理臺設置小水箱(50公 升),並於進水處設置淨水裝置,為符合我國 飲用水標準,建構石英過濾器、活性碳過濾 器、三級不銹鋼過濾器及紫外線消毒器等多 層過濾系統,以解決戰時或平時緊急任務水 源供應問題。

七、改善供雷系統

最後考量野戰炊爨車供電作業,停車作 業採取直流電與交流電(220V)供電,並依 據作業實需,如遇野外炊爨時,於車內設置 5KW柴油發電機,如使用發電機供電時,將 發電機電線接上,並設定為發電機供電;另 以交流電供電,將交流電線接上,設定交流 供電。於行駛間實施炊爨作業,則以電瓶供 電方式,設定逆變電路即可作業。其上述建 議事項,均可運用民間行動餐車實施組裝與 研製,進而提供軍民合作機會與技術交流。

後續對未來研製野戰炊爨車準則,依 前述專家評估分析,獲取評量優先順序為 C_{α} 作業能量、 C_8 淨水裝備、 C_2 重量、 C_6 供電方 式 $(C_2 \cdot C_6$ 相同 $) \cdot C_3$ 機動方式 $\cdot C_7$ 炊爨燃料 $(C_3 \cdot C_7$ 相同)、 C_1 尺寸、 C_5 環境適應 $(C_1 \cdot C_5)$ 相同),作為性能取捨依據。

- 31 許翔、周廣猛、鄭智、郝士祥、劉瑞林、劉剛、〈高原環境對保障裝備的影響及適應性研究〉《裝備環境 工程》(重慶),第7卷第5期,西元2010年10月,頁100-103。
- 32 楊志國、沈新朋,〈高原型炊事車的關鍵技術研究〉《機械工程師》(哈爾濱),2015年第11期,黑龍江 省機械工程學會,西元2015年11月,頁226-227。

陸、結語

以往對於共軍設備相關論述均採文獻 歸納方式進行資料研析,若無強有力之文獻 佐證,易淪落為撰寫人之主觀論述;再者, 政府或上市公司於重大決策評估階段時,如 「新竹科學園規劃研究園區」33、「旺宏電子 製造策略評估」34等相關個案,均使用多準 則決策分析評估,提供最佳決策給與決策者 判斷。本研究採取多準則決策方法先行評估 各國野戰炊爨車優劣性,藉由客觀數據評選 較佳野戰炊爨車,再行與我國野戰炊爨車相 關評估準則分析比較,進而獲取我軍精進作 為;為嚴謹且客觀之研究流程,冀希可提供 國軍新穎評估思維與技術,為本研究採多 準則決策方法評估之初衷;另本研究更規 劃參謀對於裝備改善方案一套嚴謹評估與 建議流程,有效改善國軍現行裝備,為本研 究最終目標。

從各國軍事文獻顯示,野戰炊爨車對於 戰場膳食供應已是不可取代之裝備,以共軍 野戰炊爨車配賦至各連級1輛、日軍野戰炊爨 車則配賦於各方面隊後方支援隊補給中隊各 1輛(相當於我國補給分庫),美軍則為每個 營配賦1輛野戰炊爨車,可為我軍配賦建置參 考。快速與機動是現代作戰對於後勤補給的 基本要求,亦是戰場熱食追送的基本條件,各 國亦注意到野戰炊爨車行進間炊爨能力;再 者,現在戰爭環境瞬息萬變,條件惡劣,故其 設備損壞率及事故發生率相對提高,裝備維 修較困難,故提出裝備模組化,組裝方便、維 修迅速及安裝簡便等特性,目前各國針對爐 灶技術燃燒實施精進,並要求以多種燃料取 代單一燃料,擴大其使用性及減少戰場侷限 性,避免燃料斷炊之情事。綜合上述,野戰炊 爨車朝機動速度快、作業能量大及適應能力 強等方向進展,反觀我國軍野戰炊爨車許多 作業與配合裝備仍須精進,建議應結合民間 技術發展國防工業,以研製機動快、能量大 及適應強之野戰炊爨車,改善現行野戰膳食 作業,進而提升國軍戰力。

作者簡介

羅裕耀中校,國防管理學院專科88年班,陸軍後勤訓練中心96-4期,國防大學管理學院運籌所103年班,元智大學工業工程博士生,現任職陸軍後訓中心補給教官組組長。

- 33 簡禎富、陳勁甫、林國義,〈在新竹科學園區及周邊規劃研究園區之研究〉《管理與系統》(新竹),第 20卷第2期,西元2013年4月,頁227-255。
- 34 簡禎富、胡志翰,〈旺宏電子公司-製造策略決策〉《中山管理評論》(高雄),第19卷第2期,西元2011年3月,頁1-21。