——吳育任、陳鴻鈞——

以精實革命觀點與計畫評核術探討直升機修護作業流程改善之研究—以AH-1W階段檢查為例

提要

- 一、國軍近年來因防衛作戰需求,陸續採購AH-64E及UH-60M等新型直升機,原本陸軍航空部隊從AH-1W等3型機增加到5種,機種增加也同步增加修護作業複雜度,在精粹案員額精簡下,勢必會提升修護人員工作量,故本研究以AH-1W階段檢查為例,期望找出精進其工作流程之方法,以達縮短工作時間為目的。
- 二、透過相關精實革命及計畫評核術運用之研究文獻中,發現精實革命五大理念中,「暢流」是本文主軸概念,以計畫評核術為手段,明確各工作項目相依性及重新設計流程, 使管理者可有效掌握出廠時間。
- 三、從本研究得知二項結論:(一)掌握要徑活動,可管控關鍵工作項目進度;(二)重新調整工作流程,可有效減少所耗時間。

關鍵詞:精實革命、計畫評核術、直升機修護

壹、前言

陸航部隊為我陸軍未來關鍵戰力,直升 機機隊妥善率之維持更是直接影響陸航戰力 之要素,然而妥善率之維持須靠平時修護工 作來支撐,修護是後勤組織功能要素之一, 以有效運用人力、設施、裝備方式,在預定計 畫時間內完成檢查、維護保養、故障分析、修 理、測試等工作,使修護行動及相關作業1產 生交互作用,確維裝備妥善。

在人力有限下修護作業如何因應未來維 修任務,是陸航保修的挑戰,許多知名企業 如豐田、德國優技保時捷等,都有透過精實 革命(Lean Thinking)去改善或轉型本身組 織運作,其「精」表示「追求全面品管以致完 善」,「實」表示「消除各種浪費,創造價值」, 「系統」表示「追求全體上、下游價值溪流之 整體活動」,而革命一詞就是如何落實整體 最佳化之思想。2

故本研究先從歷年來相關精實革命及計 畫評核術運用之研究文獻中,找出精進現行 航空修護工作流程論點及事證,運用計畫評 核術來調整工作流程,比較分析改良前後差 異,作為建議後續精進工作流程之方向。

貳、文獻探討

一、陸軍航空修護制度現況

陸軍航空修護制度,係指修護業務管 理、品質促進、技術督導、工作執行之作業指 導,採用三階段修護制度,區分單位保養、野 屬野戰保修部分。

野戰保修工作由航特部航空旅飛保廠執 行,其性質主要以有限度之檢修及改進單位 保養缺失之糾正性修護與階段檢查等工作,4 作業要項概括有四項:

- (一) 飛機及裝備之階段檢查、修理、調 校、零附件更換、檢測等。
- (二) 系統附件之階段檢查、工作檯檢測、 修理、調校等。
- (三) 有關之技術通報及定期更換件執行。
- (四)屬野戰能量之零件配造。

以AH-1W直升機為例,階段檢查區分 ABCD四個階段,每階段間隔100飛行小時,以 400小時為一循環,依據AH-1W直升機技術書 刊內容敘述,其A階段標準作業程序表(SOP) 如表一。階段檢查編組可區分發動機系、結 構系、主傳動系、尾傳動系、液壓系、航電系

¹ 陸軍○○裝備保修手冊第一版(國防部陸軍司令部),民國105年6月,頁1-1。

James P. Womack, Daniel T. Jones著, 鍾漢清譯, 《精實革命:消除浪費、創造獲利的有效方法 (十週 年紀念版)》,西元2015年1月,頁12。

同註1,頁1-11、1-12。 3

同註1,頁1-18。

及武器系等七大系統,編組計督導官、檢驗 士、保修士等。

表一中43項工作程序是登載在工作表 單上,由修護人員逐次逐項完成,但實際執行 上,在第1工項「進廠檢驗」完成後,可同時進 行第2工項一「測量變向盤單球軸承摩擦力」 及第11工項一「蓋板拆除」,較原本逐項完成 之方式更有效率,故本研究期望透過各工項 的相互依賴關係,建立有效管理工作程序的 工具,重新規劃整體工作流程,達成縮短工 作期程之目標。

二、精實革命五大理念

James and Daniel (2015) 在「精實革命: 消除浪費、創造獲利的有效方法」一書中, 將豐田汽車公司轉型精實的實例延伸成精實 系統思考方法,可以綜合成五大基本原理: 就特定產品精密地確定其價值(Value),確 認每一產品的價值溪流(Value Stream),使

表一 AH-1W型機A階段檢查標準作業程序

項次	活動內容	項次	活動內容
1	進廠檢驗	23	交流發電機定子檢查
2	測量變向盤單球軸承摩擦力	24	水面聲頻定位器檢查
3	主旋翼葉片及主旋翼瑴檢查	25	動靜壓系統檢查
4	發動機安裝架和隔震罩總成檢查	26	儀錶板和燈光板檢查
5	主傳動箱安裝螺桿檢查	27	傳動箱及聯合齒輪箱金屬屑計數器檢查
6	主傳動軸檢查	28	BRU系列掛彈架檢查
7	尾旋翼動力平衡	29	M197槍M89供彈器砲塔檢查
8	發動機除冰瓣檢查	30	M197槍M89供彈器砲塔拆除及安裝
9	發動機排氣尾管及渦流∨夾檢查	31	同步升降舵檢查
10	油箱蓋接座磨損檢查	32	伺服致動器摩擦力調整
11	蓋板拆除	33	主傳動箱檢查
12	同步升降舵及尾旋翼操作系統檢查	34	接近面板安裝
13	起落架檢查	35	減震安裝座螺桿檢查
14	蓋板安裝	36	BRU系列拋射掛彈架檢查
15	液壓系及震動抑制系VSS組件檢查	37	滑橇管處理輪吊眼檢查
16	液壓油抽樣檢查	38	滑油散熱器總成檢查
17	旋翼剎車系檢查	39	工作中檢驗(含缺失改正)
18	液壓伺服唧筒及穩定增益系檢查	40	階段檢查完成發動機清洗
19	除雨系檢查	41	地面試車檢查及震動調整
20	航電檢查	42	試飛檢查及震動調整
21	更換啟動器碳刷和檢查潤滑離合器	43	出廠檢驗
22	S-39接頭電路檢查		

價值暢流(Flow)無阻,由顧客向生產者施拉 力(Pull),以及追求完善(Perfection), 5 另 參考鄭雅文「運用精實方法改善檢驗作業流 程之實證研究」6中,對五大觀念所詮釋之意 義,逐項說明對陸軍修護工作之關聯性:

(一)確定價值(Value)

精實系統的起點為價值,價值可以有很 多種不同詮釋,價值是由生產者所創造出來 的,但只有在特定的時間以特定的產品與價 格才能顯現出價值之所在,並且最終只有顧 客能界定價值。對於航空修護作業而言,其顧 客就是飛行單位,其價值就是保持直升機妥 善,可滿足飛行單位平時戰備訓練,戰時可立 即投入作戰,為執行上級所賦予飛行任務的 幕後功臣。

(二)確定價值溪流(Value Stream)

確定價值溪流的定義是在價值流中辨識 哪些是真正有價值的步驟、哪些是不具附加 價值可直接刪除的步驟。"然航空修護工作 流程就是精實革命中價值溪流,是依各型直 升機技術書刊上所說明的每個工作項目逐步 執行,來恢復直升機妥善,才能執行任務。

(三)暢流(Flow)

讓現況價值溪流中有價值的步驟能順暢 有效率的運作,並去除不具價值的作業步驟, 以消除浪費。8從直升機相關修護之技術書刊 中,對於階段檢查、定期檢查、臨時性故障等 工作項目,是分開說明施工程序,若在有限 時間及原定執行檢查工作項目狀況下,要如 何順暢整體工作流程,是本研究所期望獲得 之結果。

(四)後拉式觀念(Pull)

藉由後拉式生產,消除過早與過量的投 入,來減少大量的庫存堆積,且以顧客實際之 需要量身打造的產品,更能確保其品質符合 且達到顧客的需求。9在陸軍航空修護工作 中,透過年度修製計畫需求,先期檢討近三 年申請且實際耗用備料需求,以便適時適量 支援修護需求,10維持直升機妥善,在航空修 護體系裡早已存在後拉式觀念。

(五)追求完善(Perfection)

完善的意思是完全剔除浪費,這是理想 境界,所以需藉由不斷地努力,精益求精。11 而航空修護工作要不惜支撐飛行員遂行作戰

- 5 同註2,頁25。
- 鄭雅文,〈運用精實方法改善檢驗作業流程之實證研究〉(臺南:長榮大學醫務管理學系碩士班,西元 2013年),頁1-81。
- 同註2,頁244。
- 8 同註7。
- 同註7。
- 10 同註1,頁2-532、2-538。
- 11 同註2,頁245。

任務,在有限成本下,從工作時間、人力多寡 等面向去減少不必要之浪費,故以順暢工作 流程來減少時間及執行更多項目為本研究的 主軸。

上述五大觀念對本研究之啟發,就是如 何排除不必要的浪費,達到「暢流」目標,另 陸軍航空修護各工作項目是有其相互依賴關 係存在,本研究希望透過計畫評核術,來「確 定價值溪流」是如何發展的,以減少時間浪 費,為本研究之另一重點。

三、計畫評核術

美國海軍專案計畫辦公室(US. Navy Special Projects Office) 與「Booz, Allen and Hamilton管理顧問公司」於1958年代,在研發 北極星飛彈計畫(Polaris Missile Program) 期間,共同發展出「計畫評核術」(Program Evaluation and Review Technique,以下簡稱 PERT),是以時間為導向的專案管理控制技 術,用以決定專案之時間排程。12

另從Hiller與Lieberman (1995) 認為 應用PERT進行專案時程的管理有三個主要 功能:

> 1.協助管理者瞭解專案在特定期限前 完成的機率。

- 2.協助管理者找出最有可能成為瓶頸的 作業。
- 3.提供管理者評估專案執行過程中發生 作業延誤或資源調度時所造成的影 趣。13

上述三項功能與航空修護工作中飛機 進廠期程估計、掌握、狀況排除及狀況回報 等任務之現況十分契合,故可透過PERT將修 護工作中各項施工內容,區分很多的工作節 點,依序排定工作順序,計算各節點所需時 間,持續地修正及調整進度,達到節省工期 之期望。

(一)節點作業式網狀圖 (Activity on Node)

關於PERT的實施步驟與方法,Kerzner (1995)歸納成以下5點:1.確認活動項目、 2.分析活動間的關係相依性、3.製作網路節點 圖、4.估算各活動時間、5.確認要徑並評估專 案完成時程。14在步驟3一製作網路節點圖方 而,本研究採節點作業式網狀圖(簡稱AON) 來製作,在圖上各節點為每項活動之發生,箭 頭表示與每一項相關的活動及先行關係,15並 以活動發生的順序逐項畫出節點與箭頭。

(二) 浮時 (Float Time)

在網路圖中每一事件都有寬裕時間產

- 12 鍾奕弘,〈運用計畫評核術評估修護工廠檢修作業時程〉(高雄:義守大學管理碩士在職專班,西元 2013年6月),頁14。
- 13 轉引自註12。
- 14 轉引自註12。
- 15 張家相,《計畫評核術管理》(臺北:黎明文化,西元1987年1月),頁62。

生,總浮時(Total Float, TF)係指每個活動 本身之寬裕時間,是由活動中最早開始時間 (Earliest Start Time, ES) 與最晚開始時間 (Latest Start Time, LS)之差或是由活動中 最早完成時間(Earliest Finish Time, EF)與 最晚結束時間(Latest Finish Time, LF)之 差,16即為

$$TF = LS - ES \text{ or } LF - EF \tag{1}$$

自由浮時 (Free Float, FF) 為某一事件 (i)之最早完成日期(EF),與其後續作業 之最早開始日期(ES)之差,若使用完自由浮 時,對後續事件並無任何影響,依然能在最 早時間開始。17

$$FF = \min\{ES_{i+1}\} - \{EF_i\} \tag{2}$$

本研究期望全盤工作流程透過PERT運 用,其產生自由浮時之活動,在不延遲全盤工 作完成時間為原則下,利用這些項目來改進 非階段檢查內的缺失項目,維持飛機良好操 作性能。

從上述探討中得知,精實革命五大觀念 發源於民間產業運作流程改善運用,其中談 及人力、時間、經費等面向,希望以最小成本 獲得最大、最快之利益,對於陸軍航空修護 工作,價值暢流理念可作為改善修護工作流 程之出發點,藉由運用計畫評核術,繪製網 路圖來清楚全盤流程各節點相對關係,從中 找出可運用自由浮時(寬裕時間)之活動,持 續改正非階段檢查內的缺失項目,提高直升 機裝備可靠度。

參、研究設計

一、確認作業項目及活動時間測量

依據精實革命五大理念中之「暢流」對 於直升機修護工作流程而言,就是要達到 減少浪費,也是本研究目的之第一項期望一 「減短修護期程」,期望透過(PERT)來獲得 研究成果。

而直升機修護作業須依據原廠所提供 之技術書刊執行,保修所依據相關直升機型 之技術書刊,完成標準作業程序表(SOP), 記述各項修護工作之步驟、用料及注意事項 等,以利修護人員便於參照執行。

在訂定適用於PERT分析的作業前,本 研究依照保修所工作經驗,考慮直升機不同 系統,以各區相互妨害程度最小的方式同時 執行,將階段檢查(PM)工作區分七大系:檢 驗(Q)、結構系(S)、發動機系(E)、主尾傳 動系(B)、液壓系(H)、航電系(A)、武器 系(W),並給予各項列表之活動編號(如表 二),其中發動機清洗、地面試車及震動調 整、試飛檢查及出廠檢驗等4個工作項目,須 於場外機坪由試飛官及檢驗士一同逐項實

¹⁶ 同註15,頁95、98。

¹⁷ 計畫評核術輯要(空軍司令部),西元1968年7月,頁26、28。

表二 AH-1W型機A階段檢查活動編號及關係相依表

活動編號	活動內容	前置活動	
PM-Q1	1.進廠檢驗	無	
PM-B1	2.測量變向盤單球軸承摩擦力	PM-Q1	
PM-B2	3.主旋翼葉片及主旋翼瑴檢查	PM-B1	
PM-B3	7.尾旋翼動力平衡	PM-B2	
PM-B4	12.同步升降舵及尾旋翼操作系統檢查	PM-B3 PM-S1	
PM-B5	31.同步升降舵檢查	PM-B4	
PM-E1	4.發動機安裝架和隔震罩總成檢查	PM-S1	
PM-E2	5.主傳動箱安裝螺桿檢查	PM-E1	
PM-E3	6.主傳動軸檢查	PM-E2	
PM-E4	8.發動機除冰瓣檢查	PM-E3	
PM-E5	9.發動機排氣尾管及渦流V夾檢查	PM-E1	
PM-E6	10.油箱蓋接座磨損檢查	PM-E5 PM-S4	
PM-S1	11.蓋板拆除	PM-Q1	
PM-S2	13.起落架檢查	PM-S1	
PM-S3	14.蓋板安裝	PM-Q2	
PM-S4	19.除雨系檢查	PM-S2	
PM-S5	34.接近面板安裝	PM-W5	
PM-S6	37.滑橇管處理輪吊眼檢查	PM-S2	
PM-H1	15.液壓系及震動抑制系VSS組件檢查	PM-S1	
PM-H2	16.液壓油抽樣檢查	PM-H1 PM-E6	
PM-H3	17.旋翼剎車系檢查	PM-H2	
PM-H4	18.液壓伺服唧筒及穩定增益系檢查	PM-H1	
PM-H5	32.伺服致動器摩擦力調整	PM-H4	
PM-H6	33.主傳動箱檢查	PM-H5	
PM-H7	38.滑油散熱器總成檢查	PM-H6	
PM-H8	35.減震安裝座螺桿檢查	PM-H6	
PM-A1	20.航電檢查	PM-Q1	
PM-A2	21.更換啟動器碳刷和檢查潤滑離合器	PM-A1	
PM-A3	22.S-39接頭電路檢查	PM-A1	
PM-A4	23.交流發電機定子檢查	PM-A2 PM-A3	
PM-A5	24.水面聲頻定位器檢查	PM-A4	
PM-A6	25.動靜壓系統檢查	PM-S3 PM-A5 PM-A7 PM-B5 PM-S5	
PM-A7	26.儀錶板和燈光板檢查	PM-A3	
PM-W1	27.傳動箱及聯合齒輪箱金屬屑計數器檢查	PM-Q1	
PM-W2	28.BRU系列掛彈架檢查	PM-W1	
PM-W3	29.M197槍M89供彈器砲塔檢查	PM-W2	
PM-W4	30.M197槍M89供彈器砲塔拆除及安裝	PM-W3	
PM-W5	36.BRU系列拋射掛彈架檢查	PM-W4	
PM-Q2	39.工作中檢驗(含缺失改正)	PM-E4 PM-S6 PM-H3 PM-E8 PM-H7	
	40.階段檢查完成發動機清洗		
DM O3	41.地面試車檢查及震動調整	DNA AC	
PM-Q3	42.試飛檢查及震動調整	PM-A6	
	43.出廠檢驗		
次 4 水 活・ 木 江 欠 數	-		

施,故整合成PM-Q3活動,整體活動共計40 項,以供後續網路先行圖繪製。

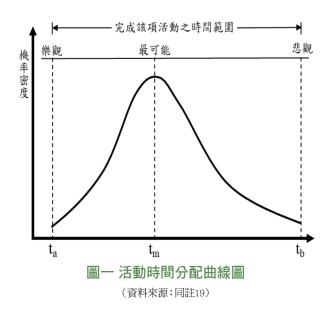
在估計活動時間以及評估專案完成時 程方面, Malcolm, Roseboom, Clark, Fazar (1959)提出了三時估計法(Three Time Estimate Approach),假設作業時間為隨機變 數,18針對各活動所耗費之時間,本研究以設 計專家問卷方式,由從事AH-1W修護工作之 資深保修士官、修護品質檢驗士官長、保修 所所長,依近年工作經驗來提供三時估計法 之所需最樂觀時間a(Optimistic Time)、最 悲觀時間b(Pessimistic Time),以及最可能 時間m (Most Likely Time), 進而推估作業 的期望值te、變異數vi與標準差 σ ,相關方程 式如下。

期望值
$$te = (a + 4m + b)/6$$
 (3)

變異數
$$vi = ((b-a)/6)^2$$
 (4)

標準差
$$\sigma = (b-a)/6$$
 (5)

而三時估計法中計算各活動項目總 工時累計及浮時產生,假設第一活動之時 間D1為(a1,m1,b1),第二活動時間D2為 (a2,m2,b2),其基本運算為:


$$D1 + D2 = (a1 + a2.m1 + m2.b1 + b2)(6)$$

$$D1 - D2 = (a1 - a2, m1 - m2, b1 - b2)^{(7)}$$

另從陳美仁(1971)著《計畫評核術 PERT與其管理應用》一書中提到,三時估計 法中三項估計值為完成該項活動需要時間之 分配曲線圖上之三個點值(如圖一),最可能 時間tm為曲線圖上之統計數據中的眾數值, 樂觀時間ta及悲觀時間tb分別為曲線圖中其 最早及最晚之兩端點值,其餘位於兩端點值 之數值為完成該項活動需要時間之各種相異 時間估計值,19所以本研究藉由專家依據自身 工作歷練,對各工項活動完成三種時間之估 計,透過統計分析方式,使各活動計算出之 預期時間更有可信度,支撐本研究運用數據 之基礎。

二、繪製網路先行圖

本研究針對每一個活動完成節點標示,

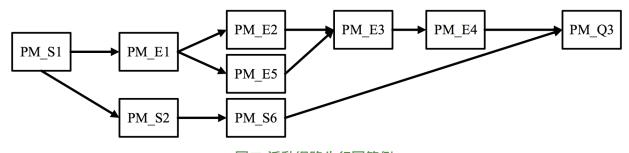
- 18 轉引自註12,頁15。
- 19 陳美仁,《計書評核術PERT與其管理應用》(臺南: 與業圖書, 西元1971年), 頁59-61。

內容包含編號、最早開始時間、所需工時、最 早完成時間、最晚開始時間、總浮時、最晚 完成時間計7項(如表三),再依據活動編號 及關係相依性,確認各項工作活動之關係相 依性先後順序後,繪製網路節點圖(範例如 圖二)。

三、確認要徑作業及浮時計算

本研究針對從事AH-1W修護工作之資深 人員(人員類別如表四),依近年工作經驗所

表三 活動節點範例


ES (最早開始時間)	所需工時	EF (最早完成時間)			
P	PM-Q1(活動編號)				
LS (最晚開始時間)	TF 總浮時	LF (最晚完成時間)			

資料來源:本研究整理

提供三時估計法所需之工時參數,對上述人 員發放專家問卷,主要以經驗幹練的修護士 及擔任管理層面之軍官幹部為主,對於新進 人員及剛入合格門檻之修護士,因技術熟練 度差異較大,故不列入問卷發放對象,以取得 較客觀之數據。

問卷內容主要針對AH-1W型機A階段檢 查中各工作項目,請專家們提供各項悲觀時 間、最可能時間及樂觀時間之參數,以供後續

> 計畫評核術運算之運用(範例如表 五)。在專家問卷回收後,將問卷 中獲得之各項工作時間,取平均值 作為本研究計算之參數,透過公式 (3)、(4)、(5)完成計算,並統計

圖二 活動網路先行圖範例 (資料來源:本研究繪製)

表四 從事AH-1W型機修護工作之資深人員類別表

項次	人員類別	工作資歷	填卷人數
1	副廠長(曾任AH-1W保修所保修軍官)	10年以上	1員
2	AH-1W保修所保修軍官	5年以上	1員
3	AH-1W型機飛機修護檢驗士	10年以上	3員
4	AH-1W型機飛機修護士	10年以上	3員

以精實革命觀點與計畫評核術探討直升機修護作業流程改善之研究──以AH-1W階段檢查為例

數據製作參數表(如表六),便於後續網路節 點圖去計算要徑、總浮時及自由浮時。

將計畫評核術的三時估計法所產生之 數據,導入活動網路節點(表三)之各項活動 後,依據公式(6)及公式(7)計算出各項活動 之ES、EF、LS及LF時間(如表七),從4種類 別時間中區分樂觀時間、最可能時間及悲觀 時間,後續可統計出整體階段檢查作業完成 所需總工作時間數據範圍為何。

經由公式(1)及公式(2)計算出各活動 之TF及FF時間(如表八),則各項TF時間為 零之活動即為關鍵活動,藉由關鍵活動可以 求得要徑,繪製成全般活動網路節點圖,便 於識別各活動相互關係,及掌握要徑流程。

表五 AH-1W型機A階段檢查之工時統計整理範例表(單位:時)

項次	工作項目	樂觀時間	悲觀時間	最可能時間
1	進廠檢驗			
2	測量變向盤單球軸承摩擦力			
3	主旋翼葉片及主旋翼瑴檢查			

資料來源:本研究整理

表六 AH-1W型機A階段檢查活動三時估計參數整理範例表

活動編號	樂觀時間a	最可能時間m	悲觀時間b	期望值te	變異數vi	標準差σ
PM-Q1						
PM-B1						
PM-B2						
PM-H7						
PM-Q2						
PM-Q3						
總工時						

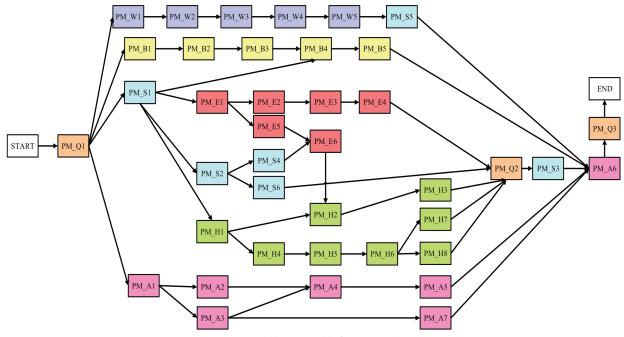
資料來源:本研究整理

表七 AH-1W型機A階段檢查各活動時間整理表

活動編號	ES最早開始時間	EF最早完成時間	LS最晚開始時間	LF最晚完成時間
PM-Q1				
PM-B1				
PM-B2				
PM-E1				

肆、個案研究

一、網路先行圖繪製


本研究將依據AH-1W型機A階段檢查活 動編號及關係相依表(表二)中,確認各項工 作活動之關係相依性先後順序後,繪製網路 節點圖(如圖三)。

二、工時計算及確認要徑

本研究針對從事AH-1W修護工作之資深 人員,依近年工作經驗所提供三時估計法所 需之工時參數,完成專家問卷回收後,透過 公式(3)、(4)、(5)完成計算,並統計數據

表八 AH-1W型機A階段檢查各活動浮時時間整理範例表

活動編號	TF (總浮時)	FF(自由浮時)	備考
PM-Q1			要徑活動
PM-B1			
PM-B2			
PM-E1			要徑活動
PM-E2			要徑活動
PM-E3			要徑活動
PM-B3			
PM-H3			產生自由浮時

圖三 AH-1W型機A階段檢查活動網路節點圖 (資料來源:本研究繪製)

製作參數表(如表九)。

將計畫評核術的三時估計法所產生之 數據(表八),運用活動節點(表三)導入活

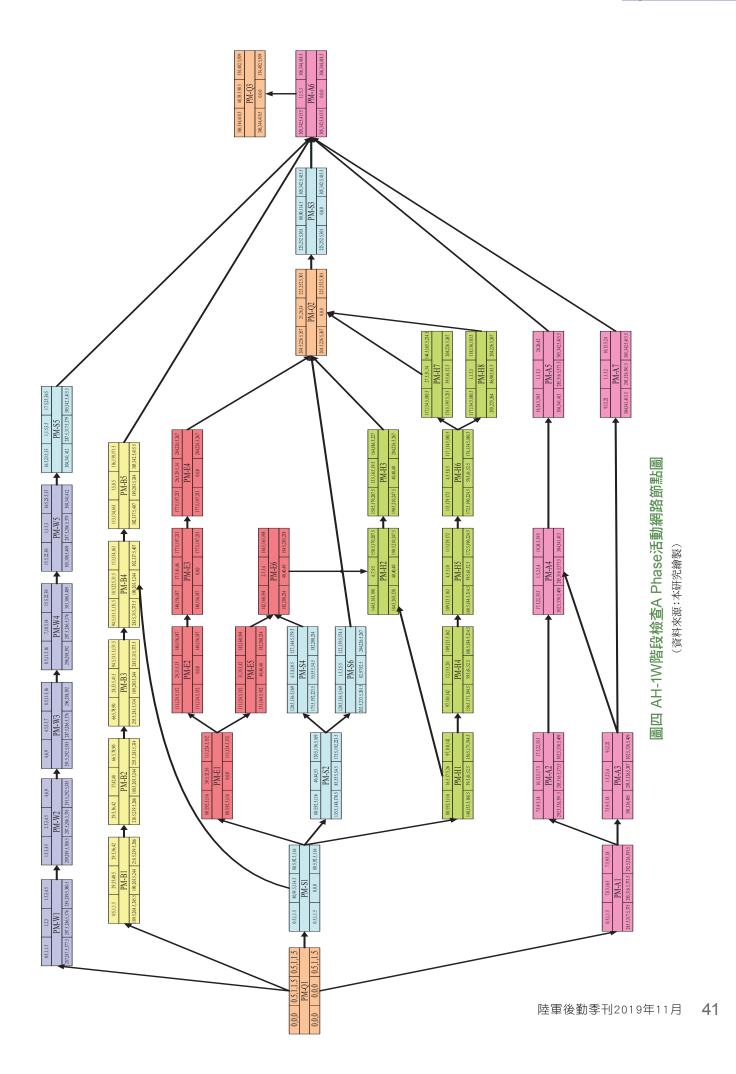
動網路節點圖(圖三)之各項活動後,計算 出各項活動之ES、EF、LS及LF時間,將相 關數據整理成統計表(如表十),從4種類

表九 AH-1W型機A階段檢查活動之工時參數表

活動編號	樂觀時間a	最可能時間m	悲觀時間b	期望值te	變異數vi	標準差σ
PM-Q1	0.5	1.0	1.5	1.00	0.03	0.17
PM-B1	29.0	35.0	40.5	34.92	3.67	1.92
PM-B2	37.0	42.0	48.0	42.17	3.36	1.83
PM-E1	30.5	32.0	36.0	32.42	0.84	0.92
PM-E2	29.0	31.5	35.0	31.67	1.00	1.00
PM-E3	37.5	41.0	46.0	41.25	2.01	1.42
PM-B3	28.0	33.5	41.5	33.92	5.06	2.25
PM-E4	26.5	29.5	34.0	29.75	1.56	1.25
PM-E5	31.0	35.5	42.0	35.83	3.36	1.83
PM-E6	2.5	3.0	4.0	3.08	0.06	0.25
PM-S1	80.0	91.5	114.5	93.42	33.06	5.75
PM-B4	18.5	22.5	31.5	23.33	4.69	2.17
PM-S2	40.0	44.0	53.0	44.83	4.69	2.17
PM-S3	80.0	90.0	114.5	92.42	33.06	5.75
PM-H1	16.5	17.5	26.0	18.75	2.51	1.58
PM-H2	6.0	7.0	9.5	7.25	0.34	0.58
PM-H3	13.5	16.5	19.5	16.50	1.00	1.00
PM-H4	12.0	13.5	20.0	14.33	1.78	1.33
PM-S4	6.5	8.0	10.5	8.17	0.44	0.67
PM-A1	7.0	8.5	16.5	9.58	2.51	1.58
PM-A2	10.0	12.5	17.5	12.92	1.56	1.25
PM-A3	1.5	2.5	4.0	2.58	0.17	0.42
PM-A4	1.5	2.5	4.0	2.58	0.17	0.42
PM-A5	1.0	1.5	2.5	1.58	0.06	0.25
PM-A6	1.0	1.5	3.0	1.67	0.11	0.33
PM-A7	1.0	1.5	2.0	1.50	0.03	0.17
PM-W1	1.0	2.0	3.0	2.00	0.11	0.33
PM-W2	2.5	3.0	4.5	3.17	0.11	0.33
PM-W3	4.5	5.5	7.0	5.58	0.17	0.42
PM-W4	7.0	10.5	14.0	10.50	1.36	1.17
PM-B5	3.0	5.0	8.5	5.25	0.84	0.92
PM-H5	4.0	5.5	10.0	6.00	1.00	1.00
PM-H6	4.0	5.5	8.5	5.75	0.56	0.75
PM-S5	1.0	1.5	3.5	1.75	0.17	0.42
PM-H8	1.0	1.5	3.0	1.67	0.11	0.33
PM-W5	1.0	1.5	3.0	1.67	0.11	0.33
PM-S6	1.5	3.0	5.5	3.17	0.44	0.67
PM-H7	27.5	31.0	34.0	30.92	1.17	1.08
PM-Q2	21.0	26.0	34.0	26.50	4.69	2.17
PM-Q3	48.0	58.5	90.5	62.08	50.17	7.08
總工時	674.5	785	1006			

別時間中區分出樂觀時間、最可能時間及悲 觀時間。

計算出各活動之TF及FF時間(如表十


一),則各項TF時間為零之活動即為關鍵活 動,藉由關鍵活動可以求得要徑,繪製成全般 活動網路節點圖(如圖四),便於識別各活動

表十 AH-1W型機A階段檢查各活動時間整理表

活動編號	ES最早開始時間	EF最早完成時間	LS最晚開始時間	LF最晚完成時間
PM-Q1	0,0,0	0.5,1,1.5	0,0,0	0.5,1,1.5
PM-B1	0.5,1,1.5	29.5,36,42	189.5,204.5,245.5	218.5,239.5,286
PM-B2	29.5,36,42	66.5,78,90	218.5,239.5,286	255.5,281.5,334
PM-E1	80.5,92.5,116	111,124.5,152	80.5,92.5,116	111,124.5,152
PM-E2	111,124.5,152	140,156,187	111,124.5,152	140,156,187
PM-E3	140,156,187	177.5,197,233	140,156,187	177.5,197,233
PM-B3	66.5,78,90	94.5,111.5,131.5	255.5,281.5,334	283.5,315,375.5
PM-E4	177.5,197,233	204,226.5,267	177.5,197,233	204,226.5,267
PM-E5	111,124.5,152	142,160,194	151,164.5,192	182,200,234
PM-E6	142,160,194	144.5,163,198	182,200,234	184.5,203,238
PM-S1	0.5,1,1.5	80.5,92.5,116	0.5,1,1.5	80.5,92.5,116
PM-B4	94.5,111.5,131.5	113,134,163	283.5,315,375.5	302,337.5,407
PM-S2	80.5,92.5,116	120.5,136.5,169	135.5,148,170.5	175.5,192,223.5
PM-S3	225,252.5,301	305,342.5,415.5	225,252.5,301	305,342.5,415.5
PM-H1	80.5,92.5,116	97,110,142	140,153.5,168.5	156.5,171,194.5
PM-H2	144.5,163,198	150.5,170,207.5	184.5,203,238	190.5,210,247.5
PM-H3	150.5,170,207.5	164,186.5,227	190.5,210,247.5	204,226.5,267
PM-H4	97,110,142	109,123.5,162	156.5,171,194.5	168.5,184.5,214.5
PM-S4	120.5,136.5,169	127,144.5,179.5	175.5,192,223.5	182,200,234
PM-A1	0.5,1,1.5	7.5,9.5,18	285.5,317.5,375	292.5,326,391.5
PM-A2	7.5,9.5,18	17.5,22,35.5	292.5,326,391.5	302.5,338.5,409
PM-A3	7.5,9.5,18	9,12,22	301,336,405	302.5,338.5,409
PM-A4	17.5,22,35.5	19,24.5,39.5	302.5,338.5,409	304,341,413
PM-A5	19,24.5,39.5	20,26,42	304,341,413	305,342.5,415.5
PM-A6	305,342.5,415.5	306,344,418.5	305,342.5,415.5	306,344,418.5
PM-A7	9,12,22	10,13.5,24	304,341,413.5	305,342.5,415.5
PM-W1	0.5,1,1.5	1.5,3,4.5	287,287.5,377.5	289,289.5,380.5
PM-W2	1.5,3,4.5	4,6,9	289,289.5,380.5	291.5,292.5,385
PM-W3	4,6,9	8.5,11.5,16	291.5,292.5,385	296,298,392
PM-W4	8.5,11.5,16	15.5,22,30	296,298,392	303,308.5,409
PM-B5	113,134,163	116,139,171.5	302,337.5,407	305,342.5,415.5
PM-H5	109,123.5,162	113,129,172	168.5,184.5,214.5	172.5,190,224.5
PM-H6	113,129,172	117,134.5,180.5	172.5,190,224.5	176,134.5,180.5
PM-S5	16.5,23.5,33	17.5,25,36.5	304,341,412	305,342.5,415.5
PM-H8	117,134.5,180.5	118,136,183.5	203,225,264	204,226.5,267
PM-W5	15.5,22,30	16.5,23.5,33	303,308.5,409	304,341,412
PM-S6	120.5,136.5,169	122,139.5,174.5	202.5,233.5,261.5	204,226.5,267
PM-H7	117,134.5,180.5	144.5,165.5,214.5	176.5,195.5,233	204,226.5,267
PM-Q2	204.5,226.5,267	225,252.5,301	204.5,226.5,267	225,252.5,301
PM-Q3	306,344,418.5	354,402.5,509	306,344,418.5	354,402.5,509

表十一 AH-1W型機A階段檢查各活動浮時時間統計表

活動編號	TF (總浮時)	FF (自由浮時)	備考
PM-Q1	0,0,0	0,0,0	要徑活動
PM-B1	189,203.5,244	0,0,0	
PM-B2	188.5,203.5,244	0,0,0	
PM-E1	0,0,0	0,0,0	要徑活動
PM-E2	0,0,0	0,0,0	要徑活動
PM-E3	0,0,0	0,0,0	要徑活動
PM-B3	189,203.5,244	0,0,0	
PM-E4	0,0,0	0,0,0	要徑活動
PM-E5	40,40,40	0,0,0	
PM-E6	40,40,40	0,0,0	
PM-S1	0,0,0	0,0,0	要徑活動
PM-B4	189,203.5,244	0,0,0	
PM-S2	85,55.5,54.5	0,0,0	
PM-S3	0,0,0	0,0,0	要徑活動
PM-H1	59.5,61,52.5	0,0,0	
PM-H2	40,40,40	0,0,0	
PM-H3	40,40,40	40,40,40	產生自由浮時
PM-H4	59.5,61,52.5	0,0,0	
PM-S4	55,55.5,54.5	15,15.5.14.5	產生自由浮時
PM-A1	285,316.5,373.5	0,0,0	
PM-A2	285,316.5,373.5	0,0,0	
PM-A3	293.5,326.5,387	8.5,10,13.5	產生自由浮時
PM-A4	285,316.5,373.5	0,0,0	
PM-A5	285,316.5,373.5	285,316.5,373.5	產生自由浮時
PM-A6	0,0,0	0,0,0	要徑活動
PM-A7	295,329,391.5	295,329,391.5	產生自由浮時
PM-W1	287.5,286.5,376	0,0,0	
PM-W2	287.5,286.5,376	0,0,0	
PM-W3	287.5,286.5,376	0,0,0	
PM-W4	287.5,286.5,376	0,0,0	
PM-B5	189,203.5,244	189,203.5,244	產生自由浮時
PM-H5	59.5,61,52.5	0,0,0	
PM-H6	59.5,61,52.5	0,0,0	
PM-S5	287.5,317.5,379	287.5,317.5,379	產生自由浮時
PM-H8	86,90.5,83.5	86,90.5,83.5	產生自由浮時
PM-W5	287.5,286.5,379	0,0,0	
PM-S6	82,97,92.5	82,97,92.5	產生自由浮時
PM-H7	59.5,61,52.5	59.5,61,52.5	產生自由浮時
PM-Q2	0,0,0	0,0,0	要徑活動
PM-Q3	0,0,0	0,0,0	要徑活動

相互關係,及掌握要徑流程。

本研究透過表十一及圖四可得知, 要徑依序為PM-Q1→PM-S1→PM-E1→PM- $E2 \rightarrow PM-E3 \rightarrow PM-E4 \rightarrow PM-Q2 \rightarrow PM-S3 \rightarrow PM-$ A6→PM-Q3計10項活動,表示在此路徑上無 多餘時間去安插其他工項去執行,也是管理 全般階段檢查流程中,必須掌握進度是否如 期完成。

三、用計畫評核術前後比較差異分析

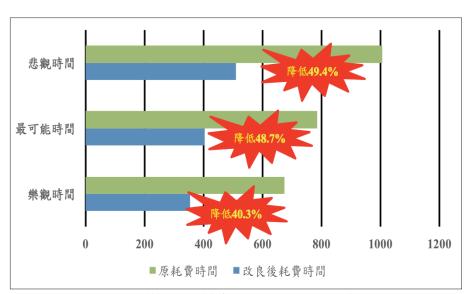
原本整體活動須耗費工時為樂觀時間 為674.5小時、最可能時間為785小時、悲觀 時間為1,006小時,將階段檢查各工作項目, 經由PERT計算及繪製網路節點圖後,結果為 樂觀時間為354小時、最可能時間為402.5小 時、悲觀時間為509小時,耗費工時分別可降 低40.3%、48.7%、49.4%(如圖五),顯見計畫 評核術是可運用於AH-1W階段檢查,有效減

少工作時間,使管理者 可透過網路節點圖流 暢推展工作進度,達 到精實革命觀點中的 價值暢流理念。

四、各活動浮時運用

從表十一得知, 網路節點圖中計測量 變向盤單球軸承摩擦 力(PM-B1)等30項活 動有產生總浮時(如 表十二),可運用於非

階段檢查之次要缺失來完成改正,而不會增 加總工時。


分析產生總浮時項目可區分為結構系 (S)、發動機系(E)、主尾傳動系(B)、液壓 系(H)、航電系(A)、武器系(W)計6種類 別,其中以液壓系之總浮時項目最多,其次為 航電系,表示屬上述6種類別之次要缺失可以 利用此類活動作業時同步執行,而不會增加 總工時,延誤飛機投入戰備任務。

伍、結論與建議

一、結論

(一)從價值暢流及計畫評核術中掌握要徑活動

從精實革命觀點中所提倡的價值暢流理 念,藉由PERT方法,首先確認直升機階段檢 查工作項目,再依各工作活動之間的相依性,

圖五 AH-1W型機A階段檢查工作流程改良前後時間差異圖 (資料來源:本研究繪製)

重新構築網路節點圖,確定整個工作活動之 價值流向,找出其中要徑活動,本研究結果 得知影響總工時是否提前或延誤之要徑,依 序計有10項活動項目,尤以發動機系所耗費 之工時最多,畢竟發動機是直升機動力之來 源,如同人體心臟一樣,維修複雜度高。

表十二 AH-1W型機A階段檢查總浮時活動項目表

我 二 / ITTW 主 从 / I I I I I I I I I I					
活動編號	TF (總浮時)	備考			
PM-B1	189,203.5,244	主尾傳動系1			
PM-B2	188.5,203.5,244	主尾傳動系2			
PM-B3	189,203.5,244	主尾傳動系3			
PM-B4	189,203.5,244	主尾傳動系4			
PM-B5	189,203.5,244	主尾傳動系5			
PM-S2	85,55.5,54.5	結構系1			
PM-S4	55,55.5,54.5	結構系2			
PM-S5	287.5,317.5,379	結構系3			
PM-S6	82,97,92.5	結構系4			
PM-A1	285,316.5,373.5	航電系1			
PM-A2	285,316.5,373.5	航電系2			
PM-A3	293.5,326.5,387	航電系3			
PM-A4	285,316.5,373.5	航電系4			
PM-A5	285,316.5,373.5	航電系5			
PM-A7	295,329,391.5	航電系6			
PM-W1	287.5,286.5,376	武器系1			
PM-W2	287.5,286.5,376	武器系2			
PM-W3	287.5,286.5,376	武器系3			
PM-W4	287.5,286.5,376	武器系4			
PM-W5	287.5,286.5,379	武器系5			
PM-E5	40,40,40	發動機系1			
PM-E6	40,40,40	發動機系2			
PM-H1	59.5,61,52.5	液壓系1			
PM-H2	40,40,40	液壓系2			
PM-H3	40,40,40	液壓系3			
PM-H4	59.5,61,52.5	液壓系4			
PM-H5	59.5,61,52.5	液壓系5			
PM-H6	59.5,61,52.5	液壓系6			
PM-H7	59.5,61,52.5	液壓系7			
PM-H8	86,90.5,83.5	液壓系8			

資料來源:本研究整理

另一方面讓管理者清楚瞭 解,上述10項關鍵工作項目是必 須掌握進度的,先期預判可能延 誤出廠之因素,如修護料件短缺、 人員工法錯誤,及意外產生非階 檢項目之缺失等,儘早規劃因應 作為,如利用週末六、日時間加班 完成修護進度,或加派除原本階 段檢查小組之人力,排除非進度 內之意外損壞項目,最終達到如 期如質飛機出廠之目標。

(二)重新調整工作流程,可有效減 少所耗時間

以最可能時間來說明,原整 體活動須耗費工時為785小時,經 由計畫評核術運用後,可縮短為 402.5小時、可降低百分之48.7,若 以一個階段檢查小組10人、一天工 作時間7小時來計算,原所需工作 天數約12個工作天數可減少為6 個工作天數。

上述看似有效提高工作效 率,那是在排除其他不確定因素 之前提下才有可能達到,其不確 定因素如臨時專案演訓、超量臨 機故障、救災等任務,或是其他可 能調整參與階段檢查人數之變異數,所以本研究結果較偏屬於理論值,希望提供管理者新的工作排程作法,在外在因素影響下,仍可運用網路節點圖瞭解當前工作進度為何,估算修護工作完成時間,若影響工作時間之突發狀況發生,管理者能有效率、有邏輯地掌握直升機階段檢查工作期程,減少管理者壓力。

二、建議事項

(一)從要徑活動中檢討縮短工時之方法

從研究成果中得知直接影響總工時的 10個重大活動項目,以發動機系為主要,管理 者若因臨時演訓、重大救災等上級交辦緊急 任務,若要有效縮短飛機修妥出廠時間,就要 從要徑上各項活動去找出減少工時之手段。

以要徑活動中主傳動軸檢查(PM-E3) 來說,該項活動略可須區分拆除、檢查、安 裝等細部工作,管理者可針對該項活動完成 細部工作之流程規劃,找出影響該活動工時 長短之關鍵項目,如難以拆卸之機件為哪幾 處、安裝時較費時之部位為何處,甚至拆卸 安裝之先後順序是否影響修護人員執行的順 暢度,都是管理者可以去探討之面向,若能找 到縮短工時且維持修護品質之作法,要徑上 只要一項活動節省工時消耗,整體總工作時 數就會減少。

(二)從修護實務中找出影響工時之主因

本研究限制中排除許多不確定因素,如料件工具不足、修護人員抽調減少、非工作行

程干擾等,以最單純之工作流程來驗證精實 革命觀點與計畫評核術是否適用,其結果是 可行的,基本上會影響到總工時之增減的原 因,在於該項活動工項之技術難易度及不可 預期臨機故障之高發生機率。

若加入部隊現實層面之不定因素,如飛 機機齡老舊導致故障機率提高,部分屬消失 性商源或不易獲得之修護料件,或是在檢整 演訓飛機之時間限制下,修護人員處於高強 度高壓力之環境中作業,以上述現實或心理 層面之因素是否使本研究理論成果產生缺 陷,這個議題可列入後續未來研究面向。

作者簡介

吳育任少校,中正理工學院電機系95年班、管理學院後勤管理正規班101年班、國防大學陸軍指參學院管理組108年班,現任陸軍航空基地勤務廠主附件工場副場長。

作者簡介

陳鴻鈞中校,國防大學管理學院87年班,國防大學管理學院正規班89年班, 國防大學指參班99年班,現任職國防 大學管理學院國管中心後勤管理組指 參教官。