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Abstract

In this paper, the theoretical basis and development of geometrical mean distance (GMD) 

to determine the inductance formula for straight and parallel conducts of rectangular cross 

section are reviewed. Sample calculations for the self and mutual inductance of dual- and 

triple-geometric configurations are given by using the proposed formula of GMD theorem.
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1. Introduction

The improvements of semiconductor 

process technologies have enabled the 

design of on chip inductors with multilevel 

interconnects [1-3]. The pre-computed 

tables reported in Refs. [4 and 5] can be 

employed to calculate the geometrical mean 

distance (GMD) of two rectangular cross 

Self- and 

mutual-inductance effects are importance 

considerations in the design of electrical 

circuits because energy storage in magnetic 

fields can produce voltage transients

resulting in noise, feedback, and other 

undesirable phenomenon. The problem of 

calculating low-frequency current is solely 

one of geometry. For conductors carrying 

high-frequency current, the additional 

complication of non-uniform current of 

distribution requires that consideration be 

given to the skin effects. In either case, 

expeditious solution of the complex 

equations is possible only with the aid of 

computers.

The purpose of this report is to review 

the theoretical basis of the inductance 

formula for straight, parallel conductors of 

rectangular section, illustrating the role of 

Maxwell s GMD theorem. Detailed 

examples are presented for the single 

conductor and for arrangements of two and 

three conductors. The general inductance 

formula and applicable GMD equations 

have been used with excellent results for 

applications involving printed circuit cables. 

The inductance formula is accurate for the 

range of frequencies where skin depth 

exceeds conductor thickness.
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2. Development of Inductance Equations 

for Straight and Parallel Conductors

Consider a conductor element in a 

circuit path, supplied by a source, in which it 

is desired to establish a current I1. As the 

current rises from zero it induces an 

electromotive force opposing the current rise 

and this requires the source to supply energy 

if the current is to be maintained against the 

induced electromotive force (emf). The 

power expanded in forcing the current 

against the induce emf e = -L(dI/dt) is P =

LI(dI/dt). The total energy supplied in 

raising the current to the final value I1 in the 

time interval t is
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This energy is stored in the magnetic field 

and is available to the circuit when the 

source is disconnected.

Consider next a conductor element in 

each of two circuits supplied by separate 

sources. If, while current I1 is being 

established in circuit 1, a current I 2 is 

maintained in circuit 2, which is linked by 

magnetic field interaction with circuit 1, 

then during the rise of I1 an emf e =

-L12(dI/dt) is induced in circuit 2. The 

energy required to force the current I 2

against this emf is equal to
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The energy of the system of circuit 1 and 2 

is calculated by allowing I1 in circuit 1 to be 

established first. The current in circuit 2 is 

then allowed to rise to I2 while I1 is constant. 

The rise of current in circuit 1 from zero to 

I1 involves the storage of energy (L1I1
2)/2 in 

the magnetic field. As I2 is established, 

energy (L2I2
2)/2 is supplied by the source 2 

while source 1 supplies energy (L12I2I1)/2 to 

maintain a constant current I1. The total 

energy of the system circuit 1 and circuit 2 

can be expressed as
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The sign of the second term is negative 

if the induced emf is in such a direction that 

it aids the flow of current I2 and 

supplements the energy of source 2. The 

parameter of L12 is termed the mutual 

inductance M and defined as the additional 

energy available, or required, from the 

vector addition of the two magnetic fields 

[6].  A mutual inductance of one henry 

gives rise to an induced emf of one voltage 

when the rate of change of the inducing 

current 1 A/s. If the emf induced in circuit 1 

by a current changing at rate of 1 A/s in 

circuit 2 is equal to e, the same emf e is 

induced in circuit 2 when current in circuit 1 

changes at the rate 1 A/s. The mutual 

inductance can also be regarded as the 

number of flux linkages with circuit 1 due to 

unit current in circuit 2. The reverse is also 

true. Self-inductance is simply a special case 
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of mutual inductance, which will shortly 

become apparent.

The magnetic flux , needed in Eq.(1) 

to evaluate the inductance coefficients, can 

be obtained from the magnetic vector 

potential A where rA d and r is the 

vector of a spherical radius . The equation B

= curl A relates the vector potential A and a 

magnetic field B. In the case of a straight

rod of circular cross section (radius = a) 

carrying uniformly distributed current (J of 

magnitude I /( a2)) and with permeability of 

free space 0, the use of the equation curl B

= 0J results in the circumferential magnetic 

flux density (external to the rod)

.,
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For this geometry, the vector potential has 

only a component parallel to the current 

flow. The equation B = curl A reduce to B

= -dAz/dr. Integration of this yields
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where C is constant of integration, inside the 

rod
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By requiring the vector potential be 

continuous at the periphery of the rod, and 

by arbitrarily assigning a value of zero to the 

magnitude of vector potentials inside (Aiz)

and outside (Aoz) become
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For the case of the field of uniformly 

distributed current in a straight conductor of 

any section of area S, the section may be 

divided into elements ds, each carrying 

current Ids/S. Equation (5) may be written 

r
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where r is the distance between each 

element ds and any point P where A is to be

calculated. Equation (10) may also be 

written as
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Computation is greatly facilitated if the 

section S is divided into small equal 

elements (ds = S/n), n in number, and if the 

distance from each element to the point P is 

measured as r1, r2 rn. Therefore
n
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Let R equal the geometric mean of r1, r2,

rn. Then r1r rn = Rn and

nn rrrrrr ...lnln...lnln 2121

RnRn lnln (13)

Equation (12) may now be rewritten as
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If the n subdivisions are infinitely small, R

can be defined by the equation

.ln
1

ln rdS
S

R (15)

Since R is the geometric mean of all possible 

r distance, it is called the GMD between the 

point P and the conductor area S. Utilizing 

Eq. (1) and these forms for the vector 

potential, Gray [7] writes Eq. (3) in the form
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where B1 and B2 are two long straight 

parallel wires of any form of cross section 

carrying current in opposing directions, r12

is the distance between a filament in each of 

wires 1 and 2, 11r is the distance between 

two filaments in wire 1 (and 

correspondingly for 22r in wire 2), and 1Sd

and 2Sd are differential areas in wires 1 

and 2. The permeability in cgs units of the 

wires and intervening space are taken as 

unity.

The following expressions can be 

written:
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Since R12, R11, and R22 are the geometric 

mean distances, R12 of area S1 from area S2,

R11 of area S1 from itself, and R22 of area S2

from itself. The logarithm of each of these 

distances is termed the logarithmic mean 

distance. From Eq. (3),the bracket portion of 

Eq. (16) can be set equal to L/2 and the 

general inductance formula of Snow [8]

results for conductors of length , assuming 

uniform current distribution in both 

conductors comprising the return circuit,
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The first two terms are referred to as L1 and 

L2, and called the self inductance of 

conductors 1 and 2. The last term is called 

the mutual inductance of conductors 1 and 2. 

Snow also writes total inductance as

,2 1221 MLLL
(19)

and

.lnlnln4 221112 RRR
L
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Consequently, the determination of circuit 

inductance for straight, parallel conductors 

of any section carrying uniformly distributed 

current in a closed path depends only on the 

GMD of the cross-sectional areas from 
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themselves and one another.

R
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+I

-I
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dx

dx1

X = 0

X1 = 0

Fig. 1 Current-Carrying filaments.

Neumann s integral [9] can be used to 

calculate the mutual inductance between the 

two parallel wire filaments shown in Fig. 1. 

The integral is developed from Biot and 

Savart s law for the magnetic field intensity 

produced at an external point by a current I

in an element ds of a circuit. The integral is

.
cos21

r
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After the substitution of ds1 = dx1, ds2 = dx,

1cos and 2
1

2 xxRr , the 

integral becomes
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Curtis [9] shows the details of integration, 

which results in the mutual inductance 

formula
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When >> R, this equation is frequently 

simplified as

.1
2
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This is an expression in cgs units. The MKS 

equivalent is
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2
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When the medium between the filaments has 

a relative permeability of one (H will be in 

nH).

When the separation of two conductors 

of arbitrary cross section is large relative to 

the size of their relative cross-sectional 

dimensions, the mutual inductance of the 

combination will be essentially the same as 

that of two filaments along their axes. 

Typically, however, the cross sections will 

be too large to justify filament substitution. 

Each conductor must be divided into an 

infinite number of filaments and integration 

will accomplish an average of all possible 

pair combinations. The change to the basic 

formula is limited to R, which becomes a 

GMD function as opposed to a simple 

centerline distance. Eq. (25) still applies, but 

R will be replaced by a formidable

expression best solved independently. The 

mutual inductance of the two conductions 

will be equal to that of two filaments 

separated by a distance corresponding to the 

GMD of the two cross sections.

As is evident in Eq. (18), the self 

inductance of a conductor of any cross 

section is equal to the sum of the mutual 

inductances of all filament pairs of the 
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section. As before, the self inductance of a 

conductor of any section is equal to the 

mutual inductance of two filaments 

separated by a distance corresponding to the 

GMD of the cross section from itself. For 

this reason, self inductance is often 

described as a special case of mutual 

inductance.

The calculation of inductance, then, is 

indeed a problem of geometry. Equation (25)

can be expressed as follows:
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The expression for the total inductance of 

two parallel nonmagnetic conductors (1 and 

2) carrying uniformly distributed current in 

opposing directions is

.211221 MMLLLT (27)

When the conductors are the same size and 

shape, Eq. (27) simplified to

.22 121 MLLT (28)
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Figure 2. General arrangement of rectangular

          conductors.

3. GMD of Rectangular Conductors

Higgins [10,11] has derived the logarithmic 

mean distance formula for two rectangles 

arbitrarily located in a quadrant, both by the 

multiple integration method and by the use 

of complex variables. The multiple-integral 

equation solved by the two techniques is
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where dx1dy1 and dx2dy2 are differential 

areas in the respective conductors. The 

conductor arrangement is shown in Fig. 2. 

Higgins solution for the logarithmic mean 

distance, which is the logarithm of the GMD 

R12, is

2211122211 12

25
ln TWTWRTWTW

,,1
24

1 4

1

4

1i j
ji

ji BAk (30)

where 

224224 ln6, jijjiiji BABBAABAk

,tantan 11113

i

j
i

i

j
ji A

B
BA

A

B
BA (31)

DWADAWDAWDWA 12122211 ;;;

(32)

and

.;;; 12122211 TTBTBTTBTTTB

(33)

The purpose of the second coordinate 

system (x y in figure 2 is to indicate that 

D and T are both positive only when 
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conductors 1 and 2 are offset as shown. The 

two values locate only the left and bottom 

edges of conductor 2 with respect to the 

right and top edges of conductor 1. For the 

characteristic over/under orientation of 

equal-size rectangular conductors, D = -W1

and T is some positive value. For the 

edge-to-edge orientation of equal-size 

conductors, T = T1 and D is some positive 

value.

The logarithmic mean distance of a 

single rectangle relative to itself can be 

easily found from the above equations by 

letting W1 = W2, T1 = T2, D = -W1, and T =

-T1. Accordingly, A1 = A3 = W1, A2 = A4 = 0,

B1 = B3 = T1, and B2 = B4 = 0. The result is
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A simple but accurate approximation for the 

GMD of a single rectangle is R11 =

0.2235(W1 + T1).
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Figure 3. Dual-conductor arrangements.

Table 1 Calculated vs. measured inductance

Case GMD (mm) Cal. (nH) Measured (nH)
(a) 1.693 16.4 16.8
(b) 2.442 30.9 29.7
(c) 4.697 56.8 54.8
(d) 7.244 73.0 72.5

4. Inductance Calculations for Two

Parallel Rectangular Conductors

Figure 3 shows in cross section an 

arrangement of four simple return circuits, 

each 100 mm long, which were fabricated 

for the purpose of comparing measures and 

calculated for the purpose of comparing 

measures and calculated inductances. All 

conductors were 0.034 mm (0.0014 inch)-

thick copper and were printed on 0.770 mm 

(0.032 inch)-thick Fiberglass-reinforced 

epoxy. Table 1 lists the GMD for each 

conductor pair, calculated for Eq. (30), the 

total inductance, calculated from Eqs. (26)

and (27), and the total inductance measured 

on a 100 kHz Impedance meter. Agreement 

between calculated and measured inductance 

is within 4%. When Eq. (19) is used to 

calculate the inductance, the values for cases 

(a) through (d) are 16.6, 31.4, 58.2 and 75.4 

nH, respectively. While agreement with the 

measured values is still satisfactory, more 

accurate results can generally be obtained 

with Eq. (25). Experience has shown that 

inductance values calculate from Eq. (6) for 

various arrangements of two-conductor 



138

return circuits of rectangular cross section 

agree with measured values within 10%. The 

inductance and GMD equations have been 

used principally for circuit less than 1 m 

long, conductors less than 15 mm wide for 

dielectric less than 1.57 mm thick.

4.974

0.25 0.034

I1 = -I/2

I3 = -I/2I2 = +I

Conductor length = 100.0 mm

Figure 4. Three-conductor circuit.

5. Inductance Calculations for Three

Rectangular Conductors

The instantaneous energy storage in a 

network of n loops is given by Chen [12] as
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For the three-conductor circuit shown in Fig. 

4, n = 3. When Eq. (35) is solved for total 

inductance LT, the expression is
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Note that when subscripts k and h are 

unequal, Mkh (for mutual inductance) is used 

in place of Lkh. Eq. (26), (27), (30),and (36)

were used to calculate the following results:

GMD1, 2, 3 = 2.239 mm

GMD1, 3 = 2.630 mm    LT = 9.1 

nH

GMD12 = GMD23 = 2.430 mm 

The inductance of many different triple-

conductor arrangements can be calculated 

by this method. As another example, if the 

center conductor in Fig. 4 is half as wide, 

but a symmetrical arrangement is retained, 

the following calculated values are obtained:

GMD1, 3 = 2.239 mm

GMD2 = 1.124 mm    LT = 16.9 nH

GMD12 = 2095 mm 

GMD13 = 2095 mm 

Eq. (36) and applicable GMD equations give 

consistently good results for shielded flat 

cables, and agreement with measured values 

of inductance is usually within 10%. The 

equations can also be used to calculate the 

inductance of the more unusual case of a 

nonsymmetrical arrangement of three 

conductors.

6. Conclusions

Accurate analytical formulas for 

obtaining the GMD of multilevel conductors 

for the Greenhouse method have been 

presented. The mutual inductances of 

multilevel conductors calculated using the 

proposed formulas. Proposed expressions 

are scalable and e t for calculating 

mutual inductances of interconnects for 2D

inductors in VLSI circuits.
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