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Abstract

In this paper, the theoretical basis and development of geometrical mean distance (GMD)

to determine the inductance formula for straight and parallel conducts of rectangular cross

section are reviewed. Sample calculations for the self and mutual inductance of dual- and

triple-geometric configurations are given by using the proposed formula of GMD theorem.
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1. Introduction

The improvements of semiconductor
have enabled the
design of on chip inductors with multilevel
[1-3]. The pre-computed
tables reported in Refs. [4 and 5] can be

process technologies

interconnects

employed to calculate the geometrical mean
distance (GMD) of two rectangular cross
Self- and

mutual-inductance effects are importance

sections with finite thickness.

considerations in the design of electrical
circuits because energy storage in magnetic
fields

resulting in noise, feedback, and other

can produce voltage transients
undesirable phenomenon. The problem of
calculating low-frequency current is solely
one of geometry. For conductors carrying
high-frequency current, the additional
complication of non-uniform current of

distribution requires that consideration be

given to the skin effects. In either case,

expeditious solution of the complex
equations is possible only with the aid of
computers.

The purpose of this report is to review
the theoretical basis of the inductance
formula for straight, parallel conductors of
rectangular section, illustrating the role of
GMD Detailed

examples are presented for the single

Maxwell’s theorem.
conductor and for arrangements of two and
three conductors. The general inductance
formula and applicable GMD equations
have been used with excellent results for
applications involving printed circuit cables.
The inductance formula is accurate for the
range of frequencies where skin depth

exceeds conductor thickness.
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2. Development of Inductance Equations
for Straight and Parallel Conductors

Consider a conductor element in a
circuit path, supplied by a source, in which it
is desired to establish a current /;. As the
current rises from =zero it induces an
electromotive force opposing the current rise
and this requires the source to supply energy
if the current is to be maintained against the
induced electromotive force (emf). The
power expanded in forcing the current
against the induce emf e = -L(dl/df) is P =
LI(dl/df). The total energy supplied in

raising the current to the final value /; in the

time interval ¢ is

_ ! dl _ I _1 2
W, —IOLIEdt _jo Lidl = LI (1)

This energy is stored in the magnetic field
and is available to the circuit when the
source is disconnected.

Consider next a conductor element in
each of two circuits supplied by separate
sources. If, while current 7/, is being
established in circuit 1, a current I, is
maintained in circuit 2, which is linked by
magnetic field interaction with circuit 1,
then during the rise of I; an emf e =
-L(dl/dt) is induced in circuit 2. The

energy required to force the current [,

against this emfis equal to

o dl, Lo :
W, = J.O(le Zjlzdt :_[0 L,Ldl =L,1,1, (2)

The energy of the system of circuit 1 and 2
is calculated by allowing /; in circuit 1 to be
established first. The current in circuit 2 is
then allowed to rise to /> while /; is constant.
The rise of current in circuit 1 from zero to
I, involves the storage of energy (L/; 2)/2 n
the magnetic field. As [, is established,
energy (L»1,%)/2 is supplied by the source 2
while source 1 supplies energy (L2/211)/2 to
maintain a constant current /;. The total
energy of the system circuit 1 and circuit 2

can be expressed as
Wr Z%Llllz —L,1,1, +1L2122- 3)
2
The sign of the second term is negative
if the induced emf is in such a direction that
it aids the

supplements the energy of source 2. The

flow of current [, and

parameter of L, is termed the mutual
inductance M and defined as the additional
energy available, or required, from the
vector addition of the two magnetic fields
[6]. A mutual inductance of one henry
gives rise to an induced emf of one voltage
when the rate of change of the inducing
current 1 A/s. If the emf induced in circuit 1
by a current changing at rate of 1 A/s in
circuit 2 is equal to e, the same emf e is
induced in circuit 2 when current in circuit 1
changes at the rate 1 A/s. The mutual
inductance can also be regarded as the
number of flux linkages with circuit 1 due to
unit current in circuit 2. The reverse is also

true. Self-inductance is simply a special case
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of mutual inductance, which will shortly
become apparent.

The magnetic flux ¢, needed in Eq.(1)
to evaluate the inductance coefficients, can

be obtained from the magnetic vector

potential A where ¢ = jA~dr and r is the

vector of a spherical radius . The equation B
= curl A relates the vector potential 4 and a
magnetic field B. In the case of a straight
rod of circular cross section (radius = a)
carrying uniformly distributed current (J of
magnitude 7 /(naz)) and with permeability of
free space Lo, the use of the equation curl B
= results in the circumferential magnetic
flux density (external to the rod)

BO¢=%, r>a. 4)
For this geometry, the vector potential has
only a component parallel to the current
flow. The equation B = curl A reduce to B,
= -dA,/dr. Integration of this yields

A =c-toly, (5)
27

where C is constant of integration, inside the

rod
B, ;= %, r<a (6)

and
A =C- Z;’T—I;. (7)
By requiring the vector potential be

continuous at the periphery of the rod, and
by arbitrarily assigning a value of zero to the
magnitude of vector potentials inside (4i,)

and outside (4,,) become

ol (> 2
A ="—"—\a" —-r 8
= le =) ®)
and
4, =l 9)
27 a

For the case of the field of uniformly
distributed current in a straight conductor of
any section of area S, the section may be
divided into elements ds, each carrying

current /ds/S. Equation (5) may be written

H Ids
A=C-—=> | —|I 10
272'2( S ) e (10)

where r is the distance between each
element ds and any point P where 4 is to be
calculated. Equation (10) may also be

written as

A=C-

Hol
In rds. 11
278 -[ (b

Computation is greatly facilitated if the
section S is divided into small equal
elements (ds = S/n), n in number, and if the
distance from each element to the point P is
measured as 7y, 7»...r,. Therefore

Mol S
A=C—Hly 1,2
Z£Z(nﬁj

i=1 n

=C_,uol(lnrl+lnr2 +...+1nrnj. (12)
27 n

Let R equal the geometric mean of ry, r,,...

ro. Then ry72+++r, = R" and
Inr, +Inr, +...+1Inr, = ln(rlrz...rn)
=ln(R")=n1nR (13)

Equation (12) may now be rewritten as

a=c-Hlng (14)
27
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If the »n subdivisions are infinitely small, R

can be defined by the equation
1
1nR=§j1nrdS. (15)

Since R is the geometric mean of all possible
r distance, it is called the GMD between the
point P and the conductor area S. Utilizing
Eq. (1) and these forms for the vector
potential, Gray [7] writes Eq. (3) in the form

W, =1 (E Lz Ll In rlzdSldSzJ

+ 12(—% [ [ r;ldslds;J
1 1 1
1 ! ’
+ 12(-S—22 jBZ sz In rzzdSzdSzJ. (16)

where B, and B, are two long straight
parallel wires of any form of cross section
carrying current in opposing directions, ri»
is the distance between a filament in each of
wires 1 and 2, 7, is the distance between
two  filaments in wire 1 (and
correspondingly for 7), in wire 2), and dS|
and dS, are differential areas in wires 1

and 2. The permeability in cgs units of the

wires and intervening space are taken as

unity.
The following expressions can be
written:
1
InR, = IS sz Ll Inr,,dS,ds,
1 ! !
InR, -5 IBI jBl In#dS,dS| (17)
1 ! !
InR,, = T sz sz Inr,dsS,dS,.

Since Ry, Ry, and Ry, are the geometric
mean distances, R, of area S; from area S,
Ry of area S| from itself, and R,, of area S,
from itself. The logarithm of each of these
distances is termed the logarithmic mean
distance. From Eq. (3),the bracket portion of
Eq. (16) can be set equal to L/2 and the
general inductance formula of Snow [§]
results for conductors of length ¢, assuming
distribution in  both

uniform current

conductors comprising the return circuit,
L

1 : '
PR L, Ll In7,dS,dS|

1 ! !
—S—jjgz jBZ In7,dS,dS,
4
toe jBZ jBl In7,,dS,dSs,. (18)
1~2

The first two terms are referred to as L; and
L,, and called the self inductance of
conductors 1 and 2. The last term is called
the mutual inductance of conductors 1 and 2.

Snow also writes total inductance as

LoL L My gy
14 l l 14

and

L

7=4lnR12 —InR,-InR,. (20)
Consequently, the determination of circuit
inductance for straight, parallel conductors
of any section carrying uniformly distributed

current in a closed path depends only on the

GMD of the cross-sectional areas from
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themselves and one another.

X=0 dx X=L
L » T ] >
r R
. ’ L
X;=0 dx, X;=L

Fig. 1 Current-Carrying filaments.
Neumann’s integral [9] can be used to
calculate the mutual inductance between the
two parallel wire filaments shown in Fig. 1.
The integral is developed from Biot and
Savart’s law for the magnetic field intensity
produced at an external point by a current /

in an element ds of a circuit. The integral is

M:”dsldsicosg . 1)

After the substitution of ds; = dx, ds, = dx,

cose=1 and r=R*+(x—x) , the

integral becomes

¢ ¢ d
el ey

Curtis [9] shows the details of integration,

(22)

which results in the mutual inductance

formula

M= 26[1{\/52 L J— Ve R +£}
R ¢ '

¢

(23)
When ¢ >> R, this equation is frequently

simplified as
M ~ 2é[ln(%j + R_ 1} : (24)
R) ¢

This is an expression in cgs units. The MKS

equivalent is

M=2x1024[1n(%)+5-1] (25)
R) ¢

When the medium between the filaments has
a relative permeability of one (H will be in
nH).

When the separation of two conductors
of arbitrary cross section is large relative to
the size of their relative cross-sectional
dimensions, the mutual inductance of the
combination will be essentially the same as
that of two filaments along their axes.
Typically, however, the cross sections will
be too large to justify filament substitution.
Each conductor must be divided into an
infinite number of filaments and integration
will accomplish an average of all possible
pair combinations. The change to the basic
formula is limited to R, which becomes a
GMD function as opposed to a simple
centerline distance. Eq. (25) still applies, but
R will be replaced by a formidable
expression best solved independently. The
mutual inductance of the two conductions
will be equal to that of two filaments
separated by a distance corresponding to the
GMD of the two cross sections.

As is evident in Eq. (18), the self
inductance of a conductor of any cross
section is equal to the sum of the mutual

inductances of all filament pairs of the
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section. As before, the self inductance of a
conductor of any section is equal to the
mutual inductance of two filaments
separated by a distance corresponding to the
GMD of the cross section from itself. For
this reason, self inductance 1is often
described as a special case of mutual
inductance.

The calculation of inductance, then, is
indeed a problem of geometry. Equation (25)

can be expressed as follows:

Lor M =2x10%¢ [ln(i:)+§—l} . (206)

The expression for the total inductance of
two parallel nonmagnetic conductors (1 and
2) carrying uniformly distributed current in

opposing directions is

LT :L1+L2 _M12 _M21- (27)
When the conductors are the same size and

shape, Eq. (27) simplified to

L, =2L,-2M,. (28)
Y Y

<« W, < D > W, F v
v — ] T
" Con.2 A

6

X
X1 *2 Con. 1

Figure 2. General arrangement of rectangular

conductors.

3. GMD of Rectangular Conductors

Higgins [10,11] has derived the logarithmic

RAEER Ft+-—% RE-Ox4H

mean distance formula for two rectangles
arbitrarily located in a quadrant, both by the
multiple integration method and by the use
of complex variables. The multiple-integral

equation solved by the two techniques is

(WTWT )lanz _J-T] JAWI J-T+T1+T2 J~W]+D+W2

T+T, Wy +D
ln\/

where dx;dy; and dx,dy, are differential

)’1) dx,dy,dxdy,, (29)

areas in the respective conductors. The
conductor arrangement is shown in Fig. 2.
Higgins’ solution for the logarithmic mean

distance, which is the logarithm of the GMD

Ry, 1s
25
(WIW.L)In R, == (FIW.L)
1 4 4 "
222 (1) k4.8, ) 30)
i=l j=1
where

k4, B,)= (4 648+ B! )in [ 4> + B

i B, B,
—A4'B; tan” [AJ+ABtan ( j 31

=D} 4, =W, + D|
(32)
and
B, =|T|;B, =T, +T|.
(33)

The purpose of the second coordinate
system (x’, »*) in figure 2 is to indicate that

D and T are both positive only when
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conductors 1 and 2 are offset as shown. The
two values locate only the left and bottom
edges of conductor 2 with respect to the
right and top edges of conductor 1. For the
characteristic over/under orientation of
equal-size rectangular conductors, D = -W,
and 7 is some positive value. For the
edge-to-edge orientation of equal-size
conductors, 7 = T} and D is some positive
value.

The logarithmic mean distance of a
single rectangle relative to itself can be
easily found from the above equations by
letting W, = W,, Ty = To, D=-W;,and T =
-T. Accordingly, A} = A3 = W, A, = A4 =0,

31 :B3 = Tl, ande :B4 = (. The result is
g 1
12 60T

In\W?+T? —4W?T, tan™ %

1

log R, =— (7 — 6w + 1)

—4W,T; tan™ %—41/1/14 Inw, —4T} lnTl}.(34)

1
A simple but accurate approximation for the
GMD of a single rectangle is Ry =
0.2235(W, + Th).

| 497> 495>
0.77 mm ,0.054
1 e Y s—
4 —>0.4a
@ (b)
F 4.80 » 2.0 k439> 264
[«4.94>

(c) (d)

Figure 3. Dual-conductor arrangements.

Table 1 Calculated vs. measured inductance

Case | GMD (mm) | Cal. (nH) | Measured (nH)
(a) 1.693 16.4 16.8
(b) 2.442 30.9 29.7
() 4.697 56.8 54.8
(d) 7.244 73.0 72.5

4. Inductance Calculations for Two
Parallel Rectangular Conductors

Figure 3 shows in cross section an
arrangement of four simple return circuits,
each 100 mm long, which were fabricated
for the purpose of comparing measures and
calculated for the purpose of comparing
measures and calculated inductances. All
conductors were 0.034 mm (0.0014 inch)-
thick copper and were printed on 0.770 mm
(0.032 inch)-thick Fiberglass-reinforced
epoxy. Table 1 lists the GMD for each
conductor pair, calculated for Eq. (30), the
total inductance, calculated from Egs. (26)
and (27), and the total inductance measured
on a 100 kHz Impedance meter. Agreement
between calculated and measured inductance
is within 4%. When Eq. (19) is used to
calculate the inductance, the values for cases
(a) through (d) are 16.6, 31.4, 58.2 and 75.4
nH, respectively. While agreement with the
measured values is still satisfactory, more
accurate results can generally be obtained
with Eq. (25). Experience has shown that
inductance values calculate from Eq. (6) for
of two-conductor

various arrangements
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return circuits of rectangular cross section
agree with measured values within 10%. The
inductance and GMD equations have been
used principally for circuit less than 1 m
long, conductors less than 15 mm wide for

dielectric less than 1.57 mm thick.

L «4.97 >

— Il =-1/2

Conductor length = 100.0 mm

Figure 4. Three-conductor circuit.

5. Inductance Calculations for Three
Rectangular Conductors

The instantaneous energy storage in a

network of n loops is given by Chen [12] as
ZZLM i - (35)

For the three-conductor circuit shown in Fig.

W, :—L I’ =

4, n = 3. When Eq. (35) is solved for total

inductance L, the expression is

1
EMB _M12 _M23-

L, =%(L1 + L)+ L, +

(36)

Note that when subscripts k and h are

unequal, My, (for mutual inductance) is used

in place of Ly,. Eq. (26), (27), (30),and (36)
were used to calculate the following results:

GMD >3 =2.239 mm
GMD, 3

=2.630 mm Lt=9.1

nH

GMD12 = GMD23 =2.430 mm

The inductance of many different triple-
conductor arrangements can be calculated
by this method. As another example, if the
center conductor in Fig. 4 is half as wide,
but a symmetrical arrangement is retained,
the following calculated values are obtained:

GMD, ;3 =2.239 mm

GMD; =1.124 mm Lt=169nH

GMD12 =2095 mm

GMD 5 =2095 mm
Eq. (36) and applicable GMD equations give
consistently good results for shielded flat
cables, and agreement with measured values
of inductance is usually within 10%. The
equations can also be used to calculate the
inductance of the more unusual case of a
three

nonsymmetrical —arrangement of

conductors.

6. Conclusions

Accurate  analytical formulas for
obtaining the GMD of multilevel conductors
for the Greenhouse method have been
presented. The mutual inductances of
multilevel conductors calculated using the
proposed formulas. Proposed expressions

ffidien calculating

mutual inductances of interconnects for 2D

are scalable and e

inductors in VLSI circuits.
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