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ABSTRACT

This paper presents an online learning control algorithm based on CMAC
network to realize the tracking control problem of nonlinear system. Compared with
the traditional two-dimensional input extended to multi-input multi-output nonlinear
system, a new address space mapping method is introduced in the cerebellum
controller to avoid collision of address space and improve the stability of the

microcomputer image controller.
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1. Introduction

In 1969, Marr first presented the
biological model theory of cerebellar
cortex [1], which was composed of the
molecular layer, the purkinje cell layer
and the granular layer, three-tier
architecture, can store neural messages
from the brain and various sensory
organs of the body in layers. In 1975,
based on the Marr model of the
cerebellum, Albus developed a set of
cerebellar mathematical models
resembling cerebellar cortex
operation|[2], which can store the input
information and output the message,

and have a class neural network with

learning function to update the weight

of memory cells through repetitive
learning process, To achieve the desired
output, the cerebellum model is
essentially an artificial neural network
architecture that belongs to the memory
“Lookup Table”, and this feature will
give the cerebellum model the
following advantages: (i) Learning to
converge faster: In the structure of the
cerebellar model, the memory cell that
is programmed to store the information
is related to the learning, so that the
input and output relationship can be
adjusted by using the error feedback
from the actual output of the cerebellum

model and the expected output. Because
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in each training process only needs to
change the local memory weight, so the
convergence speed is more rapid than
the general kind of neural network. (ii)
Regional generalization: at least one
memory cell is mapped to each of the
two adjacent reference states, that is, at
least two memory cells are mapped to
each state, and information can be
stored in a distributed manner. (iii)
Approximation or recognition that can
be applied to nonlinear systems:
compared to other neural networks, the
cerebellar model is simple and easy to
operate, and can quickly learn many
nonlinear functions, and must converge
to the least square root error [3]. (iv) It
is easy to implement the cerebellar
model algorithm on hardware. Due to
these advantages, researchers in various
fields have received much attention in
recent years, such as applications in
motor control [5], two-legged robot

control [6], Industrial PID control [7]

and adaptive control [8] and other fields.

The structure of the paper is divided
into five sections: the first section is
“Introduction”, the background and

research significance of CMAC neural

network  learning  algorithm  are
introduced, the present situation of
domestic and international research and
the main research contents of this paper.
The second section is “CMAC Neural
network Learning Algorithm Research”,
analysis of conventional CMAC, CA-
CMAC, ICA-CMAC, IK-CMAC
Learning algorithm: and discuss the
comparison, to study its rapidity and
accuracy. The third section is the
address  collision  problem  after
“Hashing Transformation”, in which the
address function is used to produce the
symbol of the desired storage unit, it is
a concise address method, and it is a
succinct addressing way, and there is no
data collision. The fourth section is
“Simulation result analysis”, aiming at
different physical system modes, the
system is simulated and analyzed by
CMAC neural network learning
algorithm. In the last section,
“Summing up and looking forward”,
this paper sums up the research work of

the subject, and puts forward some

ideas and ideas for the future research.
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2. CMAC Neural network Learning Algorithm Research

A CMAC neural network is a learning
structure that mimics the human
cerebellum. Essentially, it is a table
lookup technique that uses a linear
structure to represent complex nonlinear
functions. Its network topology is
shown in Fig. 1. The general CMAC
Neural Network is divided into four-
layer mappings.

(1) S—M Mapping: the mapping is
also called the quantization process, and
the variable s; in the continuous input
space S is quantified and mapped to the
variable [s;] in the discrete input space
M. where s is the s-dimensional vector,
each dimension is quantized, and the p-
dimensional discrete variable [s;] is
obtained. The smaller the quantization
spacing, the larger the quantization
space and the higher the precision of the
sample distinction. (2) M—A. mapping:
This mapping is also called concept
mapping. In the structure of the general
CMAC Neural Network, the step
function is used as the activation base
function. The quantized discrete
variable [s;] activates the C-unit of the
virtual storage space A, that is, M ([s;])
=1, i = 1,2,... ,C, the activated cell
stores the value 1, and the inactive cell

stores the value 0. The principle of

mapping is: in the input space adjacent
to the two sample vectors, quantization
is also adjacent, in ¢ a part of the
overlapping units, the closer the
distance, the more overlap. Conversely,
the sample vectors away from the input
space do not overlap in A,, this is the
local generalization ability of CMAC
neural network, in which C is called
generalization factor, which determines
the size of network output area, so it has
direct influence on the generalization
performance of CMAC neural network.
The distance of the input sample is
judged by the Hamming distance. (3)
A—~A, mapping: This mapping is also
called physical mapping. If the
quantization space is very large, the
virtual storage space is also very large.
Assuming that each component in the p-
dimensional input space is of magnitude
N, then virtual memory a requires at
least N units. In the problem of general
control domain, p takes 10 and » takes
200, so that the size of A, space is 200"
>10%, so the mass storage is often not
achievable. For most learning problems,
you do not include all the values of the
input space, so consider using virtual
memory A, to map to a much smaller

physical, achievable memory A, via
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Hash coding. (4) A,—Y output: The
physical storage space A, is activated
by the weight of C units by linear
addition, the output ¥

r=3 (s

€]
The weights updating algorithm of the
general CMAC Neural network adopts

Continous Input Space  Discrele Input Space Virmal Storzge Space
5 M d
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the LMS algorithm, and the weight

modification formula is
Aw, = w, (1+1)=w, () = @ @)

where 77 is the learning rate, R is the
target output value, Y is the network
output, and C is the generalization

factor.
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Fig. 1 The structure of CMAC neural network

2.1 The Weight Adjustment Stage of

CMAC

The result output phase in the CMAC
algorithm produces an actual output
from the CMAC storage unit. The
learning process updates the weights in
the CMAC storage unit according to the
error size of the expected output and the
actual output. In the conventional
CMAC algorithm, the error is equally
distributed to all the activated storage
units. Set § to a state, W, (1) is the

weight that is stored in the J storage

unit after the ¢ iteration. The general

CMAC update w, (¢) algorithm is:
W, (t) =W, (t - 1)
o &
S ]
L J=1
©)

where y, is the desired output of state S,
Np

> w, (t=1)a,(x)is the actual output of
j=1

the stateS, & is the learning constant.
In CMAC applications, the real-time
requirements are generally higher. For

example, online identification of
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nonlinear

dynamic systems requires not only high
accuracy, but also fast learning.
However, conventional CMAC still
requires multiple cycles to achieve a
certain convergence accuracy, that is,
although the conventional CMAC
converges faster than BP network, but
as online learning, it is still difficult to

meet the requirements of its rapidity.

2.2 A balanced learning CMAC
algorithm  based  on  reliability
assignment

In the weight learning adjustment of
conventional CMAC learning
algorithms, the error is equally
distributed to each activated memory
cell without considering the
contribution rate of each activated
memory cell to the error, that is, after t
learning, the weight reliability of the
activated memory cell with different
adjustment times is still regarded as
identical. = The  weight updating
algorithm completely violates the
concept of reliability assignment, so the
weights learning algorithm will make
the memory unit (whose weight value is
high credibility) should be adjusted
repeatedly if the weights are not

adjusted or should be adjusted less. But

the storage unit which contributes more
to the error (its weight credibility is
low), should make its weight worth to
the larger adjustment, but in fact the
weight learning adjustment is reduced.
In order to achieve the predefined
approximation accuracy, the network
must study repeatedly, so that the
learning efficiency of CMAC is reduced
and the learning time is extended. In
order to improve the learning speed of
CMAC, a CA-CMAC algorithm based
on the reliability assignment is proposed
in the paper [9] on the basis of
analyzing the normal CMAC weight
adjustment rules and considering the
credibility of the learned knowledge.
Literature [10] on this basis, further
considering the balance between the
new knowledge “learning” and the Old
knowledge “forgetting” in the network
weight adjustment, a CMAC neural
network learning algorithm based on
“balanced learning” is proposed.

In Eq.(3), it is important to note that
only the weights of those cells that are
activated are updated. In the general
algorithm above, the error is equally
distributed to all cells that are activated,
but after(/ —1) iteration, the initial cells
already contain some of the previously

learned knowledge. Not every cell has
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the same learning history, so these cells
should not have the same confidence.
Ignoring these differences, all of the
active memory cells get the same
correction error, and those errors from
the unlearned state will corrode the
previously learned information, which
will, of course, fade over multiple
training cycles, which is the basis for
the success of many conventional
CMAC algorithms. But for the learning
of online dynamic systems,the real-time
requirement is very high, in some cases
only allow one or two cycles to
complete the learning task, there is not
enough time to eliminate this corrosion.
Therefore, the learning results are often
unable to meet the requirements of

online learning.

2.3 Credit Assessment-CMAC(CA-
CMAC)

In order to avoid the “corrosion”
effect, the correction error must be
distributed according to the reliability of
the storage unit. However, in CMAC
learning process, there is not a good
way to determine a storage unit for the
current error of more responsibility. In
other words, there is no good way to
determine the storage unit weight. The

only information available is the

number of times the storage unit
weights are updated, and document [9]
assumes that the more times the storage
unit learns to update, the more reliable
the stored values are. So the number of
times the memory unit learns is
considered to be its credibility. The
higher the credibility, the smaller the
weight correction. This Eq.(3) is

rewritten as:

(rO)+)

m

(£ (1)

w, (t)=w, (1-1)+aq,

(=360, (9)

Q)

where f ( j) is the learning times of j
memory cells and 7 is the number of
memory cells activated by a state. Here
the idea of weight updating is that the
correction error must be inversely

proportional to the learning times of the

active cells. Here

(F()+1)
(£(1)+1)"

(5)
is used instead of Eq.(3) %\/L , which

effectively improves the learning

performance.
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2.4 Improved Credit Assign CMAC
(ICA-CMAC)

Based on the above analysis, a
concept of “balanced learning” is
proposed to design an improved CMAC
model ICA-CMAC based on reliability
allocation, in which case the (4) is

rewritten as:

(6)

where & is a equilibrium learning
constant, and it is clear that when kis0
or 1, it is conventional CMAC and CA-
CMAC, respectively[9].

In other words, CMAC and CA-CMAC
are a special case of [CA-CMAC. The
greater the learning frequency f ( j) of
the active memory cell, the more
knowledge it stores (information
previously learned). The greater the
equilibrium learning constant & , the
less the weight change is for the
memory cell with a higher learning
number /(7). When k is very large,

the weight of the storage unit with a

larger f(/)is basically unchanged. At
this time, no learning or the number of
learning f (/) less active units in the
weight correction, will obtain most
error correction values. In this case,
“memory” or “retention of learned
knowledge” predominates in online
learning, whereas when £ is small,
learning times f (/) have less effect on
reliability allocation. When k=0, the
number of learning f(/) affects the
distribution of reliability by zero. At this
point, the error is evenly distributed to
all active storage units. All active
storage units have the same reliability
allocation, regardless of the size of the
learning times f(j) . The k is a
balanced learning constant, which
reflects the extent to which information
previously learned and information not
learned or little learned influence the
weight adjustment of storage units in
the process of network training.
Different & will have different learning
results. The simulation results show that
when k is a certain value, its learning
speed is the fastest. This shows that the
network “memory” and “forget” to

achieve the best balance.
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3. Hashing code address function design

In conventional CMAC, Hashing
encoding technique is usually used to
compress the storage space, but
Hashing mapping will cause collision
and decrease the approximation
performance of CMAC. In [9], the
address function is used to produce the
symbol of the desired storage unit,
which is encoded by a certain rule for
all possible memory cells, and is a
concise address method, and there is no
data collision problem.

Take the three input CMAC system
as an example, set 7 is the series of
CMAC, nbis the number of blocks per
level. The number of blocks per

dimension is m(nb—1)+1. In this case,

each block contains 7 states, and only

N= m(nb)3 storage cells are mapped to

the (m(nb—1)+ 1)3 state. Considering

the state § expressed by (xlaxzaxg,) , the
number of storage units activated by it
is m, and the address function of each

active  storage unit is s( j) ,

i=12,---,m , then
S(j)=F(x1,x2»x3>j),deﬁned:
(i) If j=1,then i=0, other
i=m—j+1

(7)

)]
(i) 5(/)=F (%%, /)

©)

4. CMAC Simulation Control Problem Description

In Fig. 3 is a schematic diagram of a
three-joint manipulator moving on a
plane. If the manipulator's arm L, , L,
and L, as well as the joint angle 6,, 6,
and 0, are known, the position of
manipulator terminal in rectangular
coordinates can be obtained, and the
motion equation of manipulator is

described as follows:

x, =L cosd, +L, cos(6,+6,)
+L, cos(6, +06, +6,)
(10)
x, =L sin6, +L,sin(6, +6,)
+L, sin(@1 +0,+ 6’3)
(1D
Setting the manipulator parameter
to Li=L,=L,;=0.5 m requires the

tracking space trajectory to be a circle
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on the plane

x,,(1)=0.5-0.25cos wr
(12)

'Y

x,, (1) =0.25+0.25sin wr
(13)

—-——

Fig. 3 schematic diagram of a three-joint robotic arm moving on a plane

It is known from Eq.(12) and (13) that
the center of the robotic arm centered at
(0.5,0.25) m, has a radius of 0.25m,
and @=0.57 rad/sec . The initial
angle of the

mechanical arm
5[0, 000,60 | =[352,69.9,131.6] deg .

The sampling period is 7, =0.02 sec,

and it takes 4 seconds to circle a circle
and 200 times a circle. Simulation using
(1) Compact space Address image
algorithm controller (ii) Compact space
address image plus hashing image

algorithm controller.
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The inital angle of X-y plane trajectory of mechanical arm , (0/=350.8562deq., 9,(0)=69.8664deg. (0)=131.5792deg. initial position with the robotic am trajectory x;=0.25m, y =0.25m
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Fig. 4(a)(i) Time response of x-y plane trajectory of robotic arm

Initial angle of robotic arm trajectory when joint angle changes 0 (0)=352.0021deg., 0110)=69.86§4deg., 03(0)=1 31.5792deg. initial position with the robotic arm trajectory xn=0.25m. yo=0.25m

Fig. 4(b)(i) Time response of robotic arm joint Angle
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Mean Square Root Error E" E Mechanical Arm Trajectory Initial Angle 0‘(0)=350.8562deg.. 02(0)=69.%64deg.. 03(0)=131.5792deg. initial position with the robotic arm trajectory xo=0.25m, y0=0.25m
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Fig. 4(c)(i) Time response of E'E in robotic arm trajectory

The initial angle of X-y plane trajectory of mechanical arm 3110)=352A0021 deg., 02(0)=69A8664deg., 03(0)=131.5792degA initial position with the robotic arm trajectory X0=°'25"" y0=0.25m
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Fig. 5(a)(i1) Time response of x-y plane trajectory of robotic arm
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Initial angle of robotic arm trajectory when joint angle changes 0,(0)=350.8562deg., 0,(0)=69.8664deg., 0,(0)=131.5792deg. initial position with the robotic arm trajectory x;=0.25m, y,=0.25m
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Fig. 5(b)(ii) Time response of robotic arm joint angle
Mean Square Root Error E" E Mechanical Arm Trajectory Initial Angle 0‘(0)=352.0021deg., 61{0)=69.8664deg.. 03(0)=131.5792deg. initial position with the robotic arm trajectory xn=0.25m, y°=0.25m
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Fig. 5(c)(ii) Time response of E’E in robotic arm trajectory
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5. Conclusion

The base CMAC Network controller is
simple and easy to implement. In the
actual use of hardware storage to store
the training learning weights, storage
size directly affect the cost of the
controller. Using the compact address
space algorithm introduced in this paper,
the storage scale is reduced to at least
one unit, compared with the controller

using hash mapping directly on the

virtual address space, the weight storage
space is decreased further with the same
control performance, and the speed and
accuracy are increased. One of the
disadvantages of CMAC is the increase
of high dimensional input memory unit,
the method of solving this problem is
lack of theoretical basis. In addition, the
proof of the convergence and stability

of CMAC needs further study.
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