以射彈命中公算探討射擊保證率之運用

作者: 林政諭

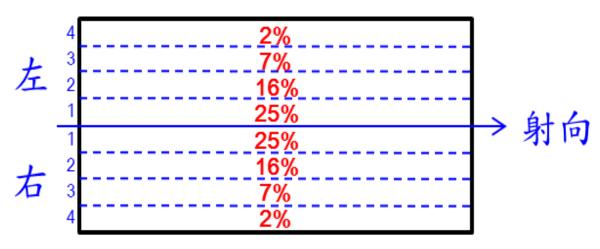
提要

- 一、欲達到所望攻擊效果牽涉眾多因素,諸如目標種類、目標性質、地形障礙、 彈藥效能、膛內、膛外及火砲因素等,因此若能納入越多參考因素,系統 方能產生越接近真實的數據,本研究目的為探討以往射擊指揮作業或觀測 準備作業中,鮮少提及甚至忽略不計的斜向目標射彈命中公算及射擊保證 率,並將此數據做為射擊指揮系統運算之基礎,其後所有的數據皆建立在 此一運算基礎上,期使提升此功能之精準性及實用性。
- 二、在陸軍尚未換裝新式火力裝備及彈藥前,仍是以管式火砲輔以傳統高爆榴彈執行多數射擊任務,因此本研究範圍僅侷限適用散布矩形之管式火砲,使用圓形公算偏差(Circular Error Probable, CEP)之火箭、飛彈及精準導引彈藥不在本研究範圍內,亦不討論目標性質及彈藥效能所產生之可能因素。
- 三、系統功能之建立必定是由小為大、由簡轉繁,經由長時間的資料蒐整與實際驗證方能完善,因此更突顯了數據之重要性,而本研究限制在於無法獲得具有公信力之彈藥效能及目標毀傷參數,因此文中列舉範例中所提到「目標須遭受幾發射彈命中方能摧毀」之部分,均為假設之數值,若爾後我軍未能有效蒐整上述參數,則此系統之功能性及實用性便會因此而大打折扣。

關鍵詞:命中公算、射擊保證率

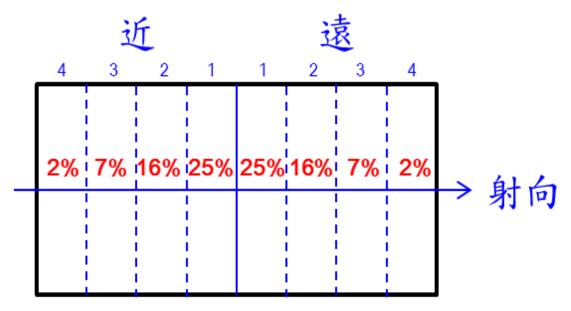
前言

長久以來不論計畫作為中計算各階段砲兵任務所需彈藥數量、射擊組長決定發射群數、前進觀測官擔任連火力支援組長提供受支援單位火力運用建議,均無一客觀參考數據,導致相關人員無所適從,且此數據為各國射擊指揮系統中極為重要資訊而難以獲得,因此唯有陸軍射擊指揮系統建置此相關功能,並藉由各方參數蒐整逐步精進,方能改善此一窘境。然而雖然知道此功能非常重要,卻不曉得要如何體現,甚至不瞭解運算邏輯為何,導致無法求證呈現之資訊是否正確,最終淪為空談或無意義之數據,實非吾人所樂見,因此筆者藉由參予數據輸入器功能開發及教學研究心得,綜合整理出相關運算邏輯,區分為命中公算、目標有效長寬計算及射擊保證率等三部分並加以說明解釋,希望能產生共鳴,是為本研究的動機。


命中公算之概念

現今管式火砲發展受惠於鍛造技術的提升,讓砲管及砲座可承受更高的壓力及溫度,進而使火砲射程更遠;經各戰役及科學驗證,產生更精良的膛線及

膛線纏度設計,有效提升彈丸飛行穩定度;優異的底盤設備則對於抑制射擊時產生的震動具有良好成效;而複雜、繁瑣及耗時的射擊參數則交由射擊指揮自動化系統運算,大幅縮短作業時間及消彌人工作業誤差,種種的發展與改良均是希望能減少射擊誤差並做正確之修正,以提升砲兵射擊精度及效果,達到一擊必中的目標。


然而傳統射彈因受膛內、膛外及砲架等因素影響,導致所發射的諸發射彈不可能落達於同一點而分佈在相當範圍之區域內成為散布,平面上之散布包含左右方向及遠近距離;形成散布之原因係由於多種無法控制其變化之因素所造成,'吾人雖採取諸如:減少兩輪水平誤差、強化射擊設備與火砲校正精度、初速誤差修正、彈體、信管及藥包秤重分類、發射藥溫量取、精度良好測地成果及氣量探測資料等措施,期使各發射彈之標準狀況一致,仍將產生無法避免之散布,而射彈散布區域形狀概略成一橢圓形,其縱軸與射向一致,為便於計算將此橢圓型視為一矩形,稱為「全數必中界」,'將該矩形以其中心點為準與射向平行之線分成左、右各四等分,每一等分即為一個公算偏差,射彈落達左、右每一等分之機率分別為 25%、16%、7%、2%(圖一),此即為方向散布;將該矩形以其中心點為準與射向垂直之線分成遠、近各四等分,每一等分即為一個公算偏差,射彈落達遠、近每一等分之機率分別為 25%、16%、7%、2%(圖二),此即為距離散布。

現在將方向左、右各四倍公算偏差與距離遠、近各四倍公算偏差結合,即 將全數必中界分割成 64 個小矩形(圖三),稱為散布矩形,射彈落達於每一矩 形之機率如圖所示,由示意圖可知越靠近平均彈著點中心落彈機率越高。

圖一 方向散布示意圖 資料來源:作者繪製

 $^{^1}$ 陳楊正華,《陸軍野戰砲兵觀測訓練教範(第二版)》(桃園:國防部陸軍司令部,民國 99 年 11 月 10 日),頁 5-3。 2 同註 $_1$,頁 5-8。

圖二 距離散布示意圖 資料來源:筆者自繪

		2%	7%	16%	25%	25%	16%	7%	2%	
2	%	.0004	.0014	.0032	.0050	.0050	.0032	.0014	.0004	0
7	%	.0014	.004	.0112	.0175	.0175	.0112	.004	.0014	
16	% /0	.0032	.0112	.0256	.0400	.0400	.0256	.0112	.0032	
25	%	.0050	.0175	.0400	.0625	.0625	.0400	.0175	.0050	射线
25	%	.0050	.0175	.0400	.0625	.0625	.0400	.0175	.0050	
16	%	.0032	.0112	.0256	.0400	.0400	.0256	.0112	.0032	
7	%	.0014	.004	.0112	.0175	.0175	.0112	.004	.0014	
2	%	.0004	.0014	.0032	.0050	.0050	.0032	.0014	.0004	

圖三 散布矩形示意圖

資料來源:《陸軍野戰砲兵觀測訓練教範(第二版)》(桃園:國防部陸軍司令部,民99年 11月 10日),頁5-11。

雖然方向及距離公算偏差於散布矩形內之機率加總起來為百分之百,但實際上約有千分之七不規則射彈不在此範圍內,由於機率很小,此誤差在傳統人工作業時常忽略不計,但若需要更精確之數據,則必須查閱「命中公算表」(表一),由於命中公算表係依 1%公算偏差數為單位,求至小數點後 4 位為止,而散布矩形則是以 1 個公算偏差為單位求至小數點後 2 位為止,因此命中公算表較散布矩形為精確,³表內「T」即代表某一方向或距離之公算偏差值,查出相對

³同註1,頁5-22。

應之數值乘以 2 即為射彈落在平均彈著點左、右或遠、近相應公算偏差之機率, 再將方向及距離公算偏差之機率相乘,所得到之數值便稱為「命中公算」,由此 表可得知散布矩形僅計算到方向及距離各四倍公算偏差,而命中公算表則列出 方向及距離各 5.8 倍(含以上)公算偏差之數值。

方向及距離公算偏差之數值通常依使用火砲、裝藥及砲目距離不同而改變,其值可於各式射表中「G表」查得,但若目標未於一平坦之水平面上,常使射彈散布區域發生變形,在正斜面上之散布區域較正常者短,反斜面則相反,此類斜面目標之公算偏差可依坡度及射彈落角以三角函數之方式概略計算其變異量,另射表上公算偏差之數值係以發射大量射彈決定之,若使用較少彈數來決定平均彈著點,則實際公算偏差量較射表所列之數值為大,其值可帶入因數表計算(如表二),惟上述兩種變異在傳統人工作業中不易計算,且誤差量不至於太大,通常可於試射中將誤差消除,因此亦忽略不計。

0.07 0.01 0.02 0.03 0.04 0.05 0.0135 0.018 0.0216 0.0243 .0404 .0431 .0784 .0511 1.2 .485 ASGR .0725 .0778 .0 08 .0 34 .0 86 4 00 4 06 48 0 48.2 46.3 48.5 48.7 4 02 4 04 .1166 31.1 12.3 14.7 4 27 4 33 17 1 15.7 4 40 4 41 4 44 4 45 4 46 4 47 4 42 1 11 1 35 1.83 4 51 4 52 4 53 4 53 4 54 4 55 4 56 21.2 4 60 4 60 4 61 4 62 4 63 4 64 4 65 A 74 4.74 4.75 4 75 4.76 4.76 4 77 .2830 4 83 30.7 .3115 .3133 4 88 .4 86 4 86 4 81 4 82 4 88 32 2 4 8 (990) 35 7 (59) .5000 #99s 5.8..... 38 0 .3 88 dPA: HD407 (000) **(90%)** HOOK HOOK HOSE HOOK (KOCH) нжк ною 44.1 (555) #000 .4477 (900 AST2 (999 .4599 .4555 46.2 46 T

表一 命中公算表

表二 因數表

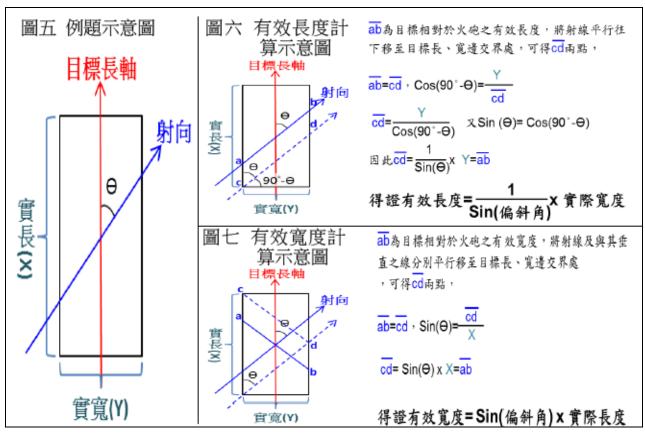
發射 彈數	2	4	6	8	10	12	14	16	18	20
因數	0.71	0.50	0.41	0.35	0.32	0.29	0.27	0.25	0.24	0.22

資料來源:表一轉引自《陸軍野戰砲兵觀測訓練教範(第二版)》(桃園:國防部陸軍司令部, 民99年11月10日),頁5-24。表二轉引自前揭書,頁5-35。 經由前面的概述,現在來做個簡單的命中公算應用,例題如下:以1門155 榴砲使用5號裝藥對距離5000公尺、橫寬10公尺、縱長70公尺之橋樑射擊,平均彈著點已導於目標中央(不考量使用多少彈藥決定平均彈著點),射向與橋面長軸重疊,請問單發射彈命中機率為何?

計算方式:(圖例如圖四) 圖四 散布矩形涵蓋目 查表可得1倍方向公算偏差3公尺 標示意圖 1 倍距離公算偏差 16 公尺 倍距離公 1.以散佈梯尺方式計算: 算偏差 1倍方向 (1)方向公算偏差命中率為 16M 公算偏差 5M/3M=1.667 倍 ЗМ (25%X1+16%X0,667)X2=71,334% (2)距離公算偏差命中率為 35M/16M=2.8175 倍 (25%X1+16%X1+7%X0.8175)X2=93.445% (3)單發射彈命中率= 70M 71.334%X93.445%**=66.658%** 2.以命中公算表計算: (1)方向公算偏差命中率為 5M/3M=1.667 倍 T(1.667 倍)=0.3695 10M (2)距離公算偏差命中率為 命中公算表數 35M/16M=2.8175 倍 值較為精確 T(2.8175 倍)=0.4712

小結:射彈命中公算之計算有助於使火協官、射擊組長及前進觀測官等, 先期瞭解目標射擊之成功率,若成功率太低則必須增加射擊彈數以達成目標, 而要增加多少彈數以及是否值得這麼做,則取決於保證率之計算,於文章第肆 段說明。

資料來源:筆者自繪


目標有效長寬之計算

(3)單發射彈命中率=

0.3695X2X0.4712X2X100%=**69.643%**

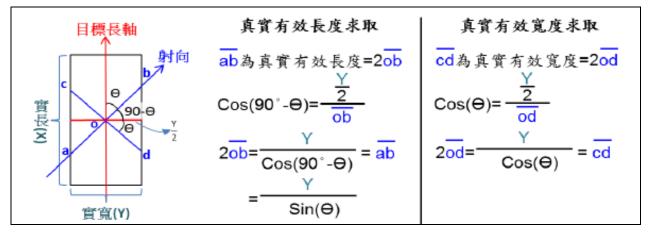
前面我們舉了一個例題來計算命中公算,題目中提到一個重點為「射向與 橋面長軸重疊」,從上方圖四可瞭解目標實際的寬度及長度完全被散布矩形所涵 蓋,此一橫寬 10 公尺、縱長 70 公尺之橋樑對於火砲之有效寬度及長度分別為 10 公尺及 70 公尺, 但實際上目標長軸甚難與射向平行或垂直,因此成為斜向目標,而目標長軸線與砲目線之夾角即為「偏斜角」, 計算方法不同之處在於必須先將目標長度與寬度,變換為以砲目線為準且與射彈散布形狀符合之有效長度及寬度,再計算射彈命中公算。

斜向目標有效長寬之計算公式為:**有效長度=1/Sin 偏斜角 X 實寬、有效寬度=Sin 偏斜角 X 實長**⁴,準則僅列公式卻未說明如何而來,對於想要更進一步瞭解或運用之人員而言,則必須花費甚多時間研究,且若未能達到一定程度之認知,易造成理解及運用上之錯誤,因此筆者就自身教學研究成果來說明公式之原理,並將此成果納入爾後準則修訂之內容,說明如後:一斜向目標假設其實際長度為 X、實際寬度為 Y、偏斜角為 Θ (圖五),其相對於火砲之有效長度及有效寬度之計算分別如圖六及圖七。

資料來源:作者繪製

在傳統人工作業模式下此公式僅可用來概略計算目標之有效長寬,因為目標形狀及長軸之方向通常為觀測官所決定,而早期觀測官受器材限制,如方向盤、舊式雷觀機性能不足,或自身職能經驗尚淺,導致不同觀測官對同一目標之數據量測甚至會有完全不同之結果,另此公式實際上亦存在著計算上之誤

4-+

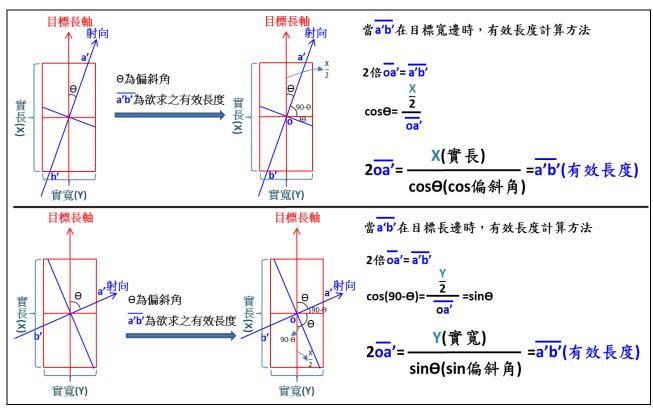

^⁴范愛德,《陸軍野戰砲兵射擊指揮教範(第三版)》(桃園:國防部陸軍司令部,民國 103 年 10 月 30 日),頁 10-97 及陳楊正華,《陸軍野戰砲兵觀測訓練教範(第二版)》(桃園:國防部陸軍司令部,民國 99 年 11 月 10 日),頁 5-31。

差,因為欲求一具有實際長寬目標之真實有效長寬,可以使用三角函數計算(如圖八說明),即可發現其計算方式與公式稍有不同。

筆者分別將四種不同比例之目標以三角函數及公式計算有效長寬並將結果列於表中(表三),可以清楚發現在偏斜角小於 400 密位時,使用公式計算之數值誤差過大,且角度越小誤差越大,其原因為 Sin (Θ)值會越來越趨近於 0,導致有效長度會非常大,有效寬度則非常小,為消除此一錯誤,在觀測及射擊指揮教範中均有一速算表(表四),律定了當偏斜角小於 400 密位時,有效長度等於實際長度、有效寬度等於實際寬度;當偏斜角大於 400 密位時,使用公式計算有效長度就非常準確了,有效寬度誤差則逐漸縮小;而當偏斜角大於 1200 密位之後,使用公式計算有效長寬之數值已與真實長寬數值誤差不大,因此速算表亦律定了當偏斜角大於 1200 密位時,有效長度等於實際寬度、有效寬度等於實際長度,以方便及快速的計算。

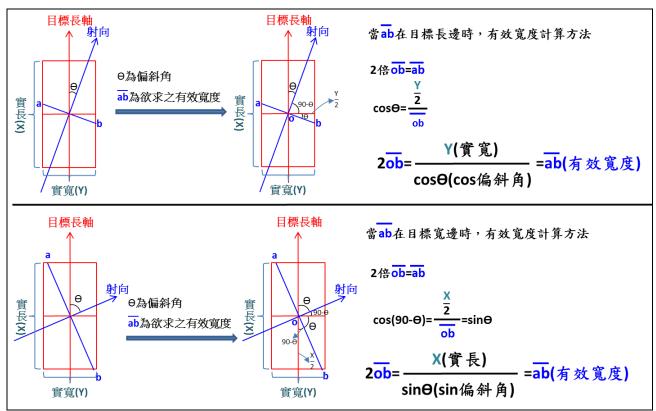
目標有效長寬之計算是否精確,直接影響了命中公算的結果,任何傳統人工計算上之誤差均有可能造成射擊偏差而影響射擊效果,因此將各種複雜、繁瑣及耗時的計算交由射擊指揮自動化系統已是必然之趨勢,然為求精確則必須提供系統正確之運算邏輯,方能完備其功能,運算邏輯說明如下:一斜向目標假設其實際長度為 X、實際寬度為 Y、偏斜角為 Ø,其相對於火砲之真實有效長度計算,會因射向在目標之寬邊或長邊而產生兩種結果(如圖九說明);相對於火砲之真實有效寬度之計算,亦會因射向在目標之寬邊或長邊而產生兩種結果(如圖十說明)。

產生兩種結果之原因在於使用三角函數求取目標有效長寬之區域,因射向落在目標寬邊與長邊而有所不同(圖十一),不能僅以單一方式來計算,因此我們必須瞭解當偏斜角大於多少時,即會產生此種現象,此欲求取之數值則稱為射向於目標之「偏斜角臨界值」,計算方式如圖十二說明。

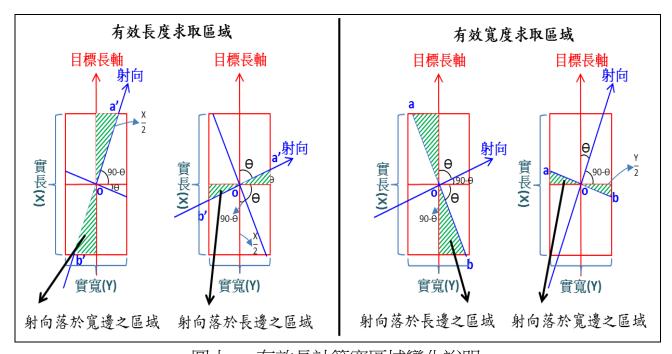

圖八 真實有效長寬求取

表三 真實有效長寬與公式計算對照表

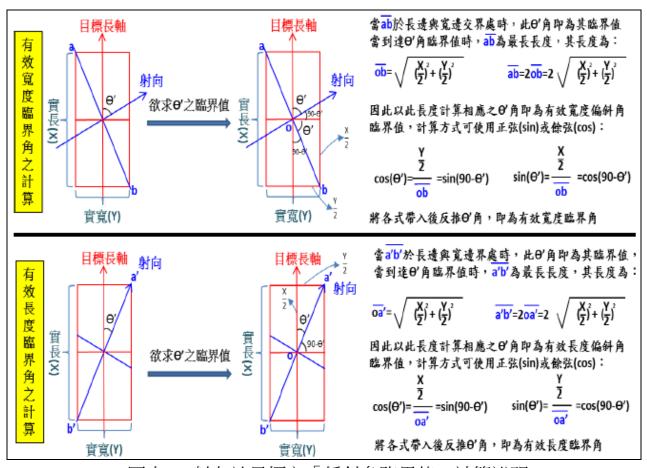
	長度40公尺、寬度20公尺				長度70公尺、寬度30公尺			長度60公尺、寬度20公尺				長度190公尺、寬度40公尺				
		(長寬	比2:1)		(長寬比2.33:1)			(長寬比3:1)				(長寬比4.75:1)				
ム州々(0)	真實	真實	公式	公式	真實	真實	公式	公式	真實	真實	公式	公式	真實	真實	公式	公式
偏斜角(Θ)	長度	寬度	長度	寬度	長度	寬度	長度	寬度	長度	寬度	長度	寬度	長度	寬度	長度	寬度
0	40	20	0	0	70	30	0	0	60	20	0	0	190	40	0	0
200	40.784	20.392	102.52	7.804	71.371	30.588	153.78	13.656	61.176	20.392	102.52	11.705	193.72	40.784	205.03	37.067
400	43.296	21.648	52.263	15.307	75.768	32.472	78.394	26.788	52.263	21.648	52.263	22.961	104.53	43.296	104.53	72.71
600	35.999	24.054	35.999	22.223	53.999	36.081	53.999	38.89	35.999	24.054	35.999	33.334	71.998	48.108	71.998	105.56
800	28.284	28.284	28.284	28.284	42.426	42.426	42.426	49.498	28.284	28.284	28.284	42.426	56.569	56.569	56.569	134.35
1000	24.054	35.999	24.054	33.259	36.081	53.999	36.081	58.203	24.054	35.999	24.054	49.888	48.108	71.998	48.108	157.98
1200	21.648	43.296	21.648	36.955	32.472	75.768	32.472	64.672	21.648	52.263	21.648	55.433	43.296	104.53	43.296	175.54
1400	20.392	40.784	20.392	39.231	30.588	71.371	30.588	68.655	20.392	61.176	20.392	61.176	40.784	193.72	40.784	186.35
1600	20	40	20	40	30	70	30	70	20	60	20	60	40	190	40	190


表四 有效長寬度速算表

偏	斜	角	有	效	長	度	有	效	寬	度
	0~400			實	長			實	寬	
	401~650			2X	實寬			0.5×	實長	
	651~950			1.41>	く實寬	,		0.71>	く實長	
	951~1200			1.15>	く實寬			0.87>	〈實長	
	1201~1600			實	寬			實	長	



圖九 真實有效長度計算說明


資料來源:圖八、圖九、表三為筆者自行整理。表四轉引自《陸軍野戰砲兵觀測訓練教範(第二版)》(桃園:國防部陸軍司令部,民99年11月10日),頁5-32。

圖十 真實有效寬度計算說明

圖十一 有效長計算寬區域變化說明

圖十二 射向於目標之「偏斜角臨界值」計算說明

資料來源:圖十、圖十一、圖十二為筆者自繪

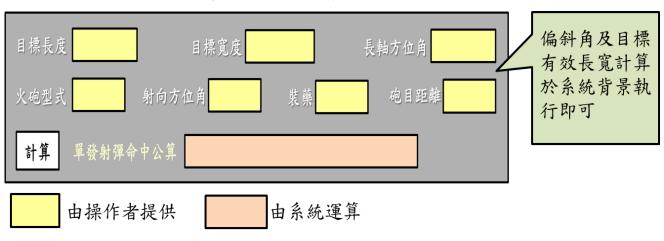
得知如何計算目標有效長寬之偏斜角臨界值後,舉例來說明便可一目瞭然,假設目標為一長度 40 公尺、寬度 20 公尺之矩形目標,欲求射向於此目標有效長寬之偏斜角臨界值計算如下。

目標長X=40公尺、寬Y=20公尺

有效寬度臨界角計算方式為:
$$\overline{ob} = \sqrt{\frac{(X_{\overline{z}})^2 + (Y_{\overline{z}})^2}{(\overline{z})^2 + (\overline{y})^2}} = \sqrt{500}$$

$$\overline{oa'} = \sqrt{\frac{(X_{\overline{z}})^2 + (Y_{\overline{z}})^2}{(\overline{z})^2 + (\overline{y})^2}} = \sqrt{500}$$

$$\cos(\theta') = \frac{X_{\overline{z}}}{\overline{ob}} = \frac{20}{\overline{500}}$$
 ; 反推 $\theta' = 63.44$
$$\cos(\theta') = \frac{X_{\overline{z}}}{\overline{oa'}} = \frac{40}{\overline{z}}$$
 ; 反推 $\theta' = 26.56$


由上述結果發現有效寬度臨界角 63.44 度加上有效長度臨界角 26.56 度等於 90 度,因此「**有效長度臨界角=90 度-有效寬度臨界角**或**有效寬度臨界角=90 度-有效寬度臨界角**或**有效寬度臨界角=90 度-有效長度臨界角**」,後續計算有效長寬時擇一計算即可,無需兩者都算,並依圖 九及圖十有效長寬計算之說明,最終可得到計算公式判定邏輯為:

一、依據觀測官回報目標之長寬,並以長軸方位角及射向方位角計算出偏 斜角,即可求算出目標有效長寬之偏斜角臨界值。

- 二、當**偏斜角小於等於 90 度-有效寬度臨界角或有效長度臨界角**時,代表有效長度之線落於目標寬邊,**有效長度計算公式為「實際長度/Cos(偏斜角)**」。(如圖九上半部)
- 三、當**偏斜角大於 90 度-有效寬度臨界角或有效長度臨界角**時,代表有效長度之線落於目標長邊,**有效長度計算公式為「實際寬度/Sin(偏斜角)**」。(如圖九下半部)
- 四、當**偏斜角小於等於有效寬度臨界值或 90 度-有效長度臨界角**時,代表有效寬度之線落於目標長邊,**有效寬度計算公式為「實際寬度/Cos(偏斜角)**」。(如圖十上半部)
- 五、當**偏斜角大於有效寬度臨界值或 90 度-有效長度臨界角**時,代表有效寬度之線落於目標寬邊,**有效寬度計算公式為「實際長度/Sin(偏斜角)**」。(如圖十下半部)

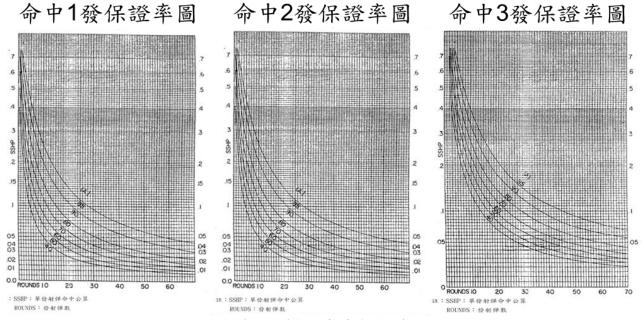
將上述判斷邏輯交予射擊指揮自動化系統運算,筆者簡易設計一功能表單 (圖十三),操作者僅需提供系統必要資訊,便可精確得到斜向目標之單發命中 公算,而此表單為整體運算功能之上半部,其值直接影響下半部計算之數值。

小結:傳統人工作業時,使用公式計算目標有效長寬因為非常迅速、簡單 且誤差不致過大,仍非常具有效益,但若需要提高命中公算計算之準確性,減 少計算誤差及計算時間,便需要射擊指揮自動化系統之輔助。

圖十三 射擊指揮自動化系統計算單發命中公算之功能

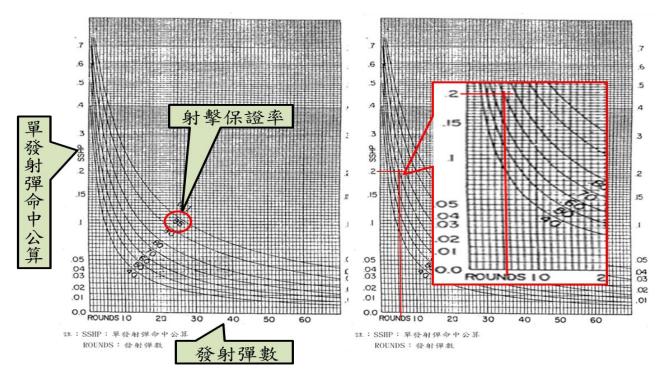
資料來源:筆者自繪

射擊保證率


一、射擊保證率概說

假設單發射彈命中率為 100%,而目標只要被 2 發射彈擊中即可被摧毀,則 僅需要發射 2 發射彈便可達成任務,但若單發射彈命中率降低為 50%,就不是 單純的射擊 4 發這麼簡單的計算了,因為機率的發生並不能保證發射 2 發一定 會命中1發,有可能2發都命中或2發都未命中,但若是發射彈數夠多亦即取樣數多,則命中與未命中之機率就會逐漸趨近於50%;在單發射彈命中率為50%之情形下,發射4發射彈所產生之結果共有16種(全命中、全不中各1種、只命中1發4種、命中2發6種、命中3發4種),因為目標只要被2發射彈擊中即可摧毀,因此可以摧毀目標的結果共有11種(全命中1種、命中2發6種、命中3發4種),整理一下便可瞭解當單發射彈命中率為50%、連續發射4發射彈,摧毀目標之機率為68.75%(11/16X100%),此數值即為「射擊保證率」;我們可以換個方式說明,若單發射彈命中率為50%,目標只要被2發射彈擊中即可被摧毀,而射擊組長希望射擊任務成功機率至少達到70%,則發射4發射彈是無法達成的,因為其最高保證率僅達到68.75%,必須至少發射5發才能達成任務(結果共有32種,全命中、全不中各1種、只命中1發5種、命中2發10種、命中3發10種、命中4發5種,保證率為81.2%)。

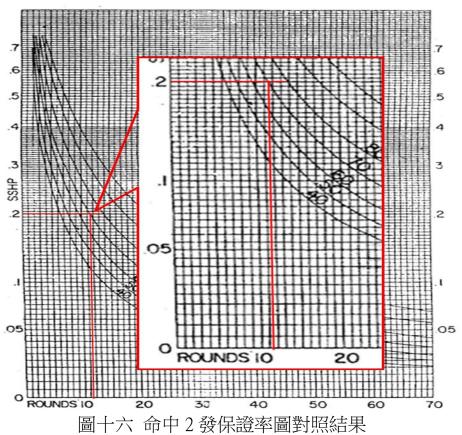
二、射擊保證率之計算


如果射彈命中與未命中之機率可以如同丟銅板出現正面與反面之機率一樣,發射的彈數越少所可能產生的結果就越簡單,如上述說明我們甚至可以把所有可能產生之結果一條一條列出,但是當射彈命中率為 35%、47%或 68%等任何可能之機率,且發射 10 發、15 發甚至超過 30 發射彈,就再也不可能將所有結果一條一條列出,除了耗時亦非常容易出錯,因此就必須瞭解保證率之計算方法,保證率於「陸軍野戰砲兵觀測訓練教範(第二版)第 5-33 頁」及「陸軍野戰砲兵射擊指揮教範(第三版)第 10-90 頁」中均有提到,並且附有命中 1 發、2 發及 3 發之保證率圖(如圖十四)供使用者對照,但若想知道命中 4 發以上之保證率為何,仍必須瞭解保證率圖如何而來。

直接舉例來說明該如何計算較能直接切入重點,假設單發射彈命中公算為20%,射擊組長希望至少能命中目標1發,且希望射擊任務成功機率(射擊保證率)達70%,則需要至少發射多少射彈?計算邏輯其實很簡單,發射數發射彈(假設為m)命中1發(含)以上,不管是第幾發命中都是我們想要的結果,所以直接扣除1發都未命中之機率即可,而單發射彈未命中之機率為80%,若想連續發射m發都沒命中其機率為(80%)m,整體算式為1-(80%)m≥70%,求得m為5.4,即至少需要發射6發射彈,對照命中1發之保證率圖結果亦相同(圖十五)。

圖十四 射彈命中保證率圖

資料來源:《陸軍野戰砲兵觀測訓練教範(第二版)》(桃園:國防部陸軍司令部,民 99 年 11 月 10 日),頁 5-37。


圖十五 保證率圖說明及對照結果 資料來源:筆者自行整理

單發射彈命中公算及射擊任務成功機率均同前,希望至少命中目標 2 發, 則需要至少發射多少射彈?計算邏輯同前,發射數發射彈(假設為 m)命中 2 發(含)以上,不管是第幾發命中都是我們想要的結果,所以直接扣除 1 發都 未命中及只命中 1 發之機率即可,單發射彈連續發射 m 發都沒命中其機率為 (80%) m,只命中1發之機率則必須以組合⁵之概念來計算了,整體算式為:

$$1 - \{(80\%)^m + [C_1^m X (20\%)^1 X (80\%)^{m-1}]\} \ge 70\%$$

$$C_1^m = \frac{m!}{(m-1)! \ X \ 1!}$$

求得 m 為 11.4,即至少需要發射 12 發射彈,對照命中 2 發之保證率圖結果亦相同(圖十六)。

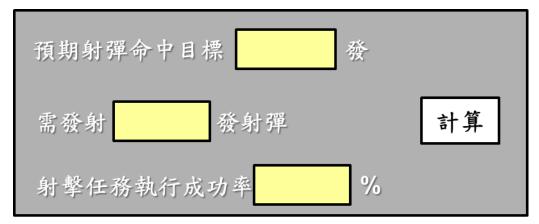
資料來源:筆者自行整理

單發射彈命中公算及射擊任務成功機率均同前,希望至少命中目標 4 發, 則需要至少發射多少射彈?計算邏輯同前,直接扣除 1 發都未命中、只命中 1 發、2 發及 3 發之機率即可,整體算式為:

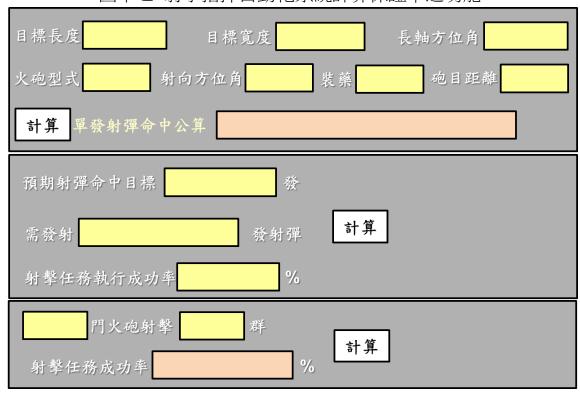
 $1 - \{(80\%)^{m} + [C_{1}^{m}X(20\%)^{1}X(80\%)^{m-1}] + [C_{2}^{m}X(20\%)^{2}X(80\%)^{m-2}] + [C_{3}^{m}X(20\%)^{3}X(80\%)^{m-3}]\} \ge 70\%$

$$C_1^m = \frac{m!}{(m-1)! \ X \ 1!}$$
 $C_2^m = \frac{m!}{(m-2)! \ X \ 2!}$ $C_3^m = \frac{m!}{(m-3)! \ X \ 3!}$

求得 m 為 25.9,即至少需要發射 26 發射彈。


⁵組合(Combination),如果有 n 個不同之物,取出 m 個而無須將其排列,其各種產生之結果即為組合。維基百科, 〈 https://zh.m.wikipedia.org/zh-mo/組合〉,2018 年 11 月 2 日。

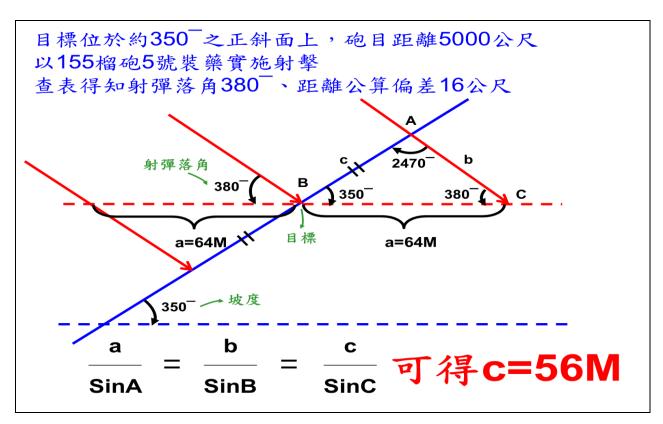
三、射擊保證率之運用


從上述算式可知當欲命中的彈數越多,整個算式越長、計算也越複雜,因此保證率實難以傳統人工作業方式計算,但若將運算邏輯交予射擊指揮自動化系統,則射擊保證率之數據極具參考價值。目標有效長寬、單發射彈命中公算及射擊保證率均互有關聯、密不可分,筆者於斜向目標有效長寬計算中簡易設計一個射擊指揮自動化功能表單,並說明該表單為整體功能之上半部,所求算單發射彈命中公算之數值為下半部功能表單運算之依據,操作者可於表單下半部得知幾個重要資訊,如「預期射彈命中目標之發數」、「所需發射彈數」、「射擊任務執行成功率」(圖十七)。操作者於表單中任何2欄位輸入所望之數值,按下計算系統即帶入單發射彈命中公算數值執行運算,並顯示另一欄位之數值,舉例說明:若射擊組長希望目標被射彈命中2發,且任務成功率達80%,按下計算系統便會顯示需要發射幾發射彈,或因彈藥數量有限,只能發射8發射彈,而目標須2發射彈命中方能摧毀,按下計算系統便會顯示任務成功機率為多少,亦或輸入發射彈數及預期成功機率,系統便會顯示預期目標遭射彈命中數為多少。

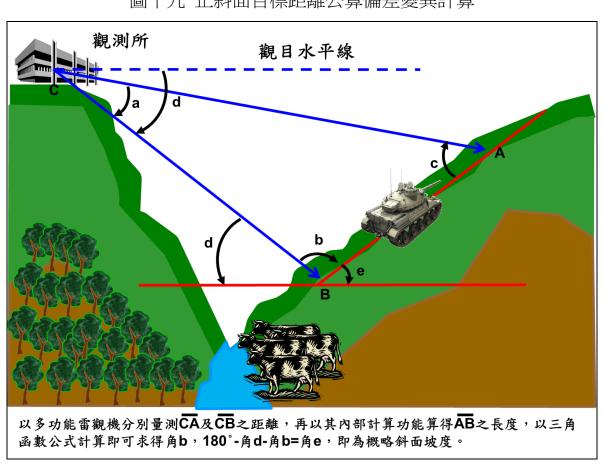
射擊保證率為單一門火砲發射數發射彈命中目標之成功率,運用在單砲射擊時最為準確,然在陸軍換裝新式火砲前,仍以排、連為最小火力執行單位,其砲目距離量測為陣地中心至目標中心之水平距離,而火砲於陣地各有間隔縱深,因此各砲命中公算實為不同但誤差甚微,原因在傳統人工作業模式下,為能方便計算射擊諸元及火力統一運用,我們做了非常多的射擊整備作業,目的就是希望各砲及各發射彈狀況均能一致,就算以資訊化輔助人工作業之模式下仍然如此,因此在尚未有更精確之計算參數下於同一陣地之火砲單發命中公算暫可視為相同,而火砲在相同命中公算下對同一目標射擊,以 1 門火砲射擊 4 發射彈跟以 2 門火砲各射擊 2 發射彈之保證率相同,若系統顯示至少需發射 4 發射彈,以全排(4 門)火砲發射 1 群射彈即可,若至少需發射 6 發射彈,以全排(4 門)火砲而言,必須發射 2 群射彈方能達成任務,而 2 群(8 發)比 6 發射彈多,代表射擊保證率亦隨之提高,此數值即為表單最後一部分,整體功能表單之概念如圖十八。

小結:若可善用射擊保證率之計算值,應可改善以往射擊組長在決定發射 群數時,並無相關參數或系統提供建議之情形;另前進觀測官為連火力支援協 調組組長,其職責之一即為向受支援連長提供火力運用意見具申,運用系統之 功能,即可判別砲兵射擊目標之成功率,適時建議攻擊手段之選擇。

圖十七 射擊指揮自動化系統計算保證率之功能



圖十八 射擊指揮自動化系統射擊保證率功能表單


資料來源:圖十七及圖十八為筆者自繪

研究心得與建議

射擊保證率計算之基礎在於射彈命中公算,而射彈命中公算計算之基礎在於目標有效長寬及方向、距離公算偏差數,若可以納入更多影響數據之因素,射擊保證率之數值會更加精確,如筆者於命中公算說明中提到,斜面目標之公算偏差在正斜面上較短,反斜面相反,可依坡度及射彈落角以三角函數之方式概略計算其變異量,計算方式如圖十九之說明,依計算結果可得知一倍距離公算偏差從 16 公尺縮小為 14 公尺,8 倍距離公算偏差共縮短了 16 公尺,射彈命中公算則因此而提高;而若觀測所在儘可能縮小 T 角(觀目線與砲目線之夾角)之要領下開設,使用多功能雷觀機兩點距離計算之功能,即可概略計算正斜面之坡度,計算方式如圖二十說明。

圖十九 正斜面目標距離公算偏差變異計算

圖二十 概略斜面坡度之計算示意圖 資料來源:圖十九及圖二十為筆者自繪

另使用較少彈數來決定平均彈著點,則實際公算偏差量較射表所列之數值為大,其計算公式為√(1倍公算偏差值)²+(1倍公算偏差值X相應因數)², 。因此若 155 榴砲連已完成平均彈著點檢驗(以6發射彈決定平均彈著點,因數值為 0.41),欲對上述目標實施轉移射擊,則變異後之方向公算為 3.24 公尺、距離公算偏差為 15.13 公尺,射彈命中公算則因此而下降。

若上述變異因素均可計算,並將數值納入運算考量,應可使射彈命中公算及射擊保證率更為客觀,綜合整理全部之概念便可來做個實際的應用,狀況如下:155 榴砲排(4門)已完成平均彈著點檢驗,在轉移界限內使用7號裝藥對距離12000公尺、橫寬30公尺、縱長80公尺之旅指揮所射擊,指揮所位於坡度300密位之正斜面上,偏斜角經計算為700密位,預判指揮所需遭5發射彈命中方能摧毀,期望射擊任務成功率至少70%,請問射擊組長需發射幾群射彈及最終射擊任務成功率為何?

計算方式如下:

查表可得 1 倍方向公算偏差 4 公尺、1 倍距離公算偏差 42 公尺 落角 626

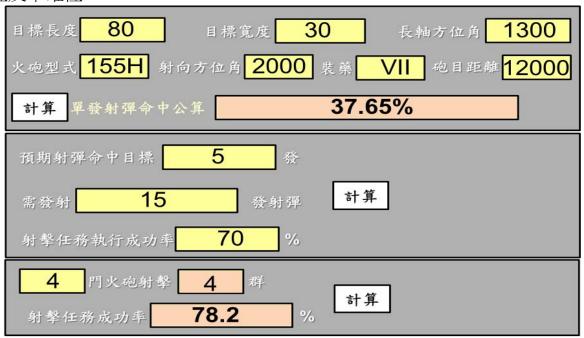
正斜面之一倍距離公算偏差計算後為 30.1 公尺($168/\sin 2247$ =C/Sin626) 平均彈著點以 6 發決定,計算方向公算偏差為 4.32 公尺($\sqrt{(4)^2+(4X0.41)^2}$) 距離公算偏差為 32.53 公尺($\sqrt{(30.1)^2+(30.1X0.41)^2}$)

斜向目標有效長度為 47.29 公尺、有效寬度為 38.81 公尺 以命中公算表計算:

- (1)方向公算偏差命中率為 4.49 倍(19.41/4.32M)
 - T (4.49倍)=0.4988
- (2) 距離公算偏差命中率為 0.727 倍(23.65M/32.53M)
 - T (0.727 倍) =0.1880
- (3) 單發射彈命中率=0.4988X2X0.1880X2X100%=37.51%

帶入射擊保證率計算後至少需發射 15 發射彈

因此全排需發射 4 群射彈


最終射擊任務成功率為 78.2%

若以射擊指揮自動化功能表單計算,則由操作人員將相關目標及射擊資訊填入 表單,即可得知相關訊息(圖二十一)。

建議: AFATDS 系統(先進野戰砲兵戰術資料系統, Advanced Field Artillery Data System, AFATDS)所提供之射擊建議基於參數蒐整等因素,僅能供訓練

⁶同註 1,頁 5-35。

使用,因此發展一可提供使用者「適當建議」功能之系統,為本研究之目的,然目前射擊指揮儀所具備之功能並未向下延伸至「彈藥數量」及「成功率」之計算,因此在本研究架構下,筆者建議於後續戰、技術射擊指揮各分系統軟體研改中,依不同職務發展各自所需功能介面,未來若可於各級實彈或演訓中驗證功能是否精準,並逐步蒐整彈藥效能及目標毀傷參數,便可再次提升功能完整性及準確性。

圖二十一 射擊指揮自動化系統射擊保證率功能表單之計算示意圖 資料來源:筆者自繪

結論

「多算勝,少算不勝,而況無算乎。」依美軍實際作戰經驗,以 155 公厘榴 砲射擊距離約 15 公里之目標,如果目標為固定之雷達設備需使用標準高爆榴彈 (M107)約 11 發方能摧毀、步兵排則需約 43 發、大型指揮所則需約 78 發,「射擊效果參數」是射擊指揮自動化系統極為重要的參考數據,納入越多參考數據,系統方能產生越接近真實的建議,若可藉由本國及各國戰、演訓經驗,衷實紀錄實彈射擊產生之結果實施各種參數蒐整,配合所望射擊效果(摧毀、破壞、制壓、阻止擾亂)之定義,驗證系統運算結果,作為我軍砲兵爾後射擊之參考依據,相信必能有效改進傳統人工作業缺乏參數依據的窘狀,大幅提升射擊效果並節約射擊彈藥,提升整體火力支援效能。

參考文獻

- 一、《陸軍野戰砲兵觀測訓練教範(第二版)》(桃園:國防部陸軍司令部,民國99年11月10日)。
- 二、《陸軍野戰砲兵射擊指揮教範(第三版)》(桃園:國防部陸軍司令部,民國

103年10月30日)

三、維基百科、〈https://zh.m.wikipedia.org/zh-mo/組合〉, 2018 年 11 月 2 日。

作者簡介

林政諭少校,陸軍官校 93 年班機械系,歷任觀通組長、副連長、連長、參 謀主任,現任職陸軍砲兵訓練指揮部射擊教官組。