J Med Sci 2019;39(3):121-126 DOI: 10.4103/jmedsci.jmedsci_157_18

ORIGINAL ARTICLE

Lower Incidence of Prolonged Extubation in Propofol-Based Total Intravenous Anesthesia Compared with Desflurane Anesthesia in Laparoscopic Cholecystectomy: A Retrospective Study

Hou-Chuan Lai¹, Nan-Kai Hung¹, Bo-Feng Lin¹, Jia-Lin Chen¹, Yi-Hsuan Huang¹, Zhi-Fu Wu¹

¹Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan

Background: Reducing anesthesia-controlled time (ACT) such as extubation time may improve operating room (OR) efficiency result from different anesthetic techniques. However, the information about the difference in ACT between desflurane (DES) anesthesia and propofol-based total intravenous anesthesia (TIVA) techniques for laparoscopic cholecystectomy (LC) under general anesthesia (GA) is not available in the literature. **Methods:** This retrospective study uses our hospital database to analyze the ACT of elective LC after either DES anesthesia or TIVA via target-controlled infusion (TCI) with propofol from January 2010 to December 2011. The various time intervals including waiting for anesthesia time, anesthesia time, surgical time, extubation time, exit from OR after extubation, total OR time, postanesthetic care unit (PACU) stay time, and percentage of prolonged extubation (\geq 15 min) were compared between the two anesthetic techniques. **Results:** We included data from 622 patients undergoing LC, with 286 patients receiving TIVA and 336 patients receiving DES anesthesia. The extubation time was faster (7.8 \pm 0.4 vs. 10.9 \pm 0.4 min; P < 0.001) and the exit from OR after extubation was faster (6.8 \pm 0.5 vs. 9.3 \pm 0.5 min, P < 0.001) in the TIVA group than that in the DES group. Besides, the incidence of prolonged extubation was lower (4.5% vs. 10.1%, P = 0.014) in the TIVA group than that in the DES group. The prolonged extubation was associated with age, sex, anesthetic technique, and anesthesia time. **Conclusions:** In our hospital, propofol-based TIVA by TCI provided faster extubation time, faster exit from OR after extubation, and lower prolonged extubation rate compared with DES anesthesia in LC. Besides, older age, female, DES anesthesia, and lengthy anesthesia time were factors affecting prolonged extubation.

Key words: Propofol, desflurane, target-controlled infusion, anesthesia-controlled time, laparoscopic cholecystectomy

INTRODUCTION

Anesthesia-controlled time (ACT) is one of the most important factors that regulate operating room efficiency.¹ Extubation time is of special interest because it could be affected by different anesthetic agents or techniques.²⁻⁴ Evidence showed that prolonged extubation decreases operating room (OR) efficiency and slows workflow due to the surgeon and OR staff staying idly waiting for extubation.⁵ Accordingly, an appropriate anesthetic technique to provide faster extubation time from GA is essential for anesthesiologists in order to improve the efficiency of OR. Agoliati *et al.*⁶ defined that prolonged extubation was equal or longer than 15 min.

Received: October 05, 2018; Revised: December 20, 2018; Accepted: January 07, 2019

Corresponding Author: Dr. Zhi-Fu Wu, Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, #325, Section 2, Chenggung Road, Neihu 114, Taipei, Taiwan. Tel: +886-2-87927128; Fax: +886-2-87927127. E-mail: aneswu@gmail.com

Dexter and Epstein⁷ recommended that recording extubation time and monitoring the incidence of prolonged extubation are very important especially at facilities that have at least 8 h of cases and turnovers. Previous studies also implied that longer-than-average anesthesia times strongly influence the academic anesthesiology departments by increasing the staffing costs and decreasing hourly productivity.^{8,9} The ACT between propofol-based total intravenous anesthesia (TIVA) and desflurane (DES) anesthesia in different surgeries was investigated; nevertheless, the results are controversial.^{4,10-18}

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Lai HC, Hung NK, Lin BF, Chen JL, Huang YH, Wu ZF. Lower incidence of prolonged extubation in propofol-based total intravenous anesthesia compared with desflurane anesthesia in laparoscopic cholecystectomy: A retrospective study. J Med Sci 2019;39:121-6.

Stevanovic *et al.*¹⁹ reported that sevoflurane anesthesia provided faster extubation time compared with propofol-based TIVA in LC. However, Grundmann *et al.*²⁰ showed no statistically significant difference in extubation time between propofol-based TIVA by syringe pump infusion and DES anesthesia in LC. Moreover, different propofol delivery techniques such as target-controlled infusion (TCI) and syringe pump infusion were used in these studies which may lead to different results. The present study aimed to determine whether the use of TIVA with TCI system is more effective than DES anesthesia in reducing ACT in patients undergoing elective LC.

METHODS

This retrospective study was reviewed and approved by the Ethics Committee of Tri-Service General Hospital (approval number: 100-05-168). All the electronic databases and medical records from January 2010 to December 2011 were retrieved from Tri-Service General Hospital. We enrolled 622 patients (American Society of Anesthesiologists [ASA] Class I-III) who received laparoscopic cholecystectomy (LC) or cholelithotomy under propofol-based TIVA or DES anesthesia. Patients with age <18 years, emergent surgeries, unplanned explorative laparotomy, combined inhalation anesthesia with propofol or other inhaled anesthetics besides DES, or incomplete data were excluded from the study. For the purposes of this study, the following times (minutes) were calculated: waiting for anesthesia time, arrival in the OR to anesthesia was introduced; surgical time, incision to surgical completion and application of dressings; anesthesia time, start of anesthesia to extubation; extubation time, from the end of skin closure until extubation; total OR stay time, arrival in the OR to departure from the OR; postanesthesia care unit (PACU) stay time, arrival in the PACU to discharge from the PACU to the general ward; and ACT, arrival in the OR to discharge from the OR. In addition, other parameters included demographic data and ASA physical status. All the times, determination was recorded by OR staff and anesthetic nurses using electronic database.

There was no premedication before the induction of anesthesia. Regular monitoring, such as noninvasive blood pressure, arterial line, electrocardiography (lead II), pulse oximetry, and end-tidal carbon dioxide (EtCO₂), was applied in each patient. Anesthesia was induced with fentanyl and propofol in all patients. The patients were then intubated and maintained with propofol or DES and the analgesic fentanyl. In our common practice, we take patients to the PACU after extubation and did not extubate in the PACU.

In the TIVA group, anesthesia was induced using IV fentanyl (2 $\mu g/kg$) and 2% lidocaine (1.5 mg/kg). Continuous

infusion of propofol (Fresofol 1%) was delivered subsequently using Schneider's kinetic model of TCI (Fresenius Orchestra Primea; Fresenius Kabi AG, Bad Homburg, Germany) with the effect-site concentration (Ce) of 4.0 $\mu g/mL$. Rocuronium (0.6 mg/kg, IV) was administered when patients lost consciousness, followed by tracheal intubation. Anesthesia was maintained using TCI with propofol Ce 3–4 $\mu g/mL$ and an oxygen flow of 0.3 L/min. Repetitive IV bolus injections of rocuronium (or cisatracurium) and fentanyl were prescribed as required throughout the procedure. $^{12\text{-}18,21\text{-}24}$

In the DES group, the patients were induced with IV fentanyl (2 μ g/kg), 2% lidocaine (1.5 mg/kg), and propofol (1.5–2 mg/kg). When patients lost consciousness, 0.6 mg/kg of rocuronium IV was administered, followed by endotracheal intubation. Anesthesia was maintained using 8%–12% DES (inhaled concentration) in an oxygen flow of 300 mL/min under a closed system without nitrous oxide. Repetitive IV bolus injections of rocuronium (or cisatracurium) and fentanyl were prescribed as required throughout the procedure. ^{12-18,21-23}

Maintenance of the Ce for the TCI with propofol and DES concentration was adjusted at the range of 0.2 $\mu g/mL$ and 0.5%, respectively, according to the hemodynamics. If two increments or decrements were unsuccessful, the range of Ce for TCI propofol and DES was increased to 0.5 $\mu g/mL$ and 2%, respectively. The EtCO $_2$ was maintained at 35–45 mmHg by adjusting the respiration rate and maximum airway pressure. Once neuromuscular function returns, rocuronium (5–10 mg, IV) or cisatracurium (2 mg, IV) was administered as required. $^{12-18,21-23}$

Ce of propofol or DES concentration was tapered to 2.0 μ g/mL or 5%, respectively, at the beginning of skin closure. At the last five stitches of suture, propofol or DES was discontinued, but the oxygen flow was kept at 300 mL/min. At the end of the skin closure, the lungs were ventilated with 100% oxygen at a fresh gas flow of 6 L/min. Reversal of neuromuscular function was achieved by administrating neostigmine (0.03–0.04 mg/kg, IV) with glycopyrrolate (0.006–0.008 mg/kg, IV) once spontaneous breathing returned to prevent residual paralysis. When the patient regained consciousness by name with spontaneous and smooth respiration, the endotracheal tube was extubated, and the patient was sent to the postanesthesia care unit (PACU) for further care.

Data were presented as the mean and standard deviation, number of patients, or percentage. Demographic and perioperative variables were compared using Student's *t*-tests. Categorical variables were compared using Chi-square test. Multivariable logistic regression analyses were performed to assess the association between variables contributed to

prolonged extubation. The level of statistical significance was determined as P < 0.05. Statistical analyses were done using SPSS software v. 21.0. (IBM SPSS Statistics, IBM Corporation, Chicago, IL, USA).

RESULTS

Of the 747 patients scheduling for LC enrolled to the retrospective study, 125 patients were excluded from the analysis. Of those excluded, 45 patients received combined inhalation anesthesia with propofol, 56 patients received sevoflurane anesthesia, and 24 patients had incomplete data [Figure 1].

Table 1 shows the patient characteristics, and there was no significant difference in patient demographics. Extubation time was significantly less in the TIVA group than in the DES group (7.8 \pm 0.4 vs. 10.9 \pm 0.4 min; P < 0.001). Exit from OR after extubation was significantly faster in the TIVA group than in the DES group (6.8 \pm 0.5 vs. 9.3 \pm 0.5 min, P < 0.001). The incidence of prolonged extubation was significantly lower in the TIVA group than in the DES group (4.5% vs. 10.1%; P = 0.01). There was no difference among waiting for anesthesia time, surgical time, anesthesia time, total OR stay time, and PACU stay time between the two groups [Table 2].

The result of multiple linear regressions comparing extubation time among several variants is shown in Table 3. Older age, female, DES anesthesia, and longer anesthesia time were factors that contribute to extubation time. The patients with shorter surgical time or TIVA had faster extubation time.

DISCUSSION

The major findings in this retrospective study show that propofol-based TIVA with TCI system significantly reduced the extubation time, exit from OR after extubation, and the incidence of prolonged extubation relative to the DES anesthesia in patients undergoing elective LC. In addition, we found that the factors of prolonged extubation were age, sex, anesthetic technique, and anesthesia time.

The results of previous studies comparing the extubation time of DES with propofol-based TIVA have been controversial. 4,10-18 Some studies comparing DES with TIVA

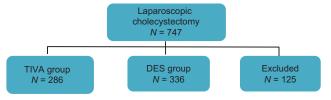


Figure 1: The flow diagram. TIVA: Total intravenous anesthesia, DESL: Desflurane anesthesia

found no significant difference in terms of extubation.^{20,25,26} Our previous studies found that the use of TIVA with TCI system is more effective than DES anesthesia in reducing ACT^{13-18,27} because the awakening time can be predicted by TCI system.²⁸ In another study, Dolk *et al.*²⁹ reported that there was shorter extubation time for DES anesthesia compared with propofol delivered by TCI in knee surgery. The difference would have been caused by using nitrous oxide as an adjuvant

Table 1: Patient characteristics

	Group DES (n=336)	Group TIVA (n=286)	P
ASA I/II/III	68/196/72	50/191/45	
Sex (male/female)	146/190	129/157	0.78
Age (years old)	57.1±15.5	56.5±16.5	0.63
Height (cm)	164.0 ± 8.4	164.0 ± 8.3	0.96
Weight (kg)	67.4±12.2	67.0±12.0	0.66

Data shown as mean \pm SD or n. ASA: American Society of Anesthesiologists, SD: Standard deviation

Table 2: Operating room time measurement between the desflurane and total intravenous anesthesia groups

	Group DES (n=336)	Group TIVA (n=286)	P
Waiting for anesthesia time (min)	9.6±0.5	10.0±0.5	0.22
Surgical time (min)	96.6±4.6	94.7±4.2	0.92
Anesthesia time (min)	127.4±5.4	124.1±4.4	0.98
Extubation time (min)	10.9 ± 0.4	7.8 ± 0.4	< 0.001
Exit from OR after extubation (min)	9.3±0.5	6.8 ± 0.5	< 0.001
Total OR stay time (min)	146.7±5.4	140.6±4.4	0.27
PACU stay time (min)	44.4±1.6	43.6±1.4	0.92
Prolonged extubation (\geq 15 min), n (%)	. ,	13 (4.5)	0.01

Data shown as mean \pm SD or n (%). OR: Operating room;

PACU: Postanesthetic care unit, SD: Standard deviation, DES: Desflurane, TIVA: Total intravenous anesthesia

Table 3: Comparisons of extubation time among variants by multiple linear regression

	β	SE	P
Age	-0.0245	0.00944	0.010
Sex	0.617	0.303	0.042
Height	0.0127	0.0224	0.570
Weight	-0.0240	0.0155	0.121
Group	-3.113	0.299	< 0.001
Surgical time	-0.0287	0.00931	0.002
Anesthesia time	0.0337	0.00824	< 0.001
Waiting anesthesia time	-0.0489	0.0358	0.172

β: Difference between each variant using extubation time as dependent variable, Group: DES=0, TIVA=1. P<0.05 was considered statistically significant. SE: Standard error, DES: Desflurane, TIVA: Total intravenous anesthesia

to anesthetics, which reduce the requirement of DES during the maintenance period and facilitate early emergence. Moreover, the present result was consistent with our previous studies reporting that GA using propofol-based TIVA could achieve faster extubation than that of using DES anesthesia in different surgeries. ^{13-18,27}

In this study, we showed that the mean time to departure from OR to PACU was 6.8 in the TIVA group and 9.3 min in the DES group, which might be due to the more stable hemodynamics in TIVA group compared with DES anesthesia during emergence from anesthesia and paramedical factors. ^{16,30} We found that the total OR stay time was reduced to 6.1 min in the TIVA compared with DES anesthesia. McIntosh *et al.* ³¹ revealed that each 5-min reduction in intraoperative time should be treated as reducing costs, and the reduction is approximately 20% larger than the cost per 5 min of OR time. Thus, the reduction in ACT, as reported in our study, might be reasonably treated as having economic benefit. ³²

The overall incidence of prolonged extubation was 15% of all cases.^{3,33} In this study, the incidence of prolonged extubation in the DES group was higher than that in the TIVA group (10.1% vs. 4.5%; P < 0.001), which might be due to the predicted awakening time by TCI system.²⁸ Previous researches showed the risk factors of prolonged extubation including prone position, prolonged surgical time, significant blood loss, and larger volume of crystalloid and colloid infusion. 34,35 Moreover, our previous studies reported that older age and lengthy anesthesia time contributed to prolonged extubation in upper and lower abdominal surgeries. 12,13 In the present study, according to previous reports, older age was a risk factor for prolonged extubation, which might be due to the decrease in renal and hepatic reserve and reduced anesthetics metabolism in elderly patients. Besides, the weight of the human brain decreases with age, and the brain's gray matter decreases more than the white matter, which may be more sensitive to anesthetics.³⁶ Elderly patients have increased body fat with a greater volume of distribution, which might prolong the clinical effect of anesthetics. In this study, we found that female gender was a risk factor for prolonged extubation, Consistently, Yu et al. and Tercan et al.37,38 demonstrated that females awaken slower than males from GA. In contrast, a pharmacokinetic analysis demonstrated that women have a larger volume of redistribution and higher clearance in propofol.³⁹ Moreover, females consume more propofol and have faster emergence than males, which has been supported by clinical studies.^{2,13,40,41} Moreover, we found no sex difference in prolonged extubation in our previous study. 12 The results are still controversial, which might be due to different surgeries, different anesthesia time, and age-related hormonal influences on the effect of hypnotic drugs. Hence, further investigation is necessary.

Consistently, we also found that lengthy anesthesia time contributed to prolonged extubation. During lengthy surgical procedures, higher-than-necessary propofol infusion dose may accumulate and be redistributed from the fatty tissue and muscle to the plasma, which leads to delayed recovery, ^{27,42} even under TCI. ^{12,13} Redistribution of DES in the fatty tissue and muscle in lengthy anesthesia may result in delayed emergence. ²⁷ Therefore, keeping anesthetic depth within the recommended range may improve anesthetic delivery and postoperative recovery from relatively deep anesthesia. ⁴³ Accordingly, Bispectral Index (BIS) use is strongly recommended in patients with older age or prolonged surgical time (>210 min). ^{12,13}

There were some limitations in this study. First, our study is a retrospective study. Considering the comparability and standardization of the study groups, a retrospective study may contribute to bias. Although the choice of anesthetic management was not randomly allocated but rather by the availability of the TCI devices, the results showed no difference in the characteristics of the patients between the two groups. This study, performed under clinical conditions, reflects more precisely the clinically relevant benefits. Second, we did not compare the effect of body temperature on extubation time because hypothermia may delay awakening.44 However, in our cases, we used the patient warming system including fluid warming kit and convective air warming system to keep their core temperature ≥35°C perioperatively. Third, we did not use BIS in our common practice. Our incidence of prolonged extubation was 7.6%, which was lower than the overall 11.5% reported by a previous study in 1-2 h surgery.⁷ However, use of BIS in older age has been still suggested in LC. Finally, in this study, the amounts of opioid and nondepolarizing muscle relaxants between the propofol-based TIVA and DES anesthesia were similar with our previous intraperitoneal procedures. 12,13 Thus, the detail statistical analysis was not performed in the presented study.

CONCLUSIONS

Our results showed that propofol-based TIVA by TCI reduced the extubation time, exit from OR after extubation, and the incidence of prolonged extubation compared with DES anesthesia in elective LC. In addition, older age, female, DES anesthesia, and lengthy anesthesia time were factors affecting prolonged extubation.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Junger A, Klasen J, Hartmann B, Benson M, Röhrig R, Kuhn D, et al. Shorter discharge time after regional or intravenous anaesthesia in combination with laryngeal mask airway compared with balanced anaesthesia with endotracheal intubation. Eur J Anaesthesiol 2002;19:119-24.
- 2. Apfelbaum JL, Grasela TH, Hug CC Jr., McLeskey CH, Nahrwold ML, Roizen MF, *et al.* The initial clinical experience of 1819 physicians in maintaining anesthesia with propofol: Characteristics associated with prolonged time to awakening. Anesth Analg 1993;77:S10-4.
- Dexter F, Bayman EO, Epstein RH. Statistical modeling of average and variability of time to extubation for meta-analysis comparing desflurane to sevoflurane. Anesth Analg 2010;110:570-80.
- 4. Wachtel RE, Dexter F, Epstein RH, Ledolter J. Meta-analysis of desflurane and propofol average times and variability in times to extubation and following commands. Can J Anaesth 2011;58:714-24.
- 5. Vitez TS, Macario A. Setting performance standards for an anesthesia department. J Clin Anesth 1998;10:166-75.
- Agoliati A, Dexter F, Lok J, Masursky D, Sarwar MF, Stuart SB, *et al.* Meta-analysis of average and variability of time to extubation comparing isoflurane with desflurane or isoflurane with sevoflurane. Anesth Analg 2010;110:1433-9.
- Dexter F, Epstein RH. Increased mean time from end of surgery to operating room exit in a historical cohort of cases with prolonged time to extubation. Anesth Analg 2013;117:1453-9.
- 8. Abouleish AE, Prough DS, Whitten CW, Conlay LA. Increasing the value of time reduces the lost economic opportunity of caring for surgeries of longer-than-average times. Anesth Analg 2004;98:1737-42.
- Abouleish AE, Prough DS, Zornow MH, Hughes J, Whitten CW, Conlay LA, et al. The impact of longer-than-average anesthesia times on the billing of academic anesthesiology departments. Anesth Analg 2001:93:1537-43.
- 10. Juvin P, Servin F, Giraud O, Desmonts JM. Emergence of elderly patients from prolonged desflurane, isoflurane, or propofol anesthesia. Anesth Analg 1997;85:647-51.
- 11. Gupta A, Stierer T, Zuckerman R, Sakima N, Parker SD, Fleisher LA. Comparison of recovery profile after ambulatory anesthesia with propofol, isoflurane, sevoflurane and desflurane: A systematic review. Anesth Analg 2004;98:632-41.
- 12. Chan WH, Lee MS, Lin C, Wu CC, Lai HC, Chan SM, *et al.* Comparison of anesthesia-controlled operating room time between propofol-based total intravenous

- anesthesia and desflurane anesthesia in open colorectal surgery: A retrospective study. PLoS One 2016;11:e0165407.
- 13. Lai HC, Chan SM, Lu CH, Wong CS, Cherng CH, Wu ZF. Planning for operating room efficiency and faster anesthesia wake-up time in open major upper abdominal surgery. Medicine (Baltimore) 2017;96:e6148.
- Chen JL, Kuo CP, Chen YF, Chen YW, Yu JC, Lu CH, et al. Do anesthetic techniques affect operating room efficiency? Comparison of target-controlled infusion of propofol and desflurane anesthesia in breast cancer surgery. J Med Sci 2013;33:205-10.
- 15. Wu ZF, Jian GS, Lee MS, Lin C, Chen YF, Chen YW, et al. An analysis of anesthesia-controlled operating room time after propofol-based total intravenous anesthesia compared with desflurane anesthesia in ophthalmic surgery: A retrospective study. Anesth Analg 2014;119:1393-406.
- 16. Lu CH, Wu ZF, Lin BF, Lee MS, Lin C, Huang YS, et al. Faster extubation time with more stable hemodynamics during extubation and shorter total surgical suite time after propofol-based total intravenous anesthesia compared with desflurane anesthesia in lengthy lumbar spine surgery. J Neurosurg Spine 2016;24:268-74.
- 17. Lai HC, Chan SM, Lin BF, Lin TC, Huang GS, Wu ZF. Analysis of anesthesia-controlled operating room time after propofol-based total intravenous anesthesia compared with desflurane anesthesia in gynecologic laparoscopic surgery: A retrospective study. J Med Sci 2015;35:157-61.
- Liu TC, Lai HC, Lu CH, Huang YS, Hung NK, Cherng CH, et al. Analysis of anesthesia-controlled operating room time after propofol-based total intravenous anesthesia compared with desflurane anesthesia in functional endoscopic sinus surgery. Medicine (Baltimore) 2018;97:e9805.
- Stevanovic PD, Petrova G, Miljkovic B, Scepanovic R, Perunovic R, Stojanovic D, et al. Low fresh gas flow balanced anesthesia versus target controlled intravenous infusion anesthesia in laparoscopic cholecystectomy: A cost-minimization analysis. Clin Ther 2008;30:1714-25.
- 20. Grundmann U, Silomon M, Bach F, Becker S, Bauer M, Larsen B, *et al.* Recovery profile and side effects of remifentanil-based anaesthesia with desflurane or propofol for laparoscopic cholecystectomy. Acta Anaesthesiol Scand 2001;45:320-6.
- 21. Wu ZF, Lee MS, Wong CS, Lu CH, Huang YS, Lin KT, et al. Propofol-based total intravenous anesthesia is associated with better survival than desflurane anesthesia in colon cancer surgery. Anesthesiology 2018;129:932-41.

- 22. Lai HC, Pao SI, Huang YS, Chan SM, Lin BF, Wu ZF, *et al.* The relationship between postoperative pneumonia and endotracheal suctioning under general anesthesia in ophthalmic surgery: A retrospective study. Asian J Anesthesiol 2018;56:33-8.
- 23. Lai HC, Tseng WC, Pao SI, Wong CS, Huang RC, Chan WH, *et al.* Relationship between anesthesia and postoperative endophthalmitis: A retrospective study. Medicine (Baltimore) 2017;96:e6455.
- 24. Lai HC, Chang YH, Huang RC, Hung NK, Lu CH, Chen JH, *et al.* Efficacy of sevoflurane as an adjuvant to propofol-based total intravenous anesthesia for attenuating secretions in ocular surgery. Medicine (Baltimore) 2017;96:e6729.
- 25. Fombeur PO, Tilleul PR, Beaussier MJ, Lorente C, Yazid L, Lienhart AH, *et al.* Cost-effectiveness of propofol anesthesia using target-controlled infusion compared with a standard regimen using desflurane. Am J Health Syst Pharm 2002;59:1344-50.
- Mahli A, Coskun D, Karaca GI, Akcali DT, Karabiyik L, Karadenizli Y, et al. Target-controlled infusion of remifentanil with propofol or desflurane under bispectral index guidance: Quality of anesthesia and recovery profile. J Res Med Sci 2011;16:611-20.
- 27. Lu CH, Yeh CC, Huang YS, Lee MS, Hsieh CB, Cherng CH, *et al.* Hemodynamic and biochemical changes in liver transplantation: A retrospective comparison of desflurane and total intravenous anesthesia by target-controlled infusion under auditory evoked potential guide. Acta Anaesthesiol Taiwan 2014;52:6-12.
- 28. Chan SM, Lee MS, Lu CH, Cherng CH, Huang YS, Yeh CC, *et al.* Confounding factors to predict the awakening effect-site concentration of propofol in target-controlled infusion based on propofol and fentanyl anesthesia. PLoS One 2015;10:e0124343.
- Dolk A, Cannerfelt R, Anderson RE, Jakobsson J. Inhalation anaesthesia is cost-effective for ambulatory surgery: A clinical comparison with propofol during elective knee arthroscopy. Eur J Anaesthesiol 2002;19:88-92.
- 30. Wang Y, Yan M, He JG, Zhu YM, Hu XS, Li X, *et al.* A randomized comparison of target-controlled infusion of remifentanil and propofol with desflurane and fentanyl for laryngeal surgery. ORL J Otorhinolaryngol Relat Spec 2011;73:47-52.
- 31. McIntosh C, Dexter F, Epstein RH. The impact of service-specific staffing, case scheduling, turnovers, and first-case starts on anesthesia group and operating room

- productivity: A tutorial using data from an Australian hospital. Anesth Analg 2006;103:1499-516.
- 32. Dexter F, Macario A. Decrease in case duration required to complete an additional case during regularly scheduled hours in an operating room suite: A computer simulation study. Anesth Analg 1999;88:72-6.
- 33. Masursky D, Dexter F, Kwakye MO, Smallman B. Measure to quantify the influence of time from end of surgery to tracheal extubation on operating room workflow. Anesth Analg 2012;115:402-6.
- 34. Epstein RH, Dexter F, Brull SJ. Cohort study of cases with prolonged tracheal extubation times to examine the relationship with duration of workday. Can J Anaesth 2013;60:1070-6.
- 35. Li F, Gorji R, Tallarico R, Dodds C, Modes K, Mangat S, *et al.* Risk factors for delayed extubation in thoracic and lumbar spine surgery: A retrospective analysis of 135 patients. J Anesth 2014;28:161-6.
- 36. Brody H. The aging brain. Acta Neurol Scand Suppl 1992;137:40-4.
- 37. Yu H, Zhang L, Ma Y, Yu H. Early postoperative recovery in operating room after desflurane anesthesia combined with bispectral index (BIS) monitoring and warming in lengthy abdominal surgery: A randomized controlled study. BMC Anesthesiol 2018;18:110.
- 38. Tercan E, Kotanoglu MS, Yildiz K, Dogru K, Boyaci A. Comparison of recovery properties of desflurane and sevoflurane according to gender differences. Acta Anaesthesiol Scand 2005;49:243-7.
- 39. Vuyk J, Oostwouder CJ, Vletter AA, Burm AG, Bovill JG. Gender differences in the pharmacokinetics of propofol in elderly patients during and after continuous infusion. Br J Anaesth 2001;86:183-8.
- 40. Myles PS, McLeod AD, Hunt JO, Fletcher H. Sex differences in speed of emergence and quality of recovery after anaesthesia: Cohort study. BMJ 2001;322:710-1.
- 41. Hoymork SC, Raeder J. Why do women wake up faster than men from propofol anaesthesia? Br J Anaesth 2005;95:627-33.
- 42. Levitt DG, Schnider TW. Human physiologically based pharmacokinetic model for propofol. BMC Anesthesiol 2005;5:4.
- 43. Punjasawadwong Y, Phongchiewboon A, Bunchungmongkol N. Bispectral index for improving anaesthetic delivery and postoperative recovery. Cochrane Database Syst Rev 2014;(6):CD003843.
- 44. Kleine S, Hofmeister E, Egan K. Multivariable analysis of anesthetic factors associated with time to extubation in dogs. Res Vet Sci 2014;97:592-6.