

▶ 作者/Anthony Tingle ● 譯者/黃國賢

● 審者/黃依歆

The Human-Machine Team Failed Vincennes

取材/2018年7月美國海軍學會月刊(Proceedings, July/2018)

複雜高壓的戰鬥環境中,如何利用科技輔助 人類做出重要的決策至爲關鍵。過往美軍艦 文森斯號組員犯下的慘重代價,提供我們對 人機介面的深度省思。最終,決策者和機器間 的人類連結才是保有軍事優勢的利器。

) 年,美軍艦文森斯號(USS Vin-技與戰力強大的飛彈巡洋艦,一如專業的艦上組 員,艦長亦是一位經歷豐富的戰鬥軍官。然而, 該艦卻於1988年7月3日誤擊一架民航客機,造成 機上256名乘員全數罹難。原本用以增加殺傷力 並提供先進狀況覺知的人機系統,卻在戰鬥壓力 下發生悲劇性失誤。隨著現代戰爭複雜度日益增 加,加上資訊優勢的需求,驅使各軍種更加仰賴 以科技輔助的決策體系,文森斯號事件無疑對科

技與人工決策間之融合提供了獨特視角,它提出 了一項疑問: 為何先進科技與資深人員的組合會 發生致命錯誤?

軍方對於科技的仰賴日益加深。摩爾定律 (Moore's Law)似乎將持續發生,而人工智慧、大 數據與深度學習則必將改變戰鬥決策的模式。1 單憑經驗、直覺及訓練,都已不再足夠。科技躍 進指日可待,無論美國或其敵國都有可能從中取 得優勢。文森斯號事件所帶來的省思,是未來如 何將人類決策者與決策工具進行整合。這起事件

提供了採用與使用科技的經驗教訓,並藉此得知 人類如何解讀資訊、對資訊來源的信任程度—— 尤其是在承受威脅的環境下——以及人機之間的 互動關係。

血染深海

隨著伊朗與伊拉克於1980年代的戰火愈演愈 烈,兩國開始鎖定美國及其他中立國家的船艦,波 斯灣情勢就像水淹羅馬競技場般危險。伊朗在海 上恣意佈放水雷,造成船艦損毀與人員死傷。2伊

朗和伊拉克均擁有匿蹤攻船飛彈,可以貼著海面 飛行數哩之遠。荷莫茲海峽情勢緊繃,小型船艦 「群集」攻擊的威脅未曾間斷。1987年春季,美海 軍於是奉命部署至該海域,設法重新暢通航運通 道,並保護掛著美國國旗的油輪。除了處於這些人 為威脅之下,海軍官兵還得對抗炙熱難耐的高溫, 以及飛掠過海浪的沙塵暴遮擋所有的視線。3

7月3日清晨,文森斯號面對13艘伊朗小型船隻 (瑞典製博格瑪爾[Boghammer]武裝快艇)的火力 攻擊。4 在交火過程中,艦上主要的50機槍發生

故障, 逼得艦長羅哲斯(William C. Rogers III)上 校只能啟用另一挺堪用的機槍,同時下令以時速 30節滿舵全速迴旋。5 正當文森斯號與伊朗武裝 快艇交戰之際,艦上船員偵測到一架不明飛機正 從阿巴斯港(Bandar Abbas)軍民兩用機場起飛, 並朝著文森斯號的方向而來。6

伊朗航空655號班機機長禮薩揚(Mohsen Rezaian)當時並不清楚下方正發生這起衝突事 件,機上搭載的255名乘客與機組人員也不知道 他們正飛往這艘先進的防空巡洋艦。依循交戰 規則,文森斯號曾嘗試多次警告這架不明飛機(發 出「敵機」[bogey]訊號)。艦上目標觀測官回報了 好幾次敵機已「轉換原本飛行路徑、採取攻擊姿 態,同時朝著文森斯號高速下降,並顯示為『詢 答機模式二』(squawking mode II,僅軍用飛機會 使用之詢答機資訊)。17

最後,目標觀測官明顯錯誤回報該機是屬於伊 朗的F-14雄貓式(Tomcat)戰機, 在其飛行高度1萬 3,500呎,距離8哩時,羅哲斯艦長下令發射了兩 枚防空飛彈。接著這架空中巴士A300噴射客機 便遭到飛彈擊中,並自高空如同自由落體般飄落 下來,時間長達1分鐘以上。8 從後續的新聞報導 中得知,飛機殘骸中的許多罹難者身上都還穿著 救生衣。9

關鍵疏失

文森斯號艦上組員犯下代價慘重的錯誤,尤 其是在解讀感測資料的環節,亦即人機介面上。 事後從文森斯號的神盾目標標定系統資訊分析 得知,655號班機遭到追蹤時其實持續處於「爬 升」階段,然而回報給艦長的訊息卻是該不明飛 機正在下降並進入攻擊姿態。這部分應該是所有 誤解感測資訊中最重大的戰術誤失。10 (值得注 意的是事發當時,神盾系統的指管監視器未能顯 示被追蹤飛機的所在高度。11) 陸戰隊上將奎斯 特(George Crist)在該事件的報告中證實了這點, 「儘管影響羅哲斯艦長下達決心的因素眾多,然

最後由〇〇〇(姑隱其名)回報該架飛機正朝軍艦 方向快速下降的訊息至為關鍵。12

另一項重大疏失,在艦上組員當時回報655號 班機的詢答機訊號為軍用機種。13 事後檢視神盾 系統上的數據顯示,該機上所發出的詢答機訊號 為模式三,係屬民航機所用。而這項錯誤的資訊 很可能是影響艦上組員誤判該民航機為敵F-14 戰機的主因。

在激烈的戰況下,更難以辨別民用與軍用飛 機。該艦艦長擁有當時美軍最頂尖的防空科技, 仍無法精準區別何為敵機。在巨大的壓力之下, 他握有的決策資訊卻僅限於特定錯誤的飛行路 徑與高度資訊。他的部屬未能透過目標標定系統 察覺與傳遞正確的資料(要是伊朗刻意發動更多 架次的多重攻擊行動,則戰術決策環境只會變得 更形複雜。)鑑此,該事件能為將來進行決策科技 的研發者提供借鏡。

科技教訓

655號班機擊落事件凸顯出戰鬥環境的混亂情 境,但也揭示了科技應用的教訓,以及在壓力情 況下應如何運用科技。這些教訓使我們對人機決 策的利害面有更深層的體會。

科技應於戰鬥中為決策者創造時間, 而不是單純提供資訊。

時間在戰鬥中至為關鍵。為了保有時間,領導 者願意用空間來交換時間,也願意放棄資源,乃 至將行動向後推延。當然,對時間的認知也非常 重要,而這也必須隨著狀況的不同而改變。

舉例而言,當時這架655號班機的飛行時間共 計7分05秒;羅哲斯上校從知道該機存在到下達 發射飛彈的命令間共有4分鐘。基於多重決策責 任的要求條件下,對可用時間的認知會有所變 化。就本案而言,羅哲斯艦長在交戰期間,尚須 信負另外兩艘軍艦的戰術管制權,分別是美軍艦 蒙哥馬利號巡防艦(USS *Elmer Montgomery*, FF-1082)及賽茲號飛彈巡防艦(USS Sides, FFG-14)。 於此同時,他還準備接手指揮正在接近波斯灣海 域的美軍戰鬥機,而這些都發生在他與多支海上 敵軍作戰的當下。14

現代科技壓縮了戰鬥時的可用時間。武器的精 準度、速度與射程日益精進,不但提高了殺傷力, 也縮短了決策者下達決心的時間。同步增加的還 有感測數據來源的數量與種類,這些來源的範 圍、精確度及通信能力都已大幅提升。

科技必須替指揮官創造時間,消除緊縮所形成 的壓力,同時在正確的時間下,透過合用的格式, 將適當的資訊提供給作戰人員。人類能夠處理的 資訊量有一定限度,然而資訊的蒐集卻不能受到 限制。未來的系統設計必須能夠大量吸收數據, 但也要透過先進的演算法則,將這些數據以人類 能夠理解的方式加以分配。科技能藉由傳遞實用

且可理解的訊息,以產出正確有用的關聯性及預 測,並替作戰人員延長可用的決策時間。

傳遞方法將決定這些資訊流在戰鬥中減少或 放大混亂的程度。人因工程是一門學問,用以理 解人們如何與機器及數據互動,美海軍及其他軍 種有必要將其要素融入系統設計當中。

機器理當協助克服人類的偏見。

人非聖賢,孰能無過,而在壓力之下的認知限 制則變得更為明顯。這些束縛通常會讓人們產生 先入為主或偏執的心態。所謂「確認偏誤」(confirmation bias)現象,亦即人們心中會尋求有利的 證據來支持預先的想法,有可能就是影響文森斯 號艦上官兵的心態。

羅哲斯艦長相信來自空中的威脅迫在眉睫,這 意味著此種確認偏誤的情資有可能已經灌輸於 他的腦中。根據調查結果顯示,羅哲斯艦長「承認 他當時的判斷受到以下因素影響:7月4號所(預 先)發布的情資警訊、近期F-14戰機部署於阿巴斯 港機場、先前相關報告指出伊朗F-14戰機採用詢 答機模式二……以及當時他正經歷的海上交戰狀 態。」15 一旦敵對狀態形成,艦上組員就有可能會 開始尋找相關證據,以證實該不明飛機正是飛來 支援攻擊武裝快艇的戰機。

同樣地,透過被情緒影響的「框架偏誤」(framing bias),人類的認知會傾向扭曲風險評估,阴礙 了客觀的決策過程。有別於所有可能的結果都指 向有利的情況,當所有可能的結果都指向有害, 決策者在有潛在損失可能性的情況中,往往傾向 假設更多風險的存在。16 就文森斯號的狀況而

言,框架偏誤恐怕已經影響到 攻擊該飛機的決心。事件發生 當下,美海軍早已決意不要「承 受第一擊」,以免重蹈一年前 發生於美軍艦史塔克號飛彈巡 防艦(USS Stark, FFG-31)的覆 轍。17 史塔克號當年是被伊拉 克F1幻象戰機所發射的兩枚飛 魚(Exocet)空對面飛彈擊中,造 成37名官兵殉職。為了避免重 演當年事件,此種想法有可能 已經影響了艦上官兵的情緒狀 態,並造成羅哲斯欲先發制人 的行為,這不但改變了他對於涉 入風險的認知,也妨礙了他合 理判斷風險的能力。

由於諸如此類的偏見,在諸 多重要變動因素交雜的環境 中,人類的心智無法透過數理 精算做出理想的決策,而將戰 鬥決心完全交付機器並非人們

所望,但是最糟情況卻可能導致災難性的後果。 機器確實有助於某些可以進行統計的風險,精準 地評估後果。只要機器評估的結果能夠為人理 解,決策者便可以運用這些結果,在戰鬥決策上 增進他們的直觀能力、軍事素養及經驗。

根據文森斯號防空作戰官所述,他在毫不自知 的情況下向艦長錯誤回報655號班機資訊,「數 據對我而言並不具任何意義,因為我對他人回報 我的想法……我知道我所操作的這部機器是可

2016年10月,美軍艦尼采號飛彈驅 逐艦(USS Nitze, DDG-94)遭到胡塞 反叛軍攻擊,該艦當時並未成功偵 測到來襲飛彈。據報導,該艦的神盾 系統並未正確設定,因而引發人機 介面的新問題。(Source: USN/Steve Smith)

人類或許會信任機器,但 人還是相信人多一些。

靠的……當系統回報該機距離 船艦很近、高度正在下降,且 正在加速接近時,我沒有理由 質疑。」18 時任美國參謀首長聯 席會議主席的克洛(William J. Crowe)上將證實決策者對於人 為因素的依賴:「這些軍官信賴 戰鬥團隊提供的資訊不僅合乎 情理,而目在高壓的環境中有 其絕對必要性。」19 機器與決策 者之間的聯繫必須透過人與人 之間的連結。

信任機器的動態過程相當複 雜,而人們信任科技的程度取 決於對風險的了解。那些在工作 上和機器密切相關的人必須信 任科技,但也必須了解機器錯 綜複雜的作業過程、演算方式, 以及彼此間的關聯及其限制。 複雜的數據系統採用最新的數 據科學形式,搭配獨特的統計

推演技術;此種持續攀升的複雜度本身需要更多 的技術專業與訓練。20

但採用先進分析科技必須從現在開始。美海軍 部門必須儘早從學校教育中找出具備數據科學 專業的軍士官,並培育他們因應該項挑戰。還有, 先進數據科技必須現在就應用於模擬、兵棋推演 及實際情況上。此外,美海軍部門應當持續選派 軍事人員,讓他們有機會和谷歌或亞馬遜等業界 領導人--同參訓,期能將商用尖端科技應用於解 決軍事問題,並且推廣相關計畫。 為了能於未來獲致軍事優勢,美 軍必須透過教育、實務及對先進 科技的深入了解來建立對機器的 信任。

人類連結

文森斯號的艦長是站不住腳 的。敵對環境中摻雜民航機的起 降,加上艦上官兵沒有承受第一 擊的意願,這艘時下最先進的飛 彈巡洋艦,在人為因素的失敗下, 終究未能防止悲劇的發生。

美海軍及其他軍種均仰賴科技 來維持軍事優勢。但是在戰鬥決 策者和機器之間的人類連結才是 保有該資訊優勢的關鍵。美海軍 從文森斯號和伊朗航空655號班 機事件中所得的經驗,與未來人 機系統發展息息相關,而這將決 定未來美國的海上優勢。

作者簡介

Anthony Tingle中校係美國聯合部隊太空司 令部戰略、政策及準則組組長。他擁有喬治 梅森大學(George Mason University)公共政 策博士學位[,]同時取得科羅拉多大學科羅 拉多泉分校工程碩士、工商管理碩士,以及 西點軍校系統工程學士學位。他為美國國 防部撰寫有關研發與科技應用的文章。

Reprint from Proceedings with permission.

註釋

- 1. Aaron Pressman, "Intel Keeps Insisting Moore's Law Isn't Dead," Forbes, 28 March 2017, fortune.com/2017/03/28/intel-keeps-insistingmoores-law-isnt-dead; Peter Singer, Wired for War: The Robotics Revolution and Conflict in the 21st Century, (New York: Penguin, 2009).
- 2. ADM William Crowe, USN, declassified letter to U.S. Secretary of Defense, "Formal Investigation into the Circumstances Surrounding the Downing of Iran Air Flight 655 on 3 July 1988."
- 3. Will C. Rogers and Gene Gregston, Storm Center: The USS Vincennes and Iran Air Flight 655: A Personal Account of Tragedy and Terrorism (Annapolis, MD: Naval Institute Press, 1992).
- Crowe, "Letter to SecDef."
- 5. Gen. George D. Crist, USMC, declassified letter to U.S. Secretary of Defense, "Formal Investigation into the Circumstances Surrounding the Downing of Iran Air Flight 655 on 3 July 1988 (U)."
- 6. RADM William M. Fogarty, USN, declassified report to the Commander in Chief, U.S. Central Command, "Formal Investigation into the Circumstances Surrounding the Downing of a Commercial Airliner by the USS Vincennes (CG49) on 3 July 1988 (U)."
- Crist, "Letter to SecDef," 5.
- 8. Based on Aegis recording data reported in Fogarty Report, 57.
- GEN Hugh Shelton, USA, Ronald Levinson, and Malcolm McConnell, Without Hesitation: The Odyssey of an American Warrior (New York: Macmillan 2010), 194.
- 10. R. N. Roux, and Jan H. van Vuuren. "Real-Time Threat Evaluation in a Ground Based Air Defence Environment." ORiON 24, no. 1 (2008), 75-101.
- 11. Fogarty Report.
- 12. Crist, "Letter to SecDef," 5.
- 13. Fogarty Report.
- 14. Crist, "Letter to SecDef," 2-3.
- 15. Ibid., 5.
- 16. John Maule and Gaelle Villejoubert, "What Lies Beneath: Reframing Framing Effects," Thinking & Reasoning 13, no.1 (2007), 25-44.
- 17. Fogarty Report, P.21.
- 18. Crist, "Letter to SecDef," 3.
- 19. Crowe, "Letter to SecDef," 6.
- 20. Amir Gandomi and Murtaza Haider, "Beyond the Hype: Big Data Concept, Methods, and Analytics," International Journal of Information Management 35, no.2 (2015), 137-44.