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Abstract 

The transverse vibration of a translating roller-follower cam due to the flexible follower rod is investigated. 

The theory of envelopes is applied to determine the cam profile. Cycloidal profile is used to design the 

rise-dwell-fall-dwell (RDFD) motion of the follower. The follower is modeled as a Rayleigh beam. The 

rigid-body translation is coupled with the flexible deformation and thus causes the study to become a moving 

boundary problem. Since the transverse deflection of the follower is considered, the contact position of the 

roller and the cam is an unknown which cannot be determined only with kinematics analysis. The unknown 

position will be substituted into the dynamics modeling with considering the geometric constraints. Applying 

the assumed mode method and Hamilton’s principle, the governing equations of motion are derived to be 

non-linear differential-algebraic equations. The system vibration responses for the RDFD motion are obtained 

using Runge-Kutta method. Then, the influences of system parameters are investigated. 

Keywords: cam, roller-follower, cycloidal profile, translating, transverse vibration, RDFD 

摘要 

本文研究撓性從動桿所造成的平移式滾子從動件凸輪的側向振動。以包絡線理論決定一凸輪輪廓，

以擺線輪廓設計從動件做指定的上昇-停滯-下降-停滯運動，從動件模擬為雷利樑。剛體位移與撓性變

形耦合，使本研究成為一變邊界問題。由於考慮從動件的側向撓度，滾子與凸輪的接觸點為一未知，

無法僅由運動學分析決定。以幾何限制的方式，將此未知位置代入動力模擬。使用假設模態法與漢彌

頓原理，導出統御運動方程式，此方程式為非線性的微分代數方程式。以阮奇-庫達法求解系統振動響

應，並進行系統參數影響的研究。 

 

關鍵字：凸輪，滾子從動件，擺線輪廓，平移式，側向振動，上昇-停滯-下降-停滯 
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1. INTRODUCTION 

The design and the analysis of cam mechanisms 

have been introduced and discussed extensively 

[1-3]. A cam is a common mechanism element that 

drives a mating component known as a follower. The 

unique feature of a cam is that it can impart a very 

distinct motion to its follower. Since the motion of a 

cam can be prescribed, it is well suited for 

applications where distinct displacements and timing 

are paramount. Cams are found in almost all 

machines, e.g. machine tools, internal-combustion 

engines, computers, and instruments.  

A considerable amount of work on the study of 

cams has been reported. The great majority of 

researchers paid attention to the design of cams 

using kinematics analysis [4-7]. Some researchers 

investigated the dynamics of cams. In the dynamic 

analysis of cam mechanisms, two different 

mathematical models are used. One is a discrete 

system which has finite degrees of freedom. The 

other is an elastic system which has infinite degrees 

of freedom. Mathematical model with infinite 

degrees of freedom is fitted to physical model. In the 

dynamic analysis of a cam mechanism, especially 

under a high rotation speed of a cam, this model can 

be used to solve the vibrations of a cam mechanism 

more exactly. However, only a few researchers took 

the infinite degrees of freedom into consideration. 

Followers driven by high-speed, dwell-type, 

rotating disk cams can exhibit undesirable residual 

vibrations during dwell. Felszeghy [8] studied a cam 

with a translating roller follower. He idealized the 

follower structure as a single degree-of-freedom, 

spring-mass-dashpot, linear system. These residual 

vibrations were obtained with closed-form solutions 

to the steady-state vibrations obtained with a circular 

convolution integral. The steady-state vibrations, 

which can extend over the entire cam cycle, were 

periodic and continuous. Pasin [9] studied a valve 

control mechanism of internal combustion engines. 

The longitudinal vibrations of the moving rod were 

neglected, and the rod was loaded by a variable axial 

force. The equation of bending vibrations of this rod 

was obtained using the classical bending theory and 

d’Alembert’s principle. Then the partial differential 

equation with variable coefficients was reduced to a 

system of ordinary differential equations of second 

order with periodic coefficients using Galerkin 

method. The stability of the rod and consequently of 

the cam mechanism was investigated according to 

the parameters of speed and stroke. Fabien, Brian [10] 

presented a new approach to designing dwell-rise-dwell 

profiles for cam follower systems. The cam profiles are 

designed such that perturbations in the system parameters 

have a reduced influence on the dynamic response. This is 

accomplished by minimizing the parameter sensitivity of 

output mass motion. Followers driven by high-speed, 

dwell-type, rotating disk cams can exhibit undesirable 

residual vibrations during dwell. Yilmaz and Kocabas 

[11] studied the longitudinal vibrations of a follower 

which is the linear active component of a cam 

mechanism. The basic Bernoulli method was applied 

to solve the partial differential equation which was 

supplied by taking the viscous damping factor into 

consideration. Felszeghy [12] studied a cam with a 

translating roller follower. He idealized the follower 

structure as a single degree-of-freedom, 

spring-mass-dashpot, linear system. These residual 

vibrations were obtained with closed-form solutions to the 

steady-state vibrations obtained with a circular 

convolution integral. The steady-state vibrations, which 

can extend over the entire cam cycle, were periodic and 

continuous. Wang and Jiang [13] studied the cam 

mechanism which was developed on the equivalent 

concept and the method of lumped masses in dynamic 

modeling of cam mechanisms. The method of using 

double lumped equivalent masses located in two ends of a 

component to substitute the mass of it in modeling was 

put out and proved to be true. The proposed improved the 

accuracy of the dynamic model of cam mechanisms. 

In this paper, a disk cam with a translating 

follower is studied. The follower rod is taken to be 

flexible. The rod pinned with a roller which is 

restrained with a rigid rotating cam groove. Since 

the follower is flexible, the contact point of the roller 

and the cam is an unknown though it locates at the 

cam profile. Two geometric constraints are 

established and added to the Hamilton’s principle 

with Lagrange multipliers. The transverse deflection 

of the follower is expanded with the assumed mode 

method in which the mode is time-dependent since 

the follower is driven to lengthen or shorten when 

the cam is rotating. The vibration response of the 

follower is obtained from the derived 

differential-algebraic equation by applying the 

Runge-Kutta integration method. 

 

2. DERIVATION OF GOVERING 

EQUATIONS 

A disk cam with a translating roller follower is 

shown in Fig. 1. The cam is assumed to be rigid. The 

roller follower consists of a follower rod that has a 

http://sdos.ejournal.ascc.net/cgi-bin/search.pl/GetSearchResults?Any=&Title=&Abstract=&Author=Fabien%2C%20Brian%20C.&JournalTitle=&Past=No+Restriction...&Since=&Start=1&Max=10
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separate part, the roller, which is pinned to the 

follower stem. The follower rod is considered to be 

flexible and described by using Rayleigh beam 

theory. Since the roller moves in groove, the roller 

maintains contact with the cam and rolls on the cam 

surface as the cam rotates. The rigid-body motions 

and the flexible vibrations are restrained by the 

contact constraints. 

The kinetic energy and strain energy of the 

follower, the kinetic energy of the roller, and the 

work done by the constraint forces are formulated 

first. The follower deflections are expanded using 

the assumed mode method. Then, the governing 

equations of the flexible follower rod are derived by 

employing Hamilton’s principle.  

 

2.1 The cam profile for RDFD case 
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Fig. 1 Schematic of a translating roller-follower cam. 

The schematic of a cam mechanism is shown in 

Fig. 1. The displacement function of the follower rod 

when the cam rotates an angle   is denoted as 

)(S . The rise-dwell-fall-dwell (RDFD) motion 

studied in this paper is described in Fig. 2. The cam 

profile is considered with rise and fall motions of 

cycloidal displacement (sinusoidal acceleration). The 

displacement function )(S  for the rise segment is 

given with the following function: (Chen [2]) 
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where   is the period of the rise segment and TS  

is the total lift magnitude. In this study,   is set to 

be 
2


. The above motion is used for the rise portion 

of the cam. The rise function is applicable to the fall 

with slight modification. To convert rise function to 

fall function, it is only necessary to subtract the rise 

displacement function )(S  from the maximum lift 

TS . The period of the fall segment is also set to be 
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Fig. 2 The rise-dwell-fall-dwell (RDFD) motion. 

Using the theory of envelopes, one can 

determine the cam profile. The profile coordinates 

( CC yx 11 , ) are derived as (refer to Fig. 1) 
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in which br  is the base-circle radius of the cam, 

and rr  is the roller radius. 

And the coordinates of the roller center E are  
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A rotating frame 111 yxO   fixed on the cam 

which rotates with a constant angular speed   is 
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shown in Fig. 3. A fixed frame xyO 2  is also 

used and its unit coordinate vectors are denoted as 
T},{ ji . The xO2  axis coincides with the 

centerline of the undeformed rod. The flexible 

follower undergoes a transverse deflection, ),( txv . 

The end point E moves to be E  after deformation. 

The transverse deflection at the end point E are 

denoted as Ev , i.e., ),( tlvvE  . A fixed frame 

XYO 1  is also used. The fixed coordinates for 

the points C  and E are   
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     (5) 

 From the geometric relationship as shown in 

Fig. 3, two constraint equations for the point E are 

derived as 

01  EE vX                  (6) 

02  dxY EE               (7) 

It is seen that the rigid-body motion and the 

flexible vibration are coupled under the geometric 

constraints. 
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Fig. 3 Deformed configuration of the cam 

mechanism 

 

2.2 The kinetic energy and strain energy of 

the system 

2.2.1 The kinetic energy and strain energy of the 

rod 

An arbitrary point P on a cross-section of the 

follower rod is deformed to be the point P , shown 

in Fig. 3. The position vector PR  can be expressed 

as 

jiR )()( , vyvyx xP             (8) 

where the subscript means to take partial derivative 

with respect to x . 

The velocity of the point P  is derived as 
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  ][ ,              (9) 

where the dot symbol means to take derivative with 

respect to time t.  

The kinetic energy rodT  of the rod can be 

expressed as  
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where   denotes the mass density of the rod. A  

is cross-sectional area of the rod. I  is the area 

moment of inertia of the rod cross-section. It is 

known form Eq. (10) that the kinetic energy of the 

rod contains the rigid-body and flexible translational 

and rotational energies. 

Applying the strain-stress relationship of 

Hooke’s law, one has the strain energy rodU  of the 

rod as follows, 
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where E  denotes Young’s modulus of beam 

material. 

 

2.2.2 The kinetic energy of the roller 

The kinetic energy of the roller including the 
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translational and rotational energies is derived as 
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where rm  and rJ  are the mass and the polar mass 

moment of inertia of the roller, respectively. 

 

2.3 Assumed mode method  

One end of the follower rod is restrained with a 

rigid cylinder and the other end is connected to the 

roller.  For satisfying the boundary condition at the 

rigid cylinder end, one can expand the deflections by 

applying assumed mode method as follows, 

 

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N

i

i
i txtbttxv
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)()()),((             (13) 

where ix  is the mode shape which is dependent on 

time since the follower is driven by the cam to 

lengthen or shorten. )(tbi is the associated 

amplitudes for the transverse deflection. Though the 

polynomial expansion is a simple assumed mode 

method, it can easily formulate the moving boundary 

problem.  

 

2.4 Hamilton’s principle  

Applying Hamilton’s principle for the whole 

system, one has the variation equation 

0)( 2211

2

1

 dtUTT rodrollerrod

t

t
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where rodT  and rollerT  are the kinetic energy of the 

follower rod and the roller, respectively. rodU  is the 

strain energy of the follower rod. 11  and 22  

are the works done by the constraint forces.  

Substituting equation (13) into Hamilton’s 

principle (14), one can obtain the system equation of 

motion. The equation is expressed as 

    0λΦQQNQQM Q  T ,         (15) 

where M , N ,and λ  are mass matrix, nonlinear 

vector, and Lagrange multiplier, respectively. It is 

noted that the mass matrix is time-dependent. Q  is 

the generalized coordinates vector and expressed as 

].[ 21 EN xbbb Q     (16) 

The two constraints as expressed in equations (6) 

and (7) are combined as the following form 

    0QΦ  T
21              (17) 

Differentiating equation (17) with respect to time, 

one has the constraint velocity equation 

0QΦQ 
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Then differentiating equation (18) with respect 

to time, one has the constraint acceleration equation 
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Combining the nonlinear ordinary differential 

equation (15) and the constraint acceleration 

equation (19), one obtains the following expression 
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The above equation is the differential-algebraic 

equation which governs the vibration of the 

translating roller-follower cam mechanism. 

 

3. SIMPLIFICATION OF DAE 

Using the partitioning method [14], the 

generalized coordinate vector is partitioned as 

 qpQ                         (21) 

where 

],[ 21 Nbbb p              (22) 

][ Exq                      (23) 

Then, equation (20) can be rewritten as 
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Eliminating λ  and q  from the above equation, 

one has the simplified second order nonlinear 

ordinary differential equation in independent 

generalized coordinate p  as 

    0,ˆˆ  ppNppM                (25) 

where  
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Let  ppZ      be the state variable vector, one 

can rewrite (25) in terms of Z as 


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
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
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Applying the Runge-Kutta integration method to 

solve equation (27), one can obtain the vibration 

response of the follower. 

4. NUMERICAL RESULTS AND 

DISCUSSIONS 

An example is studied to investigate the 

vibration of the translating roller-follower cam for 

RDFD case. Since the follower is flexible, the 

contact point of the roller and the cam is an 

unknown point though it locates at the cam profile. 

The vibration response at the end point of the 

follower in the transverse direction is studied to 

show that the contact position between the cam and 

the roller of the flexible rod is different from that 

under the assumption of the rigid follower rod.  

The cycloidal displacement motion is applied to 

model the rise and fall displacement curve. The 

period of the rise and fall segment   is set to be 

2


. The total rise TS  is set to 15 mm. The cross 

section of the follower rod is a circle with radius of 

mm5fr . The associated cross-sectional area and 

area inertia are 2mm54.78A  and 

4mm87.490I . The elastic modulus and the 

density of the follower rod are 
28 skg/mm101.2 E  and 36 kg/mm108.7  . 

The distance from the lower end of the rigid cylinder 

and the rotation center of the cam is mm112d . 

The base-circle radius of the cam is mm26br . 

The radius, mass, and mass polar moment of inertia 

of the roller are mm5rr , and kg05.0rm , 

respectively. 

The time step is set to be 310
2 



 s. The 

initial conditions are given as zero. To check the 

numerical convergence, three different mode 

numbers 4,3,2N are applied to obtain the 

vibration responses for  240 rad/s . Figure 4 

shows the transverse vibration response at the end 

point E  of the follower. It is seen that the 

responses curves with 3N  and 4N  almost 

coincide. This implies that the numerical results for 

the studied case nearly converge with 3N . In the 

following numerical study, the assumed mode 

method with 3N  is used. 

 The follower vibration with different rotation 

speed of cam is analyzed. The rotation speeds are 

 120, 240, 360 rad/s , respectively. Figure 5 

shows the transverse vibration response at the end 

point E . It is shown that the transverse response is 

more significant for higher cam rotation speed 

especially in the rise and fall intervals. The high 

frequency oscillation occurs. Even in the dwell 

interval the follower still oscillates. For high rotation 

speed of cam, the responses during the dwell interval 

are obviously larger than those for low rotation 

speed of cam. Thus, the deflections during the dwell 

interval for high rotation speed of cam are of 

significance to a certain extent. 

 The effect of the distance, d, from the lower 

end of the rigid cylinder and the rotation center of 

the cam on the vibration is studied. Three distances, 

102, 112 and 122 mm  are used. The vibraion 

results are shown in Fig. 6. The maximum response 

amplitudes are all higher for larger distance d. This 

may be explained that larger distance d combined 

with a longer follower rod makes lower stiffness of 

the rod to bring about larger response. It is also 

found that the distance influences the phase of the 

response. The follower cross-sectional radius effect 

is also studied. The vibration responses with three 

cross-sectional radii of the follower rod, 3, 5 and 7 

mm , are compared in Fig. 7. It is seen that the 

vibration responses are larger for the smaller 

cross-sectional radius of the follower rod. This may 
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also be explained that smaller cross-sectional radius 

of follower rod makes lower stiffness of the rod.  

The responses of the follower for three different 

cam base-circle radii are investigated. The results are 

shown in Fig. 8. It is found that the transverse 

response is larger for the smaller cam base-circle 

radius. Since the distance d remains the same for the 

three cam base-circle radii, the follower is relatively 

longer for the smaller cam base-circle radius and the 

vibration is more significant. Three different total 

rises are also studied. They are 8TS , 15 and 22 

mm. It is seen from Fig. 9 that larger total rise 

induces larger vibration response. 

 

5. CONCLUSIONS 

The equations of motion for the vibration of a 

translating roller-follower cam for RDFD case are 

derived by using Hamilton’s principle and the 

assumed mode method. The flexibility of the 

follower rod is considered and modeled as a 

Rayleigh beam. The roller motion is restrained in the 

cam groove under the follower deflections. Thus, 

two geometric constraints are formulated to be 

added to the Hamilton’s principle with Lagrange 

multipliers. The numerical results for the studied 

cases show that the transverse vibration response of 

the follower is large for high rotation speed of cam. 

Even during the dwell interval, the follower vibrates 

to some extent especially for high rotation speed of 

cam. The follower rod with larger length or smaller 

cross-sectional radius induces larger response 

amplitude of the follower. The smaller cam 

base-circle radius or the larger total rise also brings 

about larger response amplitude. 
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Fig. 4 The transverse vibration response at the end 

point E  with different mode number for 
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240 rad/s . 
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Fig. 5 The transverse vibration response at the end 

point E  with different rotation speed  . 
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Fig. 6 The transverse vibration response at the end 

point E  with different distance d. 
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Fig. 7 The transverse vibration response at the end 

point E  with different follower cross-sectional 

radius fr . 
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Fig. 8 The transverse vibration response at the end 

point E  with different cam base-circle radius br . 
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Fig. 9 The transverse vibration response at the end 

point E  with different total rise TS . 

 

 

 

 

 


