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Transverse Vibration Analysis of a Translating Roller-Follower Cam
Using Cycloidal Profile for RDFD Motion
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Abstract

The transverse vibration of a translating roller-follower cam due to the flexible follower rod is investigated.
The theory of envelopes is applied to determine the cam profile. Cycloidal profile is used to design the
rise-dwell-fall-dwell (RDFD) motion of the follower. The follower is modeled as a Rayleigh beam. The
rigid-body translation is coupled with the flexible deformation and thus causes the study to become a moving
boundary problem. Since the transverse deflection of the follower is considered, the contact position of the
roller and the cam is an unknown which cannot be determined only with kinematics analysis. The unknown
position will be substituted into the dynamics modeling with considering the geometric constraints. Applying
the assumed mode method and Hamilton’s principle, the governing equations of motion are derived to be
non-linear differential-algebraic equations. The system vibration responses for the RDFD motion are obtained
using Runge-Kutta method. Then, the influences of system parameters are investigated.
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1. INTRODUCTION

The design and the analysis of cam mechanisms
have been introduced and discussed extensively
[1-3]. A cam is a common mechanism element that
drives a mating component known as a follower. The
unique feature of a cam is that it can impart a very
distinct motion to its follower. Since the motion of a
cam can be prescribed, it is well suited for
applications where distinct displacements and timing
are paramount. Cams are found in almost all
machines, e.g. machine tools, internal-combustion
engines, computers, and instruments.

A considerable amount of work on the study of
cams has been reported. The great majority of
researchers paid attention to the design of cams
using kinematics analysis [4-7]. Some researchers
investigated the dynamics of cams. In the dynamic
analysis of cam mechanisms, two different
mathematical models are used. One is a discrete
system which has finite degrees of freedom. The
other is an elastic system which has infinite degrees
of freedom. Mathematical model with infinite
degrees of freedom is fitted to physical model. In the
dynamic analysis of a cam mechanism, especially
under a high rotation speed of a cam, this model can
be used to solve the vibrations of a cam mechanism
more exactly. However, only a few researchers took
the infinite degrees of freedom into consideration.

Followers driven by high-speed, dwell-type,
rotating disk cams can exhibit undesirable residual
vibrations during dwell. Felszeghy [8] studied a cam
with a translating roller follower. He idealized the
follower structure as a single degree-of-freedom,
spring-mass-dashpot, linear system. These residual
vibrations were obtained with closed-form solutions
to the steady-state vibrations obtained with a circular
convolution integral. The steady-state vibrations,
which can extend over the entire cam cycle, were
periodic and continuous. Pasin [9] studied a valve
control mechanism of internal combustion engines.
The longitudinal vibrations of the moving rod were
neglected, and the rod was loaded by a variable axial
force. The equation of bending vibrations of this rod
was obtained using the classical bending theory and
d’Alembert’s principle. Then the partial differential
equation with variable coefficients was reduced to a
system of ordinary differential equations of second
order with periodic coefficients using Galerkin
method. The stability of the rod and consequently of
the cam mechanism was investigated according to
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the parameters of speed and stroke. Fabien, Brian [10]
presented a new approach to designing dwell-rise-dwell
profiles for cam follower systems. The cam profiles are
designed such that perturbations in the system parameters
have a reduced influence on the dynamic response. This is
accomplished by minimizing the parameter sensitivity of
output mass motion. Followers driven by high-speed,
dwell-type, rotating disk cams can exhibit undesirable
residual vibrations during dwell. Yilmaz and Kocabas
[11] studied the longitudinal vibrations of a follower
which is the linear active component of a cam
mechanism. The basic Bernoulli method was applied
to solve the partial differential equation which was
supplied by taking the viscous damping factor into
consideration. Felszeghy [12] studied a cam with a
translating roller follower. He idealized the follower
structure as a single degree-of-freedom,
spring-mass-dashpot, linear system. These residual
vibrations were obtained with closed-form solutions to the
steady-state  vibrations obtained with a circular
convolution integral. The steady-state vibrations, which
can extend over the entire cam cycle, were periodic and
continuous. Wang and Jiang [13] studied the cam
mechanism which was developed on the equivalent
concept and the method of lumped masses in dynamic
modeling of cam mechanisms. The method of using
double lumped equivalent masses located in two ends of a
component to substitute the mass of it in modeling was
put out and proved to be true. The proposed improved the
accuracy of the dynamic model of cam mechanisms.

In this paper, a disk cam with a translating
follower is studied. The follower rod is taken to be
flexible. The rod pinned with a roller which is
restrained with a rigid rotating cam groove. Since
the follower is flexible, the contact point of the roller
and the cam is an unknown though it locates at the
cam profile. Two geometric constraints are
established and added to the Hamilton’s principle
with Lagrange multipliers. The transverse deflection
of the follower is expanded with the assumed mode
method in which the mode is time-dependent since
the follower is driven to lengthen or shorten when
the cam is rotating. The vibration response of the
follower is obtained from the derived
differential-algebraic equation by applying the
Runge-Kutta integration method.

2. DERIVATION
EQUATIONS

OF GOVERING

A disk cam with a translating roller follower is
shown in Fig. 1. The cam is assumed to be rigid. The
roller follower consists of a follower rod that has a
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separate part, the roller, which is pinned to the
follower stem. The follower rod is considered to be
flexible and described by using Rayleigh beam
theory. Since the roller moves in groove, the roller
maintains contact with the cam and rolls on the cam
surface as the cam rotates. The rigid-body motions
and the flexible vibrations are restrained by the
contact constraints.

The kinetic energy and strain energy of the
follower, the kinetic energy of the roller, and the
work done by the constraint forces are formulated
first. The follower deflections are expanded using
the assumed mode method. Then, the governing
equations of the flexible follower rod are derived by
employing Hamilton’s principle.

2.1 The cam profile for RDFD case

Rigid cylinder

<«— Follower

Initial position

Roller

Fig. 1 Schematic of a translating roller-follower cam.

The schematic of a cam mechanism is shown in
Fig. 1. The displacement function of the follower rod
when the cam rotates an angle @ is denoted as
S(@) . The rise-dwell-fall-dwell (RDFD) motion
studied in this paper is described in Fig. 2. The cam
profile is considered with rise and fall motions of
cycloidal displacement (sinusoidal acceleration). The
displacement function S(&) for the rise segment is

given with the following function: (Chen [2])

0<0<p: S()= Sﬂ%—%sin(%)] (1)

where S is the period of the rise segment and S;
is the total lift magnitude. In this study, /g is setto

117

be % . The above motion is used for the rise portion

of the cam. The rise function is applicable to the fall
with slight modification. To convert rise function to
fall function, it is only necessary to subtract the rise
displacement function S(8) from the maximum lift

S;. The period of the fall segment is also set to be

z
>

dwell

S(6)

Fig. 2 The rise-dwell-fall-dwell (RDFD) motion.

Using the theory of envelopes, one can
determine the cam profile. The profile coordinates
(X, Yic ) are derived as (refer to Fig. 1)

Xic :rcose—%,
P+
Q . 2)
Yic =rsin@+ (x—rcoséd)—.
where
r=r,+r, +S(9),
P=rsin& - S'(0)coso, ©)

Q=rcosf—-S'(0)sin 6.

in which 1, is the base-circle radius of the cam,
and r, isthe roller radius.

And the coordinates of the roller center E are

X,g =TI C0Sé,
Yie =rsiné.

(4)

A rotating frame O, —xy, fixed on the cam
which rotates with a constant angular speed Q is
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shown in Fig. 3. A fixed frame O,—xy is also
used and its unit coordinate vectors are denoted as
{i,j} . The O,x axis coincides with the

centerline of the undeformed rod. The flexible
follower undergoes a transverse deflection, v(x,t).

The end point E moves to be E' after deformation.
The transverse deflection at the end point E are
denoted as vg, i.e., vg=v(l,t). A fixed frame

O, — XY is also used. The fixed coordinates for
the points C and E are

X¢ =¥ SInQt -y, cosOt,
Y = X,c COSQt + Y, sin Qt, 5)

X =X SinQt — y;c cosOt,
Ye = X COSQt + Yy, Sin Ot.

From the geometric relationship as shown in
Fig. 3, two constraint equations for the point E are
derived as

D, =Xg—-vg =0
D, =Y +xz—-d=0

(6)
()
It is seen that the rigid-body motion and the

flexible vibration are coupled under the geometric
constraints.

Fig. 3 Deformed configuration of the cam
mechanism
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2.2 The kinetic energy and strain energy of
the system

2.2.1 The kinetic energy and strain energy of the
rod

An arbitrary point P on a cross-section of the
follower rod is deformed to be the point P, shown
in Fig. 3. The position vector R, can be expressed

as
(8)

where the subscript means to take partial derivative
with respectto x.

Re = (X=yv,)i+(y +V)j

The velocity of the point P’ is derived as

Rp =[X—yv,Ji +Vj

(9)

where the dot symbol means to take derivative with
respect to time t.

The kinetic energy T, of the rod can be
expressed as

Trod = %'QJ. ,OR P R P’ dv (10)

1% .9 .2 1% .2
E.[o PAX® +V )dX+EJ.O plv; dx

where p denotes the mass density of the rod. A
is cross-sectional area of the rod. | is the area
moment of inertia of the rod cross-section. It is
known form Eq. (10) that the kinetic energy of the
rod contains the rigid-body and flexible translational
and rotational energies.

Applying the strain-stress

Hooke’s law, one has the strain energy U

relationship  of
of the

rod
rod as follows,
U :1”' E(-yv )2dV=1_[XEE|v2 dx (11)
rod 2 ! XX 2Jo XX

where
material.

E denotes Young’s modulus of beam

2.2.2 The kinetic energy of the roller

The kinetic energy of the roller including the
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translational and rotational energies is derived as

1
:Emr

) ) 1
REV‘REV+2

T J, 67

roller

zgmAXE2+Y;) (12)

1J . : . .
+__£[(Xc - Xg)?+ (Y —Ye)?]
2,
where m, and J, are the mass and the polar mass
moment of inertia of the roller, respectively.

2.3 Assumed mode method

One end of the follower rod is restrained with a
rigid cylinder and the other end is connected to the
roller. For satisfying the boundary condition at the
rigid cylinder end, one can expand the deflections by
applying assumed mode method as follows,

v(x(®),t) = Zbi ®x()’ (13)

where x' is the mode shape which is dependent on
time since the follower is driven by the cam to
lengthen or shorten. b(t) is the associated

amplitudes for the transverse deflection. Though the
polynomial expansion is a simple assumed mode
method, it can easily formulate the moving boundary
problem.

2.4 Hamilton’s principle

Applying Hamilton’s principle for the whole
system, one has the variation equation

t,
'L 5(Trod +Troller _Urod + A:I.q)l +ﬂ,2®2 )dt =0 (14)

where T,,4 and T, are the Kinetic energy of the
follower rod and the roller, respectively. U, is the
strain energy of the follower rod. 4,®, and 4,0,

are the works done by the constraint forces.

Substituting equation (13) into Hamilton’s
principle (14), one can obtain the system equation of
motion. The equation is expressed as

M(Q)2+N(Q, Q)+ ®Lr=0 (15)

where M, N,and A are mass matrix, nonlinear
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vector, and Lagrange multiplier, respectively. It is
noted that the mass matrix is time-dependent. Q is
the generalized coordinates vector and expressed as

Q = [b1 bz

The two constraints as expressed in equations (6)
and (7) are combined as the following form

(I)(Q): [CDl q)z]T: 0

Differentiating equation (17) with respect to time,
one has the constraint velocity equation

by X 6.  (16)

(17)

@ _y

®,Q+ - (18)

Then differentiating equation (18) with respect
to time, one has the constraint acceleration equation

o O\ 8®Q. 8%d
(I)QQ__((DQQ)QQ_ZFQ_ i (19)

Combining the nonlinear ordinary differential
equation (15) and the constraint acceleration
equation (19), one obtains the following expression

T
M @,

o SRR e

The above equation is the differential-algebraic
equation which governs the vibration of the
translating roller-follower cam mechanism.

3. SIMPLIFICATION OF DAE

Using the partitioning method [14], the
generalized coordinate vector is partitioned as
Q=[p d] (21)
where
p=[b, b, by 1, (22)
a=[xg 4] (23)
Then, equation (20) can be rewritten as
MPPB + M PG + @b =-NP
MPp + MG + @ =-N* (24)

®p+P,G=n
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Eliminating A and ¢ from the above equation,
one has the simplified second order nonlinear

ordinary differential equation in independent
generalized coordinate p as
M(p)p +N(p.p)=0 (25)

where

~ 1 T (-1 -1
M=MP-MP D, - (@ )(MP - MU D)),
~ 1\

N=[NP -] (@) (N —F%)]

—ol (@) M¥ 0 In

+[MPio ! - @]

A
q

Let Z=[p p] be the state variable vector, one
can rewrite (25) in terms of Zas

i

Applying the Runge-Kutta integration method to
solve equation (27), one can obtain the vibration
response of the follower.

p
M™N

(27)

4. NUMERICAL RESULTS AND
DISCUSSIONS
An example is studied to investigate the

vibration of the translating roller-follower cam for
RDFD case. Since the follower is flexible, the
contact point of the roller and the cam is an
unknown point though it locates at the cam profile.
The vibration response at the end point of the
follower in the transverse direction is studied to
show that the contact position between the cam and
the roller of the flexible rod is different from that
under the assumption of the rigid follower rod.

The cycloidal displacement motion is applied to
model the rise and fall displacement curve. The
period of the rise and fall segment S is set to be

%. The total rise S; is set to 15 mm. The cross

section of the follower rod is a circle with radius of
r =5mm. The associated cross-sectional area and

area inertia  are A= 7854 mm? and
| =490.87 mm*. The elastic modulus and the
density of the follower rod are

E=21x10® kgmm-s®> and p=7.8x10"° kg/mm® .
The distance from the lower end of the rigid cylinder

120

and the rotation center of the cam is d =112 mm.
The base-circle radius of the cam is r, =26 mm.
The radius, mass, and mass polar moment of inertia
of the roller are r, =5mm, and m,  =0.05kg,
respectively.

The time step is set to be %xlO‘e’ S. The

initial conditions are given as zero. To check the
numerical convergence, thr?? )different mode
numbers N =2,3,4 are app 'eg to obtain the

vibration responses for Q=240 rad/s . Figure 4
shows the transverse vibration response at the end
point E of the follower. It is seen that the
responses curves with N =3 and N =4 almost

coincide. This implies that the numerical results for
the studied case nearly converge with N =3. In the

following numerical study, the assumed mode
method with N =3 is used.

The follower vibration with different rotation
speed of cam is analyzed. The rotation speeds are
Q =120, 240, 360 rad/s, respectively. Figure 5

shows the transverse vibration response at the end
point E. It is shown that the transverse response is
more significant for higher cam rotation speed
especially in the rise and fall intervals. The high
frequency oscillation occurs. Even in the dwell
interval the follower still oscillates. For high rotation
speed of cam, the responses during the dwell interval
are obviously larger than those for low rotation
speed of cam. Thus, the deflections during the dwell
interval for high rotation speed of cam are of
significance to a certain extent.

The effect of the distance, d, from the lower
end of the rigid cylinder and the rotation center of
the cam on the vibration is studied. Three distances,
102, 112 and 122 mm are used. The vibraion
results are shown in Fig. 6. The maximum response
amplitudes are all higher for larger distance d. This
may be explained that larger distance d combined
with a longer follower rod makes lower stiffness of
the rod to bring about larger response. It is also
found that the distance influences the phase of the
response. The follower cross-sectional radius effect
is also studied. The vibration responses with three
cross-sectional radii of the follower rod, 3, 5 and 7
mm, are compared in Fig. 7. It is seen that the
vibration responses are larger for the smaller
cross-sectional radius of the follower rod. This may
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also be explained that smaller cross-sectional radius
of follower rod makes lower stiffness of the rod.

The responses of the follower for three different
cam base-circle radii are investigated. The results are
shown in Fig. 8. It is found that the transverse
response is larger for the smaller cam base-circle
radius. Since the distance d remains the same for the
three cam base-circle radii, the follower is relatively
longer for the smaller cam base-circle radius and the
vibration is more significant. Three different total
rises are also studied. They are S; =8, 15 and 22

mm. It is seen from Fig. 9 that larger total rise
induces larger vibration response.

5. CONCLUSIONS

The equations of motion for the vibration of a
translating roller-follower cam for RDFD case are
derived by using Hamilton’s principle and the
assumed mode method. The flexibility of the
follower rod is considered and modeled as a
Rayleigh beam. The roller motion is restrained in the
cam groove under the follower deflections. Thus,
two geometric constraints are formulated to be
added to the Hamilton’s principle with Lagrange
multipliers. The numerical results for the studied
cases show that the transverse vibration response of
the follower is large for high rotation speed of cam.
Even during the dwell interval, the follower vibrates
to some extent especially for high rotation speed of
cam. The follower rod with larger length or smaller
cross-sectional radius induces larger response
amplitude of the follower. The smaller cam
base-circle radius or the larger total rise also brings
about larger response amplitude.
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Fig. 5 The transverse vibration response at the end
point E with different rotation speed Q.
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Fig. 6 The transverse vibration response at the end
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