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摘要 

本文以一數值方法來分析熱質傳遞特性，在充滿非達西流體之飽和性多孔性介質在垂直滲

透平板且具磁場之自然對流影響。垂直平板的表面為均勻壁溫度/均勻壁濃度。以凱勒盒子法

來解轉換過的控制方程式。數值計算結果主要顯示浮力比N，路易士參數Le，非達西參數ND，

磁場參數M和噴吸流參數ξ，對無因次溫度分佈、濃度分佈、局部Nusselt數和局部Sherwood數

之影響，並將計算結果以圖表方式呈現。 

關鍵字：熱質傳遞、非達西、磁場、垂直滲透板、多孔性介質 

Abstract 

The heat and mass transfer characteristics of MHD-free convection about a vertical permeable 

flat plate embedded in a saturated porous medium is numerically analyzed. The surface of the vertical 

flat plate has a uniform wall temperature and uniform wall concentration (UWT/UWC). Non-similar 

solutions for the transformed governing equations by Keller box method are obtained. Numerical data 

for the dimensionless temperature profile, the dimensionless concentration profile, the local Nusselt 

number and the local Sherwood number are presented graphically for the buoyancy ratio N , the 

Lewis number Le , the non-Darcy parameter ND , the magnetic field parameter M  and the 

blowing/suction parameter   which are entered in tables or plotted in figures.  

Key word：heat and mass transfer, non-Darcy, MHD, vertical permeable plate, porous media 

 

1. Introduction 

The problem of magnetohydrodynamic 

flow (MHD-free convection) heat and mass 

transfer (or double-diffusion) about a flat plate 

in a saturated porous medium occur in many 

industrial or engineering applications such as 

the cooling of nuclear reactors, the geothermal 

system, petroleum industries, aerodynamic 

processes, and the heat exchanger design. Nield 

and Bejan [1] recently presented a 

comprehensive account of the available 

information in the field. Because of the wide 

application of the characteristic of the 

MHD-free convection in porous medium, it 

becomes one of the major topics of significant 

research in the last two centuries. Partha et al. [2] 

accounted for the Soret and Dufour effects in a 

non-Darcy porous medium. Chamkha and 

Ben-Nakhi [3] reported the MHD mixed 

convection–radiation interaction along a 

permeable surface immersed in a porous 

medium in the presence of Soret and Dufour’s 

effects. Khalid et al. [4] presented the unsteady 

MHD free convection flow of Casson fluid past 

over an oscillating vertical plate embedded in a 

porous medium. 

There are many scholars have been 

engaged in the free convection boundary-layer 

flows Darcy flow studies. It may be remarked 

that the Darcy law is valid for low-speed flow 

through porous media but for high-speed flow 

the non-Darcy law is found to be more 
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appropriate. Regarding pure heat transfer, 

Plumb and Huenefeld [5] investigated the 

non-Darcy natural convection from heated 

surfaces in saturated porous medium. 

El-Hakiem et al. [6] presented the combined 

heat and mass transfer on non-Darcy natural 

convection in a fluid saturated porous medium 

with thermophoresis. Murthy et al. [7] reported 

the double-diffusive free convection flow past 

an inclined plate embedded in a non-Darcy 

porous medium saturated with a nanofluid.  

The objective of the present work is to 

extend the work of Partha et al. [2] to 

investigate the influence of non-Darcy on 

MHD-free convection over a vertical permeable 

plate in a porous medium. The governing 

equations have been solved numerically using 

Keller box method (KBM). The results are 

obtained for various values of the parameters. 
 

2. Formulation and analysis 

The considered problem is the influence of 

non-Darcy on MHD-free convection over a 

vertical permeable plate in a porous medium 

that the boundary condition is uniform wall 

temperature wT  and uniform wall concentration 

wC  (UWT/UWC), respectively. Consider a 

two-dimensional, steady, laminar flow of an 

incompressible electrically conducting fluid 

over a flat plate in the presence of a transverse 

magnetic field 0B , as shown in Fig. 1, while the 

induced magnetic field due to the motion of the 

electrically conducting fluid is negligible. The 

origin of the coordinate system is the leading 

edge of the vertical flat plate, where x and y are 

Cartesian coordinates for the distance along and 

normal to, respectively, the vertical flat plate 

surface. 
All the fluid properties are assumed to be 

constant except for the density variation in the 

buoyancy term. Introducing the boundary layer 

and Boussinesq approximations, the governing 

equations and the boundary conditions based on 

the non-Darcy law can be written as follows: 

Continuity equation: 
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Energy equation: 
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Concentration equation: 
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Boussinesq approximation: 

      CCTT CT  1  (6) 

Boundary conditions: 

www CCTTVvy  ,,:0  (7) 

  CCTTuy ,,0:  (8) 

Here, u  and v  are the Darcian velocities in 

the x– and y– directions, respectively; K  is the 

permeability of the porous medium;   is the 

electric conductivity of the fluid; 0B  is the 

externally imposed magnetic field in the 

y-direction; g  is the acceleration due to 

gravity; p ,  , and   are the pressure, the 

density and the absolute viscosity, respectively; 

T  and C  are the volume-averaged 

temperature and concentration, respectively; m  

and mD  are the equivalent thermal diffusivity 

and mass diffusivity, respectively; wV  is the 

uniform blowing/suction velocity.  

The stream function   is defined by  

yu  /  and xv  /  (9) 

Therefore, the continuity equation is 

automatically satisfied. 

Next consider the Eqs. (2) and (3). 

Cross-differentiation ,// xvyu   eliminates 

the pressure terms in Eqs. (2) and (3). Further, 

by using the boundary layer approximation 

 uvyx  , , yields 
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Integrating equation (10) once and with the 

aid of equation (8), yields 
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The following dimensionless variables are 

invoked: 
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where xRa  is the local Rayleigh number. 

Substituting Eqs. (12) into Eqs. (11), 

(4)-(5), (7)-(8) obtains 
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The boundary conditions are defined as 

follows: 

1,1,
2
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 f  (16) 

0,0:    (17) 

For the new variables, the Darcian 

velocities in the x– and y– directions are also 

respectively obtained by 
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where primes denote differentiation with respect 

to  .   defined in Eq. (12.1) is the surface 

blowing/suction parameter; Eq. (16) can be 

obtained by integrating Eq. (19) versus   once 

and by setting 0  (at the surface, 0y , 

then 0 ), and with the help of boundary Eq. 

(7). On the one hand, for the case of blowing, 

0wV  and hence 0 . On the other hand, for 

the case of suction, 0wV  and hence 0 . 

Besides, the non-Darcy parameter ND , the 

magnetic field parameter M , the buoyancy 

ratio N  and the Lewis number Le  are 

respectively defined as follows: 
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The results for heat and mass transfer rates 

have practical applications. The heat and mass 

transfer rates are expressed in terms of the local 

Nusselt number xNu  and the local Sherwood 

number xSh , which are respectively defined as 

follows: 
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By applying Eqs. (12) the local Nusselt 

number xNu  and the local Sherwood number 

xSh  in terms of 21

x
Ra  are respectively obtained 

by 
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3. Numerical method and validation 

Equations (13)-(17) are integrating by 

combining the implicit finite difference 

approximation with the modified Keller box 

method of Cebeci and Bradshaw [8]. First, the 

partial differential converted into a system of 

five first-order equations. These first-order 

equations are then expressed in finite difference 

forms and solved along with their boundary 

conditions by applying an iterative scheme. This 

approach improves the convergence rate and the 

computation times. 
Computations were performed with a 

personal computer with the first step size 

1.0  and 01.0
l

 . The variable grid 

parameter is chosen 1.01 and the value of 

30


 . The iterative procedure is stopped to 

give the final temperature and concentration 

distributions when the error in computing the 

w
   and 

w
  in the next procedure becomes less 

than 510 . 

 

4. Results and Discussion 

To validate the numerical method used, the 

heat and mass transfer results of the present 

results are compared to those of previously 

published papers. The accuracy of this method 

was verified by comparing the results with those 

of Chamkha and Ben-Nakhi [3], Plumb and 

Huenefeld [5] and Murthy et al. [7]. Table 1 lists 

the comparison of present results for various 

values of ND  with .0 MN   Table 2 

lists the comparison of present results for 

various values of   with .0 MNND  All 

values in Tables 1 to 2 list the comparisons 

showed excellent agreement with the numerical 

data in previous works. Table 3 lists the values 

of 21/
xx

RaNu  and 21/
xx

RaSh  for various values 

of ,ND ,M , N  and .Le  

In this investigation, the problem of effect 

of non-Darcy and MHD coupled heat and mass 

transfer by free convection of a non-Newtonian 

fluid flow along a vertical permeable plate has 

been studied. Representative numerical results 

for the dimensionless temperature and 

concentration profiles and the local Nusselt and 

Sherwood numbers with the buoyancy ratio 

1N , the Lewis number 2Le , the 

non-Darcy parameter ND  ranging from 0 to 10, 

the magnetic field parameter M  ranging from 

0 to 4 and the blowing/suction parameter   

ranging from 2  to 2  are shown in Figs. 

2-4. 

The effect of the magnetic field parameter 

M  ( ,0M 1  and 4 ) on the dimensionless 

temperature profile and the dimensionless 

concentration profile with ,1N ,2Le 1  

and .1ND  is plotted in Fig. 2, respectively. 

Inspecting of this figure shows that the 

dimensionless temperature profile and the 

dimensionless concentration profile decreases 

monotonically as the distance   from the plate 

increases. It is also observed that the increase of 

the magnetic field parameter M  leads to a 

tendency to decrease the flow velocity; thus, 

reducing both the dimensionless wall 

temperature gradient  0,  and the 

dimensionless wall concentration gradient 

 0, . The analysis has shown that the 

dimensionless temperature and concentration 

profiles are significantly influenced by magnetic 

field parameter. 
Table 4 lists the values of local Nusselt 

number 21/
xx

RaNu  and the local Sherwood 

number 21/
xx

RaSh  for various values of the 

magnetic field parameter M  with ,1N

,2Le 1  and .1ND  Generally, it has 

been observed that enhancing the magnetic field 

parameter M  reduces both the local Nusselt 

number and the local Sherwood number. This is 

due to the fact that enhancing the magnetic field 

parameter M  tends to decreases the 

dimensionless surface temperature gradients and 

the dimensionless surface concentration 

gradients, as shown in Fig. 2, thus lowering the 

local Nusselt number and the local Sherwood 

number. 

Figure 3 portrays the dimensionless 

temperature and concentration profiles for three 
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values of the non-Darcy parameter ND  

( ,0ND  1  and 10 ) with ,1N ,2Le ,1M

,1  respectively. The figure shows that the 

dimensionless temperature and concentration 

profiles decrease monotonically from the 

surface of the vertical flat plate to the ambient. 

Both the thermal boundary layer thickness T  

and the concentration boundary layer thickness 

C  increase for the values of ND  increase.  

Table 5 lists the values of local Nusselt 

number 21/
xx

RaNu  and the local Sherwood 

number 21/
xx

RaSh  for various values of ND  

with ,1N ,2Le 1M  and .1  In 

general, it has been found that enhancing the 

non-Darcy parameter ND  reduces both the 

local Nusselt number and the local Sherwood 

number. This is due to the fact that enhancing 

the non-Darcy parameter ND  tends to decrease 

the dimensionless surface temperature gradients 

and the dimensionless surface concentration 

gradients, as shown in Fig. 3, thus lowering the 

local Nusselt number and the local Sherwood 

number. 

Figure 4 portrays the dimensionless 

temperature and concentration profiles for three 

values of the blowing/suction parameter   

( ,1  0 and 1) with ,1N ,2Le ,1M

,1ND  respectively. It has been found that the 

dimensionless temperature and concentration 

profiles decrease monotonically from the 

surface of the vertical flat plate to the ambient. 

Both the thermal boundary layer thickness 
T

  

and the concentration boundary layer thickness 

C
  decrease for the case of suction. However, 

this trend reversed for the case of blowing. For 

suction case, it decreases the dimensionless 

temperature profiles   and the dimensionless 

concentration profiles  ; thus increases the 

dimensionless surface temperature gradient 

 0,  and the dimensionless surface 

concentration gradient  0, . The analysis 

has shown that the dimensionless temperature 

and concentration profiles are appreciably 

influenced by blowing/suction parameter. 
Table 6 lists the values of local Nusselt 

number 21/
xx

RaNu  and the local Sherwood 

number 21/
xx

RaSh  for various values of   

with ,1N ,2Le 1M  and .1ND  In 

general, it has been found that both the local 

Nusselt number and the local Sherwood number 

increase owing to the case of suction, i.e., 0 . 

This is because for the case of suction increases 

both the dimensionless surface temperature and 

concentration gradients, as shown in Fig. 4. 

With the aid of Eqs. (25)-(26), the larger the 

dimensionless surface temperature and 

concentration gradients, the greater the local 

Nusselt and Sherwood numbers. 

 

5. Conclusions 
A two-dimensional, laminar boundary layer 

analysis is presented to study the influence of 

non-Darcy and MHD on free convection of 

non-Newtonian fluids over a vertical permeable 

plate in a porous medium. After the coordinate 

transformation, the transformed governing 

equations are solved by Keller box method 

(KBM). Comparisons with previously published 

works show excellent agreement. Numerical 

solutions are obtained for different values of the 

non-Darcy parameter ND , the magnetic field 

parameter M  and the blowing/suction 

parameter  . Results show that increasing the 

non-Darcy parameter ND  or the magnetic field 

parameter M  tends to reduce both the local 

Nusselt number and the local Sherwood number. 

In general, for the case of suction, both the local 

Nusselt number and the local Sherwood number 

increase. This trend reversed for blowing of 

fluid. 
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Fig. 1 The flow model and the physical 
coordinate system 

 

 

 
Fig. 2. (a) The dimensionless temperature 

profile and (b) the dimensionless 

concentration profile for three values of 

magnetic field parameter M .  
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Fig. 3. (a) The dimensionless temperature 

profile and (b) the dimensionless 

concentration profile for three values of 

the non-Darcy parameter ND . 
 

 

 

 
Fig. 4. (a) The dimensionless 

temperature profile and (b) the 

dimensionless concentration profile for 

three values of the blowing/suction 

parameter  . 
 

 

Table 1. Comparison of present results 

for various values of ND  with 
.0 MN   

 

ND  

)0,(  

Plumb 

and 

Huenefeld 

[5] 

Murthy 

et al. 

[7] 

Present 

results 

0.00 0.4439 0.4437 0.4437 

0.01 0.4423 0.4421 0.4421 

0.10 0.4296 0.4295 0.4295 

1.00 0.3661 0.3657 0.3657 

10.00 0.2512 0.2506 0.2506 

100.00 0.1518 0.1514 0.1514 
 

 

Table 2. Comparison of present results 

for various values of   with 

.0 MNND  
 

  

)0,(  

Chamkha and  

Ben-Nakhi [3] 

Present 

results 

-4 1.9989 2.0014 

-2 1.0726 1.0725 

0 0.4440 0.4437 

2 0.1424 0.1407 

4 0.0340 0.0329 
 

 

Table 3. Values of 21/
xx

RaNu  and 21/
xx

RaSh  

for various values of ,ND ,M , N  and 

.Le  

 

ND  M    N  Le  21/ xx RaNu  21/ xx RaSh  

0 0 0 1 2 0.5925 0.9295 

1 0 0 1 2 0.4502 0.6916 
0 1 0 1 2 0.4190 0.6572 

0 0 1 1 2 0.4080 0.5454 
0 0 -1 1 2 0.8383 1.4773 
0 0 0 2 2 0.7097 1.1221 
0 0 0 1 5 0.4437 1.1538 

First row is baseline. 
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Table 4. The values of 21/
xx

RaNu  and 
21/

xx
RaSh  for various values of M  with 

,1N ,2Le 1  and .1ND  
 

M  
n

xx RaNu 21/  
n

xx RaSh 21/  

0.0 0.7136 1.2770 

0.5 0.6739 1.2244 

1.0 0.6430 1.1830 

1.5 0.6187 1.1503 

2.0 0.5994 1.1244 
 

 

Table 5. The values of 
21/

xx
RaNu  and 

21/
xx

RaSh  for various values of ND  with 

,1N ,2Le ,1M .1  
 

ND  
21/

xx
RaNu  

21/
xx

RaSh  

0.01  0.6788 1.2399 

0.1  0.6740 1.2321 

1  0.6430 1.1830 

10  0.5692 1.0769 

100  0.5120 1.0098 
 

 

Table 6. The values of 
21/

xx
RaNu  and 

21/
xx

RaSh  for various values of   with 

,1N ,2Le ,1M .1ND  
 

  
21/

xx
RaNu  

21/
xx

RaSh  

-2 1.0287 2.0300 

-1 0.6430 1.1830 

0 0.3732 0.5791 

1 0.2004 0.2339 

2 0.0982 0.0762 
 

 


