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Influence of non-Darcy on MHD-free convection over a vertical permeable plate
in a porous medium
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Abstract

The heat and mass transfer characteristics of MHD-free convection about a vertical permeable
flat plate embedded in a saturated porous medium is numerically analyzed. The surface of the vertical
flat plate has a uniform wall temperature and uniform wall concentration (UWT/UWC). Non-similar
solutions for the transformed governing equations by Keller box method are obtained. Numerical data
for the dimensionless temperature profile, the dimensionless concentration profile, the local Nusselt
number and the local Sherwood number are presented graphically for the buoyancy ratio N, the
Lewis number Le, the non-Darcy parameter ND, the magnetic field parameter M and the
blowing/suction parameter & which are entered in tables or plotted in figures.
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1. Introduction accounted for the Soret and Dufour effects in a
The problem of magnetohydrodynamic non-Darcy porous medium. Chamkha and
flow (MHD-free convection) heat and mass Ben-Nakhi [3] reported the MHD mixed
transfer (or double-diffusion) about a flat plate ~ convection-radiation interaction along a
in a saturated porous medium occur in many  permeable surface immersed in a porous
industrial or engineering applications such as  medium in the presence of Soret and Dufour’s
the cooling of nuclear reactors, the geothermal  effects. Khalid et al. [4] presented the unsteady
system, petroleum industries, aerodynamic MHD free convection flow of Casson fluid past
processes, and the heat exchanger design. Nield  over an oscillating vertical plate embedded in a
and Bejan [1] recently presented a  porous medium.
comprehensive account of the available There are many scholars have been
information in the field. Because of the wide  engaged in the free convection boundary-layer
application of the characteristic of the  flows Darcy flow studies. It may be remarked
MHD-free convection in porous medium, it  that the Darcy law is valid for low-speed flow
becomes one of the major topics of significant  through porous media but for high-speed flow
research in the last two centuries. Partha et al. [2] the non-Darcy law is found to be more
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appropriate. Regarding pure heat transfer,
Plumb and Huenefeld [5] investigated the
non-Darcy natural convection from heated
surfaces in  saturated porous medium.
El-Hakiem et al. [6] presented the combined
heat and mass transfer on non-Darcy natural
convection in a fluid saturated porous medium
with thermophoresis. Murthy et al. [7] reported
the double-diffusive free convection flow past
an inclined plate embedded in a non-Darcy
porous medium saturated with a nanofluid.

The objective of the present work is to
extend the work of Partha et al. [2] to
investigate the influence of non-Darcy on
MHD-free convection over a vertical permeable
plate in a porous medium. The governing
equations have been solved numerically using
Keller box method (KBM). The results are
obtained for various values of the parameters.

2. Formulation and analysis

The considered problem is the influence of
non-Darcy on MHD-free convection over a
vertical permeable plate in a porous medium
that the boundary condition is uniform wall
temperature T, and uniform wall concentration

C, (UWT/UWC), respectively. Consider a

two-dimensional, steady, laminar flow of an
incompressible electrically conducting fluid
over a flat plate in the presence of a transverse
magnetic field B, as shown in Fig. 1, while the

induced magnetic field due to the motion of the
electrically conducting fluid is negligible. The
origin of the coordinate system is the leading
edge of the vertical flat plate, where x and y are
Cartesian coordinates for the distance along and
normal to, respectively, the vertical flat plate
surface.

All the fluid properties are assumed to be
constant except for the density variation in the
buoyancy term. Introducing the boundary layer
and Boussinesq approximations, the governing
equations and the boundary conditions based on
the non-Darcy law can be written as follows:
Continuity equation:
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Concentration equation:
u£+v@=Dm£ (5)
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Boussinesg approximation:
p=p,-5(T-T,)-p(C-C,) (6)
Boundary conditions:
y=0:v=V,, T=T,, C=C, (7)
y—>ow: u=0,T=T, C=C, (8)

Here, u and v are the Darcian velocities in
the x— and y— directions, respectively; K is the
permeability of the porous medium; o is the
electric conductivity of the fluid; B, is the

externally imposed magnetic field in the
y-direction; g is the acceleration due to
gravity; p, p, and u are the pressure, the

density and the absolute viscosity, respectively;
T and C are the volume-averaged
temperature and concentration, respectively; «,,

and D,, are the equivalent thermal diffusivity
and mass diffusivity, respectively; V, is the

uniform blowing/suction velocity.
The stream function y is defined by

U=0ow/oy and v=-0y/oxX (9)
Therefore, the continuity equation s
automatically satisfied.

Next consider the Egs. (2) and (3).

Cross-differentiation ou/oy—ov/ox, eliminates

the pressure terms in Egs. (2) and (3). Further,
by using the boundary layer approximation
(6/ox << 8/dy,v <<u), yields
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Integrating equation (10) once and with the
aid of equation (8), yields
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The following dimensionless variables are
invoked:

(10)

(11)

£= 20X 12.1
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where Ra, is the local Rayleigh number.
Substituting Egs. (12) into Egs. (11),

(4)-(5), (7)-(8) obtains
ND-(f'f+(M+1)-(f')=6+N-¢ (13)
s 1. ,af

0+Ef-9_ (,{ e a:J (14)
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The boundary conditions are defined as
follows:

n=0: f:—%, 0=1, ¢=1 (16)
n—> 00! 0=0, ¢=0 (17)
For the new variables, the Darcian

velocities in the x— and y— directions are also
respectively obtained by
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where primes denote dlfferentlation with respect
to . & defined in Eqg. (12.1) is the surface

blowing/suction parameter; Eg. (16) can be
obtained by integrating Eq. (19) versus & once

and by setting »=0 (at the surface, y=0,
then 7 =0), and with the help of boundary Eq.
(7). On the one hand, for the case of blowing,
V,, >0 and hence &>0. On the other hand, for
the case of suction, V, <0 and hence &<0.

Besides, the non-Darcy parameter ND , the
magnetic field parameter M , the buoyancy

x_f’

(18)

V= (19)

ratio N and the Lewis number Le are
respectively defined as follows:
cvK «a -Ra
ND = Sm
v x (20)
K.-o-B?
M=——F (21)
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The results for heat and mass transfer rates
have practical applications. The heat and mass
transfer rates are expressed in terms of the local
Nusselt number Nu, and the local Sherwood

number Sh,, which are respectively defined as

NU — h x __9x ) (23)
ok [TL-Tk [T-T]
oC
h X m. x _(ayJ y=0X
h, = X2 = w = 24
> " Dm [Cw_coo]Dm [CW_Coo]Dm ( )

By applying Egs. (12) the local Nusselt
number Nu, and the local Sherwood number

Sh, in terms of Ra’* are respectively obtained

by
Nu

Ra, -0'(£.0)

(25)
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3. Numerical method and validation

Equations (13)-(17) are integrating by
combining the implicit finite difference
approximation with the modified Keller box
method of Cebeci and Bradshaw [8]. First, the
partial differential converted into a system of
five first-order equations. These first-order
equations are then expressed in finite difference
forms and solved along with their boundary
conditions by applying an iterative scheme. This
approach improves the convergence rate and the
computation times.

Computations were performed with a
personal computer with the first step size
A£=01 and Ap =0.01. The variable grid

parameter is chosen 1.01 and the value of
n. =30. The iterative procedure is stopped to

give the final temperature and concentration
distributions when the error in computing the
¢ and g4 inthe next procedure becomes less

than 10°.

4. Results and Discussion

To validate the numerical method used, the
heat and mass transfer results of the present
results are compared to those of previously
published papers. The accuracy of this method
was verified by comparing the results with those
of Chamkha and Ben-Nakhi [3], Plumb and
Huenefeld [5] and Murthy et al. [7]. Table 1 lists
the comparison of present results for various
values of ND with N=£=M=0. Table 2

lists the comparison of present results for
various values of ¢ with ND=N=M =0. All

values in Tables 1 to 2 list the comparisons
showed excellent agreement with the numerical
data in previous works. Table 3 lists the values
of Nu /Ra” and Sh/Ra” for various values
of ND, M, &, N and Le.

In this investigation, the problem of effect
of non-Darcy and MHD coupled heat and mass

transfer by free convection of a non-Newtonian
fluid flow along a vertical permeable plate has
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been studied. Representative numerical results
for the dimensionless temperature and
concentration profiles and the local Nusselt and
Sherwood numbers with the buoyancy ratio
N=1, the Lewis number Le=2 , the
non-Darcy parameter ND ranging from O to 10,
the magnetic field parameter M ranging from
0 to 4 and the blowing/suction parameter ¢
ranging from -2 to 2 are shown in Figs.
2-4.

The effect of the magnetic field parameter
M (M=0,1 and 4) on the dimensionless
temperature profile and the dimensionless
concentration profile with N =1, Le=2, £=-1
and ND=1. is plotted in Fig. 2, respectively.
Inspecting of this figure shows that the
dimensionless temperature profile and the
dimensionless concentration profile decreases
monotonically as the distance 7 from the plate
increases. It is also observed that the increase of
the magnetic field parameter M leads to a
tendency to decrease the flow velocity; thus,

reducing both the dimensionless wall
temperature  gradient —@'(£,0) and the
dimensionless wall concentration gradient

—¢’(§,0). The analysis has shown that the

dimensionless temperature and concentration
profiles are significantly influenced by magnetic
field parameter.

Table 4 lists the values of local Nusselt
number Nu /Ra* and the local Sherwood

number Sh, /Ra” for various values of the

magnetic field parameter M with N =1,
Le=2, £=-1 and ND=1. Generally, it has

been observed that enhancing the magnetic field
parameter M reduces both the local Nusselt
number and the local Sherwood number. This is
due to the fact that enhancing the magnetic field
parameter M tends to decreases the
dimensionless surface temperature gradients and
the  dimensionless surface  concentration
gradients, as shown in Fig. 2, thus lowering the
local Nusselt number and the local Sherwood
number.

Figure 3 portrays the dimensionless
temperature and concentration profiles for three
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values of the non-Darcy parameter ND
(ND=0, 1 and 10) with N=1, Le=2, M =1,
&=-1, respectively. The figure shows that the
dimensionless temperature and concentration
profiles decrease monotonically from the
surface of the vertical flat plate to the ambient.
Both the thermal boundary layer thickness o;
and the concentration boundary layer thickness
S Increase for the values of ND increase.
Table 5 lists the values of local Nusselt
number Nu /Ra’* and the local Sherwood

number Sh, /Ra* for various values of ND

with N=1, Le=2, M=1 and ¢&=-1. In
general, it has been found that enhancing the
non-Darcy parameter ND reduces both the
local Nusselt number and the local Sherwood
number. This is due to the fact that enhancing
the non-Darcy parameter ND tends to decrease
the dimensionless surface temperature gradients
and the dimensionless surface concentration
gradients, as shown in Fig. 3, thus lowering the
local Nusselt number and the local Sherwood
number.

Figure 4 portrays the dimensionless
temperature and concentration profiles for three
values of the blowing/suction parameter ¢&
(&=-1 0 and 1) with N=1 Le=2, M =1,
ND =1, respectively. It has been found that the
dimensionless temperature and concentration
profiles decrease monotonically from the
surface of the vertical flat plate to the ambient.
Both the thermal boundary layer thickness o,
and the concentration boundary layer thickness
6. decrease for the case of suction. However,
this trend reversed for the case of blowing. For
suction case, it decreases the dimensionless
temperature profiles ¢ and the dimensionless
concentration profiles ¢ ; thus increases the
dimensionless surface temperature gradient
~0'(£,0) and the dimensionless surface

concentration gradient —¢'(£,0). The analysis

has shown that the dimensionless temperature
and concentration profiles are appreciably
influenced by blowing/suction parameter.

Table 6 lists the values of local Nusselt

number Nu, /Ra” and the local Sherwood
number Sh /Ra'* for various values of ¢&

with N=1 Le=2, M=1 and ND=1. In
general, it has been found that both the local
Nusselt number and the local Sherwood number
increase owing to the case of suction, i.e., £<0.

This is because for the case of suction increases
both the dimensionless surface temperature and
concentration gradients, as shown in Fig. 4.
With the aid of Egs. (25)-(26), the larger the
dimensionless  surface  temperature  and
concentration gradients, the greater the local
Nusselt and Sherwood numbers.

5. Conclusions

A two-dimensional, laminar boundary layer
analysis is presented to study the influence of
non-Darcy and MHD on free convection of
non-Newtonian fluids over a vertical permeable
plate in a porous medium. After the coordinate
transformation, the transformed governing
equations are solved by Keller box method
(KBM). Comparisons with previously published
works show excellent agreement. Numerical
solutions are obtained for different values of the
non-Darcy parameter ND, the magnetic field

parameter M and the blowing/suction
parameter ¢£. Results show that increasing the

non-Darcy parameter ND or the magnetic field

parameter M tends to reduce both the local
Nusselt number and the local Sherwood number.
In general, for the case of suction, both the local
Nusselt number and the local Sherwood number
increase. This trend reversed for blowing of
fluid.
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b)
1; Table 1. Comparison of present results
08;\\\ N=1 Le=2 for various values of ND with
T ML o= N=¢&=M =0,
Fo -~ ND=0 -0
. o1 Plumb ~—
I N ND =10
oaf- \ ND and N:::Ih Y Present
i o Huenefeld " results
o N\ 5 U
T 0.00 0.4439  0.4437 0.4437
K L n 2 s K 0.01 0.4423 0.4421 0.4421
. . . 0.10 0.4296  0.4295 0.4295
Fig. 3. () The dimensionless temperature 100 03661 03657 03657
profile and (b) the dimensionless 10'00 0'2512 0.2506 0.2506
concentration profile for three values of 10000 01518 01514 0.1514

the non-Darcy parameter ND .

Table 2. Comparison of present results

@ for various values of ¢  with
L\\\ ND=N=M =0.
N=1, Le=2 ’
osf| ND =1 M= 1 -0'(£,0)
A c 1 (blowing ¢ Chamkha and Present
B Ben-Nakhi [3] results
L £ -1 (sucton) 4 1.9989 2.0014
o -2 1.0726 1.0725
o W\ 0 0.4440 0.4437
t \ 2 0.1424 0.1407
) I e e 4 0.0340 0.0329
n
(b) Table 3. Values of Nu /Ra’” and Sh /Ra”
i for various values of ND, M, &, N and
08 -\ ND =M =1 Le.
oA ' Nu,/Ra/>  Sh,/Ra"
o6k L\ T £=1 (blowing) ND M d N Le U R hIRa,
¢ | o §=0 _ o 0 o0 1 2 0.5925 0.9295
I \ & =~1 (suction) 1 o 0 1 2 0.4502 0.6916
“r \ o 1 o0 1 2 0.4190 0.6572
A\ 0o 0 1 1 2 0.4080 0.5454
02 N\ 0o 0 -1 1 2 08383 1.4773
NG 0o 0 0 2 2 0.7097 11221
i S 1 0 0 0 1 5 0.4437 1.1538
% ; — e First row is baseline.
n
Fig 4. (a) The dimensionless
temperature profile and (b) the

dimensionless concentration profile for
three values of the blowing/suction
parameter ¢&.
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Table 4. The values of Nu /Ra’ and
Sh /Ra’* for various values of M with
N=1 Le=2&=-1 and ND=1.

M Nu, /Ra’?" Sh /Ra/*"
0.0 0.7136 1.2770
0.5 0.6739 1.2244
1.0 0.6430 1.1830
1.5 0.6187 1.1503
2.0 0.5994 1.1244

Table 5. The values of Nu /Ra’ and
Sh /Ra’* for various values of ND with
N=1 Le=2 M =1 =-1,

ND Nu /Ra’? Sh /Ra’”
0.01 0.6788 1.2399
0.1 0.6740 1.2321
1 0.6430 1.1830
10 0.5692 1.0769
100 0.5120 1.0098

Table 6. The values of Nu /Ra’” and

Sh /Ra!* for various values of & with
N=1 Le=2 M=1 ND=1.

& Nu /Ra’? Sh /Ra’”
-2 1.0287 2.0300
-1 0.6430 1.1830
0 0.3732 0.5791
1 0.2004 0.2339
2 0.0982 0.0762
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