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The effect of non-linear Boussinesq and internal heat source on free convection 
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Abstract 

The numeral solution is represented for the effects of non-linear Boussinesq and internal heat 

source on free convection over a vertical permeable plate in porous media. The surface of the vertical 

permeable plate is maintained at variable wall temperature. The internal heat source coefficient is of 

an exponential form. The partial differential equation is transformed into a non-similar equation and 

then solved by Keller box method (KBM). Compared with the previously published articles, we 

obtain the very good consistency. Numerical data for the dimensionless temperature profile, the 

dimensionless velocity profile and the local Nusselt number are presented in graphical and tabular 

forms for the exponent of wall temperature λ, the blowing/suction parameter ξ, the internal heat 

source coefficient A*, the non-linear temperature parameter δ. Discuss physical issues in detail. The 

increase in the nonlinear temperature parameter δ indicates an increase in the local Nusselt number. 

Keywords：Non-linear Boussinesq, Internal heat source, Natural convection, Vertical permeable plate, Porous 

medium. 

 

摘要 

 在多孔性介質中具非線性布辛克和內部熱源對於自由對流流經均勻的垂直平板之影響。垂直可穿

透板的表面保持均勻的壁溫。內部熱源的形式假設為指數漸減形式。將偏微分方程轉換為類似方程，

然後以凱勒盒子法求解。所得的數值結果與以前發表的文章相比，我們獲得了非常好的一致性。本文

數值計算的結果主要以圖形與表格的形式來顯示：壁溫的指數型式λ，噴/吸流參數ξ，內部熱源係數

A*，非線性溫度參數δ的數據。文中的物理現象也詳加討論。非線性溫度參數δ的增加表示局部努塞

爾數的增加。 

關鍵字：非線性布辛克，內部熱源，自然對流，垂直可穿透平板，多孔性介質 
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1. Introduction 

Saturated porous medium in the convective heat 

and mass transfer in geothermal and geophysical 

engineering has many important applications. These 

include nuclear reactor cooling systems, geothermal 

energy extraction, building insulation, filtration 

technology and the underground disposal of nuclear 

waste. The recent work of Nield and Bejan [1], 

Ingham and Pop [2] and Vafai [3] provides a 

comprehensive overview of the information available 

in this field. 

In pure heat transfer, change the body separating 

any shape. A new class of similarity solutions has 

obtained for isothermal vertical plate in a 

semi-infinite quiescent fluid with internal heat source 

coefficient decaying exponentially by Crepeau and 

Clarksean [4]. Postelnicu and Pop [5] studied the 

similarity solutions of free convection boundary 

layers over vertical and horizontal surfaces in porous 

media with internal heat source coefficient. 

Postelnicu et al. [6] presented the case of the vertical 

permeable flat plate. Bagai [7] analyzes the similar 

solutions of arbitrary convective boundary layers in 

porous media with internal heat source coefficient. 

Mohamed [8] carried out a similar solution to the 

effect of transverse mass flux on the natural 

convective boundary layer caused by heating the 

vertical plate embedded in a saturated porous 

medium with internal heat source coefficient. Yih et 

al. [9] examined uniform blowing/suction and 

Soret/Dufour effects on heat and mass transfer by 

natural convection about a vertical flat plate in 

porous media: UHF/UMF. 

Assume that the internal heat source coefficient is 

the exponential decay form. The control equations 

are solved using the Keller Box method (KBM). The 

results of the various parameter values were obtained 

and discussed. 

2. Analysis 

Let us consider the problem of the effect of 

non-linear Boussinesq and internal heat source on 

natural convection over a vertical permeable plate in 

a porous medium. Figure 1 shows the flow model 

and physical coordinate system. The origin of the 

coordinate system is placed at the origion of the 

vertical permeable plate, where x is the coordinate 

along the surface of plate measured from the origin 

and y is the coordinate normal to the surface, 

respectively. We consider the boundary condition of 

variable wall temperature wT  (VWT); wT  are 

higher than the ambient temperature T .  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flow model and the physical coordinate 

system 

 

Use the boundary layer and Boussinesq 

approximations, the governing equations and the 

boundary conditions based on the Darcy law can be 

written as follows: 

Continuity equation: 

    0,
 

 
 

u v

x y
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Momentum (Darcy) equation: 

u
    

      
   

K p
ρg

μ x
          (2) 

v
  

  
 

K p

μ y
                  (3) 

Energy equation: 

2

2
p

T T T q
u v ,

x y Cy 

  
   

  
         (4) 

Boussinesq approximation: 

   
2

0 1ρ 1 ,  
     
  

ρ β T T β T T     (5) 

Boundary conditions: 

 y 0 v V ,     ： λ
w w  T T x T Ax    (6.1-3) 

   y u 0, T T  ：            (7.1-3) 

Here, u and v are the Darcian velocities in the x- and 

y- directions; g is the gravitational acceleration; p 

and ρ are the pressure and the density of the fluid, 

respectively; q  is the internal heat source 

coefficient rate per unit volume; pC
 
is the specific 

heat at constant pressure;  and  are the 

thermal expansion coefficients of the fluid;   
is 

the exponent of VWT. 

  The article assumes that the boundary layer is 

very thin relative to the main vertical plate.  

We now pay attention to the governing 

equations (2) and (3). If we do the 

cross-differentiation  then the pressure terms 

in equations (2) and (3) can be eliminated. Further, 

with the help of the equation (5) and the boundary 

layer approximation )y/x/(  , then we can 

obtain 

 
1

2
0 

 
            

wT T Raxρ gβ Ku
θ

y μ x
  (8) 

Integral equation (8) once, with boundary 

conditions (7.1-3), and then get 

   
 

ρ gβK
u T T

μ
                 (9) 

Invoking the following dimensionless 

non-similarity variables: 

1/2

2
ξ  w

x

V x

α Ra
                  (10.1) 

1/2η   
x

y
Ra

x
                  (10.2) 

   
1 / 2

f ξ ,η 

x

ψ

αRa
             (10.3) 

   
 

θ ξ ,η 






w

T T

T x T
          (10.4) 

  
  

Ra
 


w

x

ρ gβK T x T x

μα
     (10.5) 

The internal heat source coefficient rate per unit 

volume q   is modeled according to the following 

equation. 

 
  

2

k
q A

 



w* η

x

T x T
Ra e

x
     (11) 

Here, k is the equivalent thermal conductivity. A  

is the internal heat source coefficient coefficient. 

Note that when A  = 0 corresponds to the case 1: 

no internal heat source coefficient (designated as 

NIHG); while for A  > 0 corresponds to the case 2: 

with internal heat source coefficient (WIHG). 

Substituting equations (10)-(11) into equations 

(9), (4) - (7), we obtain 

   2

2
    δ

f u u                (12) 

1 1
A

2 2

    
       

  
 * η  

 

λ λ θ f
θ fθ λf e ξ f θ

ξ ξ

 (13) 

The boundary conditions are defined as follows: 

η 0 f ,θ 1
2

   ：
ξ

            (14) 

η             θ 0 ：             (15) 

In addition, in terms of the new variables, the 

Darcian velocities in x- and y- directions are, 

respectively, given by 
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α

u 
 Rax

f
x

                 (16) 

      

1
2α

1 1 η
2

  
       

 


 

xRa f
v λ f λ ξ f

x ξ
 

(17) 

where primes denote differentiation with respect to 

η. 

The results of practical interest in many 

applications is the surface heat transfer rate. The 

surface heat transfer rate is expressed in terms of the 

local Nusselt number , which is basically 

defined as follows: 

 
Nu



 


x w
x

w

h x q x

k T T k
         (18) 

where is local convective heat transfer coefficient; 

wq  are the local heat flux; and 

 (the Newton’s law of 

cooling). 

From the Fourier’s law of heat conduction, the 

rate of surface heat transfer wq  is defined as 

follows: 

.
y

T
kq

0y

w















               (19) 

Inserting equations (19) into equations (18) and 

with the aid of equation (10), the local Nusselt 

number  in terms of  is obtained by 

      
1 / 2

,0
Ra

 x

x

Nu
θ' ξ                (20) 

 

3. Numerical Method 

The current analysis of the integrated system 

equation (12) - (15) implicit finite difference 

approximation is used to modify the Keller box 

Cebeci and Bradshaw [10]. First, the partial 

differential equation is transformed into three 

first-order equations. Then, these first-order 

equations are expressed in finite difference form and 

solved by the iterative scheme along with their 

boundary conditions. This approach gives a better 

rate of convergence and reduces the numerical 

computational times. 

Computations were carried out on a personal 

computer with the first step size 1  = 0.01. The 

variable grid parameter is chosen 1.01 and the value 

of  = 15. The iterative procedure is stopped to 

give the final temperature distribution when the 

errors in computing the  in the next procedure 

become less than . 

 

4. Results and Discussion 

In order to verify the accuracy of our present 

method, we have compared our results with those of 

Cheng [11], Yih [12], Huang [13]. Table 1 shows the 

comparison of the values of  0,  for various 

values of  with A  = 0 (NIHG), λ = 0, δ = 0. 

Table 2 lists the comparison of the values of 

 0,0  for various values of n and   with A  

= 1 (WIHG), δ= 0,  = 0. Table 3 shows the 

comparison of the values of  0,  for various 

values of  with A  = 0,  δ= 0, λ= 0. The 

comparisons in all the above cases are found to be in 

excellent agreement, as shown in Tables 1-3. 

 

Table 1 Comparison of the values of  0,  for 

various values of  with A  = 0 (NIHG), λ = 0, δ 

= 0 

  
Yih[12] Cheng [11] 

Present 

results 

λ= 0 0  0  

−10 4.9999 ─ 4.9981 

−4 2.0015 ─ 2.0011 
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0 0.4437 0.4439 0.4437 

4 0.0333 ─ 0.0329 

10 0.0001 ─ 0.0000 

 

Table 2 Comparison of the values of  0,0  for 

various values of   with A  = 1 (WIHG), δ= 0, 

ξ= 0 

Yih [12] Present results 

  = 0   = 1   = 0   = 1 

−0.2153 0.5241 −0.2153 0.5241 

 

Table 3 Comparison of the values of  0,  for 

various values of  with A  = 0,  δ= 0, λ= 0.  

ξ Huang [13] Present results 

−4 2.0014 2.0011 

−2 1.0725 1.0725 

0 0.4437 0.4437 

2 0.1407 0.1411 

4 0.0329 0.0329 

 

    The numerical results are presented for the 

internal heat source coefficient coefficient A  

ranging from 0 to 1, the exponent of wall 

temperature λranging from 0 to 1.0, the non-linear 

temperature parameter δranging from 0 to 1, the 

blowing/suction parameter  ranging from −10 to 

10. 

The effects of the non-linear temperature 

parameter δ  on the dimensionless velocity and 

temperature profiles with λ = 0, ξ = 0, A* = 0 are 

illustrated in Figs. 2 and 3, respectively. In Fig. 2, 

for δ= 0 and δ= 1, the dimensionless velocity 

profile obtained by them are equal. Onlyδ= 2 , the 

dimensionless velocity profile increases significantly. 

In Figure 3, the increase in the non-linear 

temperature parameter δ results in a decrease in the 

dimensionless temperature profile.  

The effects of the non-linear temperature 

parameter δ  on the dimensionless velocity and 

temperature profiles with λ = 0, ξ = 0, A* = 1 are 

illustrated in Figs. 4 and 5, respectively. In Fig. 4, in 

the case of an internal heat source coefficient (A* 

= 1), the δ value increases and the dimensionless 

velocity increases. In Figure 5, When A = 1, δ= 0, 

the dimensionless temperature profile of the initial 

section of a significant increase in the phenomenon. 


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Figure 2 Dimensionless velocity profiles 
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Figure 3 Dimensionless temperature profiles 
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Figure 4 Dimensionless velocity profiles 
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Figure 5 Dimensionless temperature profiles 

 

5. Conclusions 

A two-dimensional laminar boundary layer 

analysis is presented to study the effect of the 

internal heat source coefficient on the natural 

convection flow in a Darcy porous medium adjacent 

to the vertical permeable plate maintained at uniform 

wall temperature  (UWT). The internal heat source 

coefficient is of an exponential decaying form. The 

control equations are solved using the Keller Box 

method (KBM). The results of the various parameter 

values were obtained and discussed. Comparisons 

with previously published work are performed and 

excellent agreement is obtained. Numerical solutions 

are obtained for different values of the exponent of 

wall temperature λ, the blowing/suction parameter 

ξ, the internal heat source coefficient A*, the 

non-linear temperature parameter δ. For example: 

in figs 3 and 5, When the internal heat source 

coefficient A* increases from 0 to 1, the local 

Nusselt number is diminished. As the non-linear 

temperature parameter δenhances from 0 (linear) 

to 2 (non-linear), the local Nusselt number increases. 

It can be seen from Fig. 5 that the phenomenon of 

the heat transfer from the porous medium to the 

vertical plate is very significant for the case of δ = 0 

(linear temperature parameter). 

 

Nomenclature 

A*  internal  heat  source  coefficient  

f  dimensionless stream function 

g  gravitational acceleration 

  local convective heat transfer coefficient 

K    permeability of the porous medium 

  local Nusselt number 

p  pressure 

wq   local heat flux 

  modified local Rayleigh number 

T  temperature 

P    pressure 

u  Darcy velocity in the x-direction 

v  Darcy velocity in the y-direction 

   variable blowing/suction velocity 

x  streamwise coordinate 

y  transverse coordinate 

 

Greek symbols 

α  equivalent thermal diffusivity 
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  coefficient of thermal expansion 

  coefficient of thermal expansion 

δ    the non-linear temperature parameter 

   pseudo-similarity variable 

   dimensionless temperature 

λ  exponent of wall temperature 

ξ  the blowing/suction parameter 

ρ  density 

     stream function 

 

References 

1. Nield, D. A., and Bejan, A., Convection in 

Porous Media, 4
th 

edn. Springer, New York, 

2013. 

2. D. B. Ingham and I. Pop, Transport Phenomena 

in Porous Media III, Elsevier, Oxford, 2005. 

3. Vafai, K., Handbook of Porous Media, 2
nd

 edn. 

Mercel Dekker, New York, 2005.  

4. Crepeau, J. C., and Clarksean, R., “Similarity 

solutions of natural convection with internal heat 

source coefficient,” J. Heat Transfer, Vol. 119, 

pp. 183-185 (1997). 

5. Postelnicu, A., and Pop, I., “Similarity solutions 

of free convection boundary layers over vertical 

and horizontal surfaces in porous media with 

internal heat source coefficient,” Int. Commun. 

Heat Mass Transfer, Vol. 26, pp. 1183-1191 

(1999). 

6. Postelnicu, A., Grosan, T., and Pop, I., “Free 

convection boundary-layer over a vertical 

permeable flat plate in a porous medium with 

internal heat source coefficient,” Int. Commun. 

Heat Mass Transfer, Vol. 27, pp. 729-738 (2000). 

7. Bagai, S., “Similarity solutions of free convection 

boundary layers over a body of arbitrary shape 

in a porous medium with internal heat source 

coefficient,” Int. Commun. Heat Mass Transfer, 

Vol. 30, pp. 997-1003 (2003). 

8. Mohamed, E. A., “The effect of lateral mass flux 

on the natural convection boundary layers 

induced by a heated vertical plate embedded in a 

saturated porous medium with internal heat 

generation,” Int. J. Thermal Sci., Vol. 46, pp. 

157-163 (2007). 

9. Yih, K. A, Huang, C. J., Pan, U. J., Sheu, M. S. 

and Wang, J. J., “Uniform blowing/suction and 

Soret/Dufour effects on heat and mass transfer 

by natural convection about a vertical flat plate 

in porous media: UHF/UMF,” Journal of Air 

Force Institute Technology, Vol. 13, pp. 29-42 

(2014). 

10. Cebeci, T., and Bradshaw, P., Physical and 

Computational Aspects of Convective Heat 

Transfer, Springer-Verlag, New York, 1984. 

11. Cheng, C. Y., “Natural convection heat and mass 

transfer from a vertical truncated cone in a 

porous medium saturated with a non-Newtonian 

fluid with variable wall temperature and 

concentration,” Int. Commun. Heat Mass 

Transfer, Vol. 36. pp. 585-589 (2009). 

12. Yih, K. A., “The effect of uniform lateral mass 

flux on free convection about a vertical cone 

embedded in a saturated porous medium,” 

International Communications in Heat and Mass 

Transfer, Vol. 24, pp. 1195-1205 (1997). 

13. Huang, C. J., “Influence of uniform 

blowing/suction on the free convection of 

non-Newtonian fluids over a vertical plate in 

porous media with internal heat source 

coefficient and Soret/Dufour effects,” 

International Journal of Scientific and 

Engineering Research (IJSER), Vol. 7, No. 6, pp. 

853-869 (2016). 

 

http://www.sciencedirect.com/science/journal/12900729


航空技術學院學報  第十七卷  （民國一○七年） 

 

22 

 

 

 


