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The effect of non-linear Boussinesq and internal heat source on free convection

over a vertical permeable plate of uniform flow in porous media
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Abstract

The numeral solution is represented for the effects of non-linear Boussinesq and internal heat
source on free convection over a vertical permeable plate in porous media. The surface of the vertical
permeable plate is maintained at variable wall temperature. The internal heat source coefficient is of
an exponential form. The partial differential equation is transformed into a non-similar equation and
then solved by Keller box method (KBM). Compared with the previously published articles, we
obtain the very good consistency. Numerical data for the dimensionless temperature profile, the
dimensionless velocity profile and the local Nusselt number are presented in graphical and tabular
forms for the exponent of wall temperature A, the blowing/suction parameter &, the internal heat
source coefficient A*, the non-linear temperature parameter 8. Discuss physical issues in detail. The
increase in the nonlinear temperature parameter 6 indicates an increase in the local Nusselt number.
Keywords : Non-linear Boussinesq, Internal heat source, Natural convection, Vertical permeable plate, Porous

medium.
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1. Introduction

Saturated porous medium in the convective heat
and mass transfer in geothermal and geophysical
engineering has many important applications. These
include nuclear reactor cooling systems, geothermal
energy extraction, building insulation, filtration
technology and the underground disposal of nuclear
waste. The recent work of Nield and Bejan [1],
Ingham and Pop [2] and Vafai [3] provides a
comprehensive overview of the information available
in this field.

In pure heat transfer, change the body separating
any shape. A new class of similarity solutions has
obtained for isothermal vertical plate in a
semi-infinite quiescent fluid with internal heat source
coefficient decaying exponentially by Crepeau and
Clarksean [4]. Postelnicu and Pop [5] studied the
similarity solutions of free convection boundary
layers over vertical and horizontal surfaces in porous
heat

Postelnicu et al. [6] presented the case of the vertical

media with internal source coefficient.
permeable flat plate. Bagai [7] analyzes the similar
solutions of arbitrary convective boundary layers in
porous media with internal heat source coefficient.
Mohamed [8] carried out a similar solution to the
effect of transverse mass flux on the natural
convective boundary layer caused by heating the
vertical plate embedded in a saturated porous
medium with internal heat source coefficient. Yih et
al. [9] examined uniform blowing/suction and
Soret/Dufour effects on heat and mass transfer by
natural convection about a vertical flat plate in
porous media: UHF/UMF.

Assume that the internal heat source coefficient is
the exponential decay form. The control equations

are solved using the Keller Box method (KBM). The
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results of the various parameter values were obtained
and discussed.
2. Analysis

Let us consider the problem of the effect of
non-linear Boussinesq and internal heat source on
natural convection over a vertical permeable plate in
a porous medium. Figure 1 shows the flow model
and physical coordinate system. The origin of the
coordinate system is placed at the origion of the
vertical permeable plate, where X is the coordinate
along the surface of plate measured from the origin
and y is the coordinate normal to the surface,
respectively. We consider the boundary condition of
variable wall temperature T, (VWT);, T, are
higher than the ambient temperature T_ .
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Fig. 1. Flow model and the physical coordinate
system
Use the boundary layer and Boussinesq
approximations, the governing equations and the
boundary conditions based on the Darcy law can be
written as follows:
Continuity equation:
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Momentum (Darcy) equation:
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Energy equation:
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uﬂ+vg=aﬂ+ q : 4)
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Boussinesq approximation:
2
- [ m(T-T)-AT-TY] ©
Boundary conditions:
y=0v=V,, T=T,(xX)=T,+Ax" (6.1-3)
y—o:iu=0T=T, (7.1-3)

Here, u and v are the Darcian velocities in the x- and
y- directions; g is the gravitational acceleration; p
and p are the pressure and the density of the fluid,
respectively; q” is the internal heat source

coefficient rate per unit volume; C, is the specific

heat at constant pressure; S; and S are the

thermal expansion coefficients of the fluid; A is
the exponent of VWT.

The article assumes that the boundary layer is

very thin relative to the main vertical plate.

We now pay attention to the governing
equations (2) and (3). If we do the

cross-dif‘ferentiationz—;— % then the pressure terms
in equations (2) and (3) can be eliminated. Further,

with the help of the equation (5) and the boundary
layer approximation (0/0x << d/0y), then we can

e

Integral equation (8) once, with boundary

(T, ~T,)Rax 2
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conditions (7.1-3), and then get

U= poogﬂK [T _Too]
U

(9)
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Invoking  the  following  dimensionless
non-similarity variables:
2V, X
=—4_ (10.1)
ocRa)l(/2
Y2
n=-Ra, (10.2)
X
f(Em)=—"rr (10.3)
ocRa)1</2
T-T.
0(EM)=7+" 10.4
O @0
L IBK (T, (X) =T, ) X
Ra, = 729 (T (%)-T.) (10.5)
y27es

The internal heat source coefficient rate per unit
volume q" is modeled according to the following

equation.

= K (:2)—_ =)

Ra,e™ (12)

Here, k is the equivalent thermal conductivity. A*
is the internal heat source coefficient coefficient.

Note that when A* = 0 corresponds to the case 1:
no internal heat source coefficient (designated as
NIHG); while for A® > 0 corresponds to the case 2:
with internal heat source coefficient (WIHG).

Substituting equations (10)-(11) into equations
(9), (4) - (7), we obtain

d 2

f'=u+—-u 12
> (12)
o+t gperaen = he[ ¢ P g X
2 o< ¢
(13)

The boundary conditions are defined as follows:
n=0:f=—§,e=1 (14)
n—>o: 0=0 (15)

In addition, in terms of the new variables, the
Darcian velocities in x- and y- directions are,

respectively, given by
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where primes denote differentiation with respect to

n.
The results of practical interest in many
applications is the surface heat transfer rate. The
surface heat transfer rate is expressed in terms of the
local Nusselt number Nu,, which is basically

defined as follows:
h, x

QX
N — X — W
Ux k [T, -T,]k

(18)

where h,is local convective heat transfer coefficient;
qw are the local heat flux; and
Gu = Ry [T —Te]  (the of
cooling).

From the Fourier’s law of heat conduction, the
is defined as

Newton’s law

rate of surface heat transfer g,

-l

Inserting equations (19) into equations (18) and

follows:

(19)

y=0

with the aid of equation (10), the local Nusselt

number Nu, interms of Ral’>

x

is obtained by

Nu,

1/2°
Ray

-0'(£,0) (20)

3. Numerical Method

The current analysis of the integrated system
equation (12) - (15)
approximation is used to modify the Keller box
Cebeci and Bradshaw [10]. First,

implicit finite difference

the partial
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is transformed into three
Then,

equations are expressed in finite difference form and

differential equation

first-order equations. these first-order
solved by the iterative scheme along with their
boundary conditions. This approach gives a better
rate of convergence and reduces the numerical
computational times.

Computations were carried out on a personal
computer with the first step size An; = 0.01. The
variable grid parameter is chosen 1.01 and the value
of n, = 15. The iterative procedure is stopped to
give the final temperature distribution when the
errors in computing the |&,,| in the next procedure

become less than 107E,

4. Results and Discussion

In order to verify the accuracy of our present
method, we have compared our results with those of
Cheng [11], Yih [12], Huang [13]. Table 1 shows the
comparison of the values of —@'(¢,0) for various
values of & with A* = 0 (NIHG), A = 0, = 0.
Table 2 lists the comparison of the values of
—0'(0,0) for various values of n and A with A®
=1 (WIHG), 6= 0, £ = 0. Table 3 shows the
comparison of the values of —¢'(£,0) for various
0, 6=0, A=0. The
comparisons in all the above cases are found to be in

values of & with A®

excellent agreement, as shown in Tables 1-3.

Table 1 Comparison of the values of —0'(£,0) for
various values of & with A* =0 (NIHG),A=0, 3

=0
. Present
Yih[12] Cheng [11]
g results
A=0 A=0 A=0
-10 4.9999 - 4.9981
-4 2.0015 - 2.0011
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0.4437 0.4439 0.4437
4 0.0333 — 0.0329
10 0.0001 — 0.0000

Table 2 Comparison of the values of —6'(0,0) for
various values of A with A* =1 (WIHG), §=0,

&= 0
Yih [12] Present results
A =0 A =1 A =0 | A =1
—0.2153 | 0.5241 | -0.2153 | 0.5241

Table 3 Comparison of the values of —¢'(£,0) for

various values of & with A® =0, 6=0, A=0.
& Huang [13] Present results
—4 2.0014 2.0011
-2 1.0725 1.0725
0 0.4437 0.4437
0.1407 0.1411
4 0.0329 0.0329

The numerical results are presented for the

heat source coefficient coefficient A"
ranging from O to 1, the exponent of wall

internal

temperature A ranging from 0 to 1.0, the non-linear
temperature parameter ¢ ranging from 0 to 1, the
blowing/suction parameter £ ranging from —10 to
10.

The effects of the non-linear temperature
parameter ¢ on the dimensionless velocity and
temperature profiles with A =0, =0, A*=0 are
illustrated in Figs. 2 and 3, respectively. In Fig. 2,
for 6= 0 and 6= 1, the dimensionless velocity
profile obtained by them are equal. Only 6 = 2 , the
dimensionless velocity profile increases significantly.
the in the non-linear

In Figure 3, increase

temperature parameter 0 results in a decrease in the
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dimensionless temperature profile.

The effects of the non-linear temperature
parameter & on the dimensionless velocity and
temperature profiles with A =0,§ =0, A*=1are
illustrated in Figs. 4 and 5, respectively. In Fig. 4, in
the case of an internal heat source coefficient (A*
= 1), the & value increases and the dimensionless
velocity increases. In Figure 5, When A=1, 6=0,
the dimensionless temperature profile of the initial
section of a significant increase in the phenomenon.

i A=0,£=0, A*=0

Figure 3 Dimensionless temperature profiles
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A=0,£=0, A*=1

Figure 4 Dimensionless velocity profiles
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Figure 5 Dimensionless temperature profiles

5. Conclusions

A two-dimensional laminar boundary layer
analysis is presented to study the effect of the
internal heat source coefficient on the natural
convection flow in a Darcy porous medium adjacent
to the vertical permeable plate maintained at uniform
wall temperature (UWT). The internal heat source
coefficient is of an exponential decaying form. The
control equations are solved using the Keller Box
method (KBM). The results of the various parameter
values were obtained and discussed. Comparisons
with previously published work are performed and
excellent agreement is obtained. Numerical solutions

are obtained for different values of the exponent of
wall temperature A, the blowing/suction parameter
& the internal heat source coefficient A*, the
non-linear temperature parameter & . For example:
in figs 3 and 5, When the internal heat source
coefficient A* increases from 0 to 1, the local
Nusselt number is diminished. As the non-linear
temperature parameter ¢ enhances from 0 (linear)
to 2 (non-linear), the local Nusselt number increases.
It can be seen from Fig. 5 that the phenomenon of
the heat transfer from the porous medium to the
vertical plate is very significant for the case of 8 =0
(linear temperature parameter).

Nomenclature

A* internal heat source coefficient

f dimensionless stream function

g gravitational acceleration

h,  local convective heat transfer coefficient
K permeability of the porous medium

Nu:  |ocal Nusselt number

p pressure

9  Jocal heat flux

modified local Rayleigh number

temperature

T
P pressure
u Darcy velocity in the x-direction
%

Darcy velocity in the y-direction

w  variable blowing/suction velocity

X streamwise coordinate

y transverse coordinate

Greek symbols
o equivalent thermal diffusivity
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coefficient of thermal expansion
coefficient of thermal expansion

the non-linear temperature parameter
pseudo-similarity variable
dimensionless temperature

exponent of wall temperature

the blowing/suction parameter
density

stream function
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