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Abstract 

The effects of the exponential decaying viscosity and internal heat generation on free convection 

of a non-Newtonian fluid flow over a vertical flat plate embedded in a saturated-porous medium are 

numerically analyzed. The surface of the vertical flat plate is maintained at variable wall temperature 

and variable wall concentration (VWT/VWC). To obtain the similarity solution, the internal heat 

generation is of an exponential decaying form. The viscosity of the fluid is assumed to follow 

Reynolds viscosity model. The similar governing equations are obtained by using a suitable 

coordinate transformation and then solved by Keller box method (KBM). Comparisons with 

previously published work are performed and excellent agreement is obtained. Numerical data for the 

dimensionless temperature profile, the dimensionless concentration profile, the local Nusselt number 

and the local Sherwood number are presented for the viscosity parameter Ω, the internal heat 

generation coefficient A
*
, the power-law index of the non-Newtonian fluid n, the exponent of 

VWT/VWC λ, the buoyancy ratio N, and the Lewis number Le. The local Nusselt number decreases 

as the internal heat generation coefficient A
*
 and the Lewis number Le are increased. However, the 

local Sherwood number increases with A
*
 and Le. An increase in the power-law index n tends to 

retard the flow and thus reduces the local Nusselt number and the local Sherwood number. Increasing 

the viscosity parameter Ω, the exponent of VWT/VWC λ and the buoyancy ratio N leads to an 

increase in the buoyancy force, and thus increases the local Nusselt number and the local Sherwood 

number. 

Keywords: Exponential viscosity, internal heat generation, free convection, non-Newtonian fluid, 

vertical flat plate, porous media 
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摘要 

    本文以一數值方法分析：指數遞減黏度與內部熱源效應，對於在飽和多孔性介質內非牛

頓流體流經一垂直平板之自然對流熱傳與質傳影響。垂直平板的表面維持於可變壁溫度/可變

壁濃度條件。為了要得到一相似解，內部熱源形式假設為指數漸減。流體的黏度假設為依循

雷諾黏度模式。首先以合適的座標轉換可得到一組相似方程式，再以凱勒盒子法來求解。數

值計算結果與已發表的論文作比較，結果非常吻合。數值計算結果主要顯示：黏度參數，內

部熱源係數，非牛頓流體之冪次律指標，可變壁溫度/可變壁濃度指數，浮力比，路易士數，

對於無因次溫度分佈、無因次濃度分佈、局部紐塞爾數(Nusselt number)和局部希爾吾德數

(Sherwood number)之影響。局部紐塞爾數隨著內部熱源係數與路易士數之增大而降低。但局

部希爾吾德數數隨著內部熱源參數與路易士數之增大而增加。當增加冪次律指標時，會降低

流速，進而降低局部紐塞爾數和局部希爾吾德數數。增大黏度參數，可變壁溫度/可變壁濃度

指數與浮力比，則增加局部紐塞爾數和局部希爾吾德數數。 

關鍵字：指數黏度，內部熱源，自然對流，非牛頓流體，垂直平板，多孔性介質 

 

1. Introduction 

 

Double diffusion by free convection flow in a 

saturated porous medium with Newtonian and 

non-Newtonian fluids may be found in geophysical, 

geothermal and industrial applications, such as 

extraction of geothermal energy and disposal of 

underground nuclear wastes. Ingham and Pop [1] 

presents a comprehensive account of the available 

information in this field. 

A number of industrially important fluids, 

including fossil fuels which can saturate underground 

beds, display the behavior of non-Newtonian. The 

non-linear relationship between shear strain rate and 

shear stress of non-Newtonian fluids in porous matrix 

is quite different from that of Newtonian fluids in 

porous media. In the aspect of pure heat transfer, 

Chen and Chen [2], Yih [3], Wang et al. [4] 

investigated the cases of the vertical flat plate [2], 

cone [3], and axisymmetric and two-dimensional 

bodies [4]. In the aspect of coupled heat and mass 

transfer, double-diffusion from a vertical surface in a 

porous region saturated with a non-Newtonian fluid 

was studied by Rastogi and Poulikakos [5]. Cheng 

[6-7] examined the natural convection heat and mass 

transfer of non-Newtonian power law fluids for a 

vertical wavy surface [6] and vertical truncated cone 

[7], respectively.  

The effect of internal heat generation is 

important in several applications that include reactors 

safety analyses, metal waste form development for 

spent nuclear fuel, fire and combustion studies, and 

the storage of radioactive materials. Grosan and Pop 

[8] extended the research of Chen and Chen [2] to 

investigate the free convection over the vertical flat 

plate with a variable wall temperature and internal 

heat generation in a porous medium saturated with a 

non-Newtonian fluid. Chamkha et al. [9] studied 

effect of variable suction/injection on free convection 

along a vertical plate in a nanofluid saturated 

non-Darcy porous medium with internal heat 

generation. Yih and Huang [10-11] analyzed the 

effect of internal heat generation on free convection 

flow of non-Newtonian fluids over a vertical flat 
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plate [10] and vertical truncated cone [11] in porous 

media for the case of variable wall temperature and 

variable wall concentration (VWT/VWC), 

respectively. The work of Yih and Huang [10] ([11]) 

is the extension of Grosan and Pop [8] (Cheng [7]). 

Recently, Huang [12] studied the effect of thermal 

radiation and internal heat generation on natural 

convection from a vertical flat plate in porous media 

considering Soret/Dufour effects. Influence of 

internal heat generation and thermal radiation on the 

MHD-free convection of non-Newtonian fluids over 

a vertical permeable plate in porous media with 

Soret/Dufour effects was investigated by Huang [13]. 

In all the above-mentioned studies [2-13], the 

viscosity of the fluid was assumed to be constant. 

However, it is known that the fluid physical 

properties may change significantly with temperature 

changes. To accurately predict the flow behavior, it is 

necessary to take into account this variation of 

viscosity with temperature. Bagai [14] investigated 

the effect of Reynolds viscosity model (the viscosity 

decreases exponential with temperature) on free 

convection over a non-isothermal axisymmetric body 

in a porous medium with internal heat generation. 

Kairi et al. [15] studied effect of viscous dissipation 

on natural convection in a non-Darcy porous medium 

saturated with non-Newtonian fluid of variable 

viscosity. Mahmoud [16] analyzed variable viscosity 

effect on free convection of a non-Newtonian 

power-law fluid over a vertical cone in a porous 

medium with variable heat flux (VHF). Mahmoud 

[17] examined radiation effect on free convection of a 

non-Newtonian fluid over a vertical cone embedded 

in a porous medium with heat generation. Effect of 

variable viscosity on free convective heat transfer 

over a non-isothermal body of arbitrary shape in a 

non-Newtonian fluid saturated porous medium with 

internal heat generation Bagai and Nishad [18]. 

Narayana et al. [19] investigated Soret and 

exponential viscosity effects on the natural 

convection from a vertical plate in a thermally 

stratified porous medium saturated with 

non-Newtonian liquid. Makinde, and Mishra [20] 

studied On stagnation point flow of variable viscosity 

nanofluids past a stretching surface with radiative 

heat. Khan et al. [21] presented the non-aligned 

MHD stagnation point flow of variable viscosity 

nanofluids past a stretching sheet with radiative heat. 

Bioconvection in rotating system immersed in 

nanofluid with temperature dependent viscosity and 

thermal conductivity was examined by Xun [22]. 

The objective of the present work, therefore, is 

to follow Reynolds viscosity model [14-22] and 

extend the work of Yih and Huang [10] to investigate 

the exponential decaying viscosity and internal heat 

generation effects on heat and mass transfer by the 

free convection flow of a non-Newtonian fluid over a 

vertical flat plate embedded in a saturated-porous 

medium. To the best of our knowledge, this problem 

has not been investigated before. The governing 

equations have been solved numerically using Keller 

box method (KBM). The results are obtained for 

various values of the parameters. 

 

2. Analysis 

 

In this paper, we consider the problem of the 

effects of the exponential decaying viscosity and 

internal heat generation on combined heat and mass 

free convection flow of non-Newtonian fluids over a 

vertical flat plate embedded in a fluid-saturated 

porous medium. Figure 1 shows the flow model and 

http://link.springer.com.er.lib.ncku.edu.tw:2048/search?facet-author=%22Shobha+Bagai%22
http://link.springer.com.er.lib.ncku.edu.tw:2048/search?facet-author=%22Chandrashekhar+Nishad%22
http://heattransfer.asmedigitalcollection.asme.org.er.lib.ncku.edu.tw:2048/solr/searchresults.aspx?author=M.+Narayana&q=M.+Narayana
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physical coordinate system. The origin of the 

coordinate system is placed at the leading edge of the 

vertical flat plate, where x and y are Cartesian 

coordinates measuring distance along and normal to 

the surface of vertical flat plate, respectively. 

 

 

 

Fig. 1 Flow model and physical coordinate system 

 

We consider the boundary condition of variable wall 

temperature Tw(x) and variable wall concentration 

Cw(x) (VWT/VWC); Tw(x) and Cw(x) are higher than 

the ambient temperature T∞ and ambient 

concentration C∞, respectively. The variations of fluid 

properties are limited to density variation that affects 

the buoyancy force term only. The viscous dissipation 

effect is neglected for the low velocity. 

Introducing the boundary layer 

approximation ),//( uvyx   and 

Boussinesq approximation, the governing equations 

and the boundary conditions based on the Darcy law 

(It is valid under the condition of low velocity and 

small pores of porous medium [23]) can be written as 

follows [10, 14-22]: 

Continuity equation: 
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Concentration equation: 
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Boussinesq approximation: 
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Here, u and v are the Darcian velocities in the x- and 

y- directions; K(n) is the modified permeability of the 

porous medium; g is the gravitational acceleration; μ, 

p and ρ are the modified viscosity, the pressure and 

the density of the fluid, respectively; T and C are the 

volume-averaged temperature and concentration, 

respectively; α and DM are the equivalent thermal 

diffusivity and mass diffusivity, respectively; q   is 

the internal heat generation rate per unit volume; Cp 

is the specific heat at constant pressure; βT and βC are 

the thermal and concentration expansion coefficients 

of the fluid, respectively; a1 and b1 are positive 

constants; λ is the exponent of VWT/VWC.  

The fluid is Newtonian at the power-law index n 

= 1; n < 1 and n > 1 correspond to pseudo-plastic and 

dilatant fluids, respectively. The power law model of 

Ostwald-de-Waele adopted is according to 

Christopher and Middleman [24] and Dharmadhikari 

and Kale [25]. 
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The stream function   is defined by 

yu  / , xv  / .          (8) 

Therefore, the continuity equation is 

automatically satisfied. 

Integrating equation (2) once and with the aid of 

equation (7), then we get 

    .)(   CCTTngKu CT
n    (9) 

Invoking the following dimensionless similarity 

variables: 

n
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where Rax is the local Rayleigh number for the flow 

through the porous medium. 

The internal heat generation rate per unit volume 

q   is modeled according to the following equation 

[8-13]: 
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Here, k is the equivalent thermal conductivity. 

A
*
 is the coefficient of internal heat generation. Note 

that when A
*
 = 0, this case corresponds to the absence 

of internal heat generation while for A
*
 > 0, the case 

corresponds to the presence of internal heat 

generation. 

The fluid viscosity obeying Reynolds viscosity 

model is given by [14-22]: 

  . 
 e               (12) 

where μ∞ is the viscosity at the ambient medium and 

Ω is the dimensionless viscosity parameter depending 

on the nature of the fluid. This model can be 

applicable in many processes where pre-heating of 

the fuel is used as a means to enhanced heat transfer 

effect. Besides, for many fluids such as lubricants, 

polymers, an appropriate constitutive relation where 

viscosity is a function of temperature should be used 

[15]. 

Substituting equations (10)-(12) into equations 

(9), (3)-(4), (6)-(7), we can obtain 
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The boundary conditions are defined as follows: 
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where primes denote differentiation with respect to η. 

Besides, the buoyancy ratio N and the Lewis number 

Le are defined as follows, respectively: 
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In addition, in terms of the new variables, the 

Darcian velocities in x- and y- directions are, 

respectively, given by 
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The results of practical interest in many 

applications are both the surface heat and mass 

transfer rates. The surface heat and mass transfer 

rates are expressed in terms of the local Nusselt 

number Nux and the local Sherwood number Shx 

respectively, which are basically defined as follows: 
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where hx, hm,x are local convective heat transfer 

coefficient and local convective mass transfer 

coefficient, respectively; qw and mw are the local heat 

flux and the local mass flux, respectively; and  

  TxThq wxw )(  (the Newton’s law of cooling) 

and   CxChm wxmw )(,  (the analogy between 

the mass transfer and the heat transfer). 

From the Fourier’s law of heat conduction and 

the Fick’s law of mass diffusion, the rate of surface 

heat transfer qw and the rate of surface mass transfer 

mw are defined as follows, respectively: 
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Inserting equation (23) into equations (21)-(22) 

and with the aid of equation (10), the local Nusselt 

number Nux and the local Sherwood number Shx in 

terms of n

xRa 2
1

 are, respectively, obtained by 
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For the case of Ω = 0, equations (13)-(17), are 

reduced to those of Yih and Huang [10] where a 

similar solution was obtained previously.  

 

3. Numerical Method 

 

The present analysis integrates the system of 

equations (13)-(17) by the implicit finite difference 

approximation together with the modified Keller box 

method of Cebeci and Bradshaw [26]. The Keller box 

method comprises four stages: 1) Decomposition of 

the N
th
 order partial differential equation system to N 

first order equations. 2) Finite difference 

discretization. 3) Quasi-linearization of non-linear 

Keller algebraic equations. 4) Block-tridiagonal 

elimination solution of the linearized Keller algebraic 

equations. To begin with, the differential equations 

are first converted into a system of five first-order 

equations. Then these first-order equations are 

expressed in finite difference forms and solved along 

with their boundary conditions by an iterative scheme. 

This approach gives a better rate of convergence and 

reduces the numerical computational times. 

Computations were carried out on a personal 

computer with the first step size Δη1 = 0.01. The 

variable grid parameter is chosen 1.01 and the value 

of η∞ = 20. The iterative procedure is stopped to give 

the final temperature and concentration distributions 

when the errors in computing the w   and w  in the 

next procedure become less than 10
-5

. 

 

4. Results and Discussion 

 

In order to verify the accuracy of our present 

method, we have compared our results with those of 

Yih [27], Bejan and Khair [28], Wang et al. [4], 

Bagai [14], Bagai and Nishad [18], Grosan and Pop 

[8], Yih and Huang [11].  

Table 1 illustrates the comparison of values of 

n

xx RaNu 2
1

/  and n

xx RaSh 2
1

/  for various values of λ 

with N = 1, Le = 10, n = 1, A
*
 = 0, Ω = 0, respectively. 

Table 2 shows the comparison of values of 

n

xx RaNu 2
1

/  for various values of n = λ with N = A
*
 

= Ω = 0. Table 3 displays the comparison of values 

of n

xx RaNu 2
1

/  for various values of λ and Ω with n 

= A
*
 = 1, N = 0. Table 4 portrays the comparison of 

values of n

xx RaNu 2
1

/  for various values of n, λ and 

Ω with A
*
 = 1, N = 0. Tables 5 and 6 list the 

comparison of values of n

xx RaNu 2
1

/  and 

http://link.springer.com.er.lib.ncku.edu.tw:2048/search?facet-author=%22Shobha+Bagai%22
http://link.springer.com.er.lib.ncku.edu.tw:2048/search?facet-author=%22Chandrashekhar+Nishad%22
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n

xx RaSh 2
1

/  for various values of n, λ and A
*
 with N = 

4, Le = 10, Ω = 0, respectively.  

The comparisons in all the above cases are 

found to be in excellent agreement, as shown in 

Tables 1-6. The value of the heat transfer is negative 

in Tables 3-5. It means the heat transfer from the 

porous medium to the plate. 

 

Table 1 Comparison of values of n

xx RaNu 2
1

/  and 

n

xx RaSh 2
1

/  for various values of λ with 

N = 1, Le = 10, n = 1, A
*
 = 0, Ω = 0 

λ 

n

xx RaNu 2
1

/  n

xx RaSh 2
1

/  

Yih 

[27] 

Present 

results 

Yih 

[27] 

Present 

results 

0.0 0.5215 
0.5214 

(0.521 ) 
2.2021 

2.2019 

(2.202 ) 

1/3 0.8053 0.8053 3.3394 3.3390 

1/2 0.9179 0.9179 3.7900 3.7895 

1.0 1.1967 1.1967 4.9064 4.9055 

Results in parentheses are those of Bejan and Khair 

[28] 

 

Table 2 Comparison of values of n

xx RaNu 2
1

/  for 

various values of n = λ with N = A
*
 = Ω = 0 

n = λ 

n

xx RaNu 2
1

/  

Wang et al. [4] Present results 

0.25 0.5000 0.5000 

0.5 0.7071 0.7071 

0.75 0.8660 0.8660 

1 1.0000 1.0000 

1.5 1.2247 1.2247 

2.0 1.4142 1.4142 

3.0 1.7321 1.7320 

 

Table 3 Comparison of values of n

xx RaNu 2
1

/  for 

various values of λ and Ω  

with n = A
*
 = 1, N = 0 

λ 

n

xx RaNu 2
1

/  

Ω = 0.1 Ω = 0.5 

Bagai 

[14] 

Present 

results 

Bagai 

[14] 

Present 

results 

0.0 −0.1900 −0.1892 −0.0800 −0.0792 

0.5 0.2751 0.2750 0.4411 0.4412 

1.0 0.5716 0.5713 0.7748 0.7746 

 

Table 4 Comparison of values of n

xx RaNu 2
1

/  for 

various values of n, λ and Ω  

with A
*
 = 1, N = 0 

n λ 

n

xx RaNu 2
1

/  

Ω = 0.0 Ω = 0.75 

Bagai 

and 

Nishad 

[18] 

Present 

results 

Bagai and 

Nishad 

[18] 

Present 

results 

0.5 0.0 −0.2574 −0.2576 0.1659 0.1658 

 1/3 (0.0800) 0.0802 — 0.7006 

 1.0 (0.4697) 0.4698 — 1.3382 

1 0.0 −0.2152 −0.2153 −0.0053 −0.0054 

 1/3 (0.1141) 0.1141 — 0.4003 

 1.0 (0.5254) 0.5241 — 0.9151 

2.0 0.0 −0.1780 −0.1780 −0.0725 −0.0725 

 1/3 (0.1457) 0.1457 — 0.2869 

 1.0 (0.5699) 0.5686 — 0.7563 

Results in parentheses are those of Grosan and Pop 

[8] 

 

Table 5 Comparison of values of n

xx RaNu 2
1

/  for 

http://link.springer.com.er.lib.ncku.edu.tw:2048/search?facet-author=%22Shobha+Bagai%22
http://link.springer.com.er.lib.ncku.edu.tw:2048/search?facet-author=%22Chandrashekhar+Nishad%22
http://link.springer.com.er.lib.ncku.edu.tw:2048/search?facet-author=%22Shobha+Bagai%22
http://link.springer.com.er.lib.ncku.edu.tw:2048/search?facet-author=%22Chandrashekhar+Nishad%22
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various values of n, λ and A
* 

with N = 4, Le = 10, Ω = 0 

 

n λ 

n

xx RaNu 2
1

/  

A
*
 = 0 A

*
 = 1 

Yih and 

Huang 

[11] 

Present 

results 

Yih and 

Huang 

[11] 

Present 

results 

0.5 0.0 1.0105 1.0104 0.2404 0.2402 

 0.5 1.9584 1.9584 1.2846 1.2846 

1 0.0 0.6811 0.6810 −0.0191 −0.0192 

 0.5 1.2206 1.2206 0.6468 0.6468 

2.0 0.0 0.6030 0.6030 −0.0837 −0.0837 

 0.5 1.0203 1.0203 0.4604 0.4604 

 

Table 6 Comparison of values of n

xx RaSh 2
1

/  for 

various values of n, λ and A
* 

with N = 4, Le = 10, Ω = 0 

n λ 

n

xx RaSh 2
1

/  

A
*
 = 0 A

*
 = 1 

Yih and 

Huang 

[11] 

Present 

results 

Yih and 

Huang 

[11] 

Present 

results 

0.5 0.0 6.3671 6.3671 6.4412 6.4413 

 0.5 11.9022 11.9022 11.9786 11.9786 

1 0.0 3.2892 3.2892 3.3311 3.3311 

 0.5 5.6856 5.6856 5.7266 5.7266 

2.0 0.0 2.4022 2.4022 2.4247 2.4247 

 0.5 3.9682 3.9682 3.9901 3.9901 

 

The following numerical results are graphically 

and tabularly presented for the buoyancy ratio N = 1, 

the Lewis number Le = 10, the viscosity parameter Ω 

ranging from 0 (constant viscosity) to 1, the internal 

heat generation coefficient A
*
 = 0 (without internal 

heat generation) and 1, the power-law index of the 

non-Newtonian fluid n = 0.5 (pseudo-plastic fluid) 

and 2.0 (dilatant fluid), and the exponent of 

VWT/VWC λ = 0 (uniform wall temperature and 

uniform wall concentration) and 1. 

    The effects of the viscosity parameter Ω and the 

internal heat generation coefficient A
*
 on the 

dimensionless temperature and concentration profiles 

for N = 1, Le = 10, λ = 0, n = 2.0, are shown in Figs. 

2 and 3, respectively. In Fig. 2, on the one hand, for 

the fixed Ω, it is observed that the dimensionless 

temperature profile θ(η) increases with increasing the 

internal heat generation coefficient A
*
, thus 

thickening the thermal boundary layer thickness, i.e., 

δT, yet decreasing the dimensionless wall temperature 

gradient, i.e.,  )0( . Besides, there is an 

overshoot in the dimensionless temperature profile 

for the case of Ω = 0, A
* 

= 1 where heat transfer is 

from the porous medium to the vertical flat plate. The 

phenomenon of overshoot is also found in work of 

Yih and Huang [11-12].  

On the other hand, for the fixed A
*
, increasing 

the viscosity parameter Ω enhances the dimensionless 

wall temperature gradient. With the aid of equation 

(12), increasing the viscosity parameter Ω tends to 

reduce the fluid viscosity thereby enhancing both the 

flow velocity and the dimensionless wall temperature 

gradient, yet reducing the dimensionless temperature 

profile and the thermal boundary layer thickness. 

Fig. 3 shows that for the fixed Ω, the 

dimensionless concentration profile )(  decreases 

with increasing the internal heat generation 

coefficient A
*
, thus thinning the concentration 

boundary layer thickness, i.e., δC. For the fixed A
*
, 

when the viscosity parameter Ω is increased has a 

tendency to enhance the dimensionless wall 



航空技術學院學報  第十七卷  第 1－14 頁（民國一○ 七年） 

Journal of Air Force Institute of Technology, Vol. 17 , pp. 1-14, 2018 

9 

concentration gradient, i.e.,  )0( . 

 

Fig. 2 Effects of the viscosity parameter and the 

internal heat generation coefficient on the 

dimensionless temperature profile 

 

Fig. 3 Effects of the viscosity parameter and the 

internal heat generation coefficient on the 

dimensionless concentration profile 

 

For the sake of future comparison, Tables 7 and 

8 exhibit the values of n

xx RaNu 2
1

/  and n

xx RaSh 2
1

/  

for various values of λ, Ω, n and A
*
 with N = 1, Le = 

10, respectively. In Table 7, on the one hand, for the 

fixed λ, Ω and n, the local Nusselt number tends to 

decrease as the internal heat generation coefficient A
*
 

is increased. This is because increasing the internal 

heat generation coefficient A
*
 increases the thermal 

boundary layer thickness, as revealed in Fig. 2. The 

thicker the thermal boundary layer thickness, the 

smaller the local Nusselt number. The negative 

values of the local Nusselt number in Table 7 mean 

the heat transfer from the porous medium to the 

vertical flat plate.  

On the other hand, for the fixed λ, n and A
*
, the 

local Nusselt number increases as the viscosity 

parameter Ω is increased. This is due to the fact that 

increasing the viscosity parameter Ω tends to increase 

the dimensionless wall temperature gradient, as 

shown in Fig. 2. With the help of equation (24), the 

greater the dimensionless wall temperature gradient, 

the larger the local Nusselt number.  

 

Table 7 Values of n

xx RaNu 2
1

/  for various values of 

λ, Ω, n and A
*
 with N = 1, Le = 10 

λ Ω 

n

xx RaNu 2
1

/  

n = 0.5 n = 2.0 

A
*
 = 0 A

*
 = 1 A

*
 = 0 A

*
 = 1 

0 0.0 0.5395 −0.1324 0.5328 −0.1451 

 1/4 0.6641 0.0240 0.5566 −0.1092 

 1/2 0.8199 0.2052 0.5818 −0.0723 

 3/4 1.0151 0.4194 0.6083 −0.0343 

 1.0 1.2599 0.6769 0.6362 0.0048 

1 0.0 1.3633 0.8555 1.1497 0.6601 

 1/4 1.6784 1.1976 1.2022 0.7253 

 1/2 2.0723 1.6115 1.2574 0.7930 

 3/4 2.5651 2.1177 1.3157 0.8633 

 1.0 3.1824 2.7422 1.3771 0.9364 

 








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In Table 8, for the fixed λ, n and Ω, the local 

Sherwood number tends to increase slightly as the 

internal heat generation coefficient A
*
 is increased. 

This is due to the fact that increasing the internal heat 

generation coefficient A
*
 decreases slightly the 

concentration boundary layer thickness, as unveiled 

in Fig. 3. The thinner the concentration boundary 

layer thickness, the greater the local Sherwood 

number.  

For the fixed λ, n and A
*
, the local Sherwood 

number increases as the viscosity parameter Ω is 

increased. This is owing to the fact that enhancing the 

viscosity parameter Ω increases the dimensionless 

wall concentration gradient, as shown in Fig. 3. With 

the aid of equation (24), the greater the dimensionless 

wall concentration gradient, the larger the local 

Sherwood number. 

 

Table 8 Values of n

xx RaSh 2
1

/  for various values of λ, 

Ω, n and A
*
 with N = 1, Le = 10 

λ Ω 

n

xx RaSh 2
1

/  

n = 0.5 n = 2.0 

A
*
 = 0 A

*
 = 1 A

*
 = 0 A

*
 = 1 

0 0.0 2.8019 2.9426 1.9713 2.0115 

 1/4 3.5483 3.7350 2.0855 2.1384 

 1/2 4.4971 4.7283 2.2066 2.2721 

 3/4 5.7031 5.9782 2.3352 2.4130 

 1.0 7.2358 7.5555 2.4716 2.5616 

1 0.0 6.8367 6.9721 4.1713 4.2092 

 1/4 8.6511 8.8261 4.4113 4.4599 

 1/2 10.9542 11.1683 4.6659 4.7249 

 3/4 13.8752 14.1293 4.9360 5.0051 

 1.0 17.5734 17.8702 5.2227 5.3014 

 

Moreover, decreasing the power-law index n 

tends to increase the velocity of the flow, thereby 

enhancing the local Nusselt number and the local 

Sherwood number. Thus, the pseudo-plastic fluids (n 

= 0.5) are superior to the dilatant fluids (n = 2.0) 

from the viewpoint of the free convection heat and 

mass transfer rates from a vertical plate embedded in 

a porous medium saturated with non-Newtonian 

power-law fluids. This result corresponds with the 

work of Cheng [7]. Increasing the exponent of 

VWTVWC λ tends to increase the buoyancy force, 

accelerating the flow and thereby increasing the local 

Nusselt number and the local Sherwood number. 

Similar behavior was observed by Yih and Huang 

[10-11]. 

 

5. Conclusions 

 

A laminar boundary layer analysis is presented 

to study the effects of exponential decaying viscosity 

and internal heat generation on natural convection 

flow of non-Newtonian power-law fluids in a Darcy 

porous medium resulting from combined heat and 

mass buoyancy effects adjacent to the vertical flat 

plate maintained at variable wall temperature and 

variable wall concentration (VWT/VWC). The 

Ostwald–de Waele power-law model is used to 

characterize the non-Newtonian behavior of the fluid. 

The viscosity of the fluid is assumed to follow 

Reynolds viscosity model. The internal heat 

generation is of an exponential decaying form.  

Enhancing the viscosity parameter Ω, the 

buoyancy ratio N and the exponent of VWT/VWC λ 

tends to increase the local Nusselt number as well as 

the local Sherwood number. The local Nusselt 
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(Sherwood) number tends to decrease (increase) as 

both the internal heat generation coefficient A
*
 and 

the Lewis number Le are increased. In addition, a 

decrease in the power-law index n of fluids tends to 

increase the heat and mass transfer. 

 

Nomenclature 

A
*
 internal heat generation coefficient 

a1 positive constant 

b1 positive constant 

C concentration 

Cp  
specific heat at constant pressure 

DM mass diffusivity 

f dimensionless stream function 

g gravitational acceleration 

hx local convective heat transfer coefficient 

hm,x  local convective mass transfer coefficient 

K(n) modified permeability of the porous medium 

k equivalent thermal conductivity 

Le Lewis number 

mw local wall mass flux 

N buoyancy ratio 

Nux local Nusselt number 

n  power-law index of the non-Newtonian fluid 

p pressure 

q    internal heat generation rate per unit volume 

qw local wall heat flux 

Rax modified local Rayleigh number 

Shx local Sherwood number 

T temperature 

u Darcy velocity in the x-direction 

v Darcy velocity in the y-direction 

x streamwise coordinate 

y transverse coordinate 

 

Greek symbols 

α equivalent thermal diffusivity 

βC coefficient of concentration expansion 

βT coefficient of thermal expansion 

δC  concentration boundary layer thickness  

δT  thermal boundary layer thickness  

η similarity variable 

θ dimensionless temperature 

λ exponent of VWT/VWC 

μ viscosity 

ρ density 

  dimensionless concentration 

  stream function 

Ω viscosity parameter 

 

Subscripts 

w condition at the wall 

∞ ambient 
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