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Effects of Exponential Viscosity and Internal Heat Generation on Free
Convection of Non-Newtonian Fluids Flow over A Vertical Plate in Porous Media:
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Abstract

The effects of the exponential decaying viscosity and internal heat generation on free convection
of a non-Newtonian fluid flow over a vertical flat plate embedded in a saturated-porous medium are
numerically analyzed. The surface of the vertical flat plate is maintained at variable wall temperature
and variable wall concentration (VWT/VWC). To obtain the similarity solution, the internal heat
generation is of an exponential decaying form. The viscosity of the fluid is assumed to follow
Reynolds viscosity model. The similar governing equations are obtained by using a suitable
coordinate transformation and then solved by Keller box method (KBM). Comparisons with
previously published work are performed and excellent agreement is obtained. Numerical data for the
dimensionless temperature profile, the dimensionless concentration profile, the local Nusselt number
and the local Sherwood number are presented for the viscosity parameter ©Q, the internal heat
generation coefficient A", the power-law index of the non-Newtonian fluid n, the exponent of
VWT/VWC 4, the buoyancy ratio N, and the Lewis number Le. The local Nusselt number decreases
as the internal heat generation coefficient A" and the Lewis number Le are increased. However, the
local Sherwood number increases with A” and Le. An increase in the power-law index n tends to
retard the flow and thus reduces the local Nusselt number and the local Sherwood number. Increasing
the viscosity parameter Q, the exponent of VWT/VWC 1 and the buoyancy ratio N leads to an
increase in the buoyancy force, and thus increases the local Nusselt number and the local Sherwood
number.

Keywords: Exponential viscosity, internal heat generation, free convection, non-Newtonian fluid,
vertical flat plate, porous media
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1. Introduction

Double diffusion by free convection flow in a
saturated porous medium with Newtonian and
non-Newtonian fluids may be found in geophysical,
geothermal and industrial applications, such as
extraction of geothermal energy and disposal of
underground nuclear wastes. Ingham and Pop [1]
presents a comprehensive account of the available

information in this field.

A number of industrially important fluids,
including fossil fuels which can saturate underground
beds, display the behavior of non-Newtonian. The
non-linear relationship between shear strain rate and
shear stress of non-Newtonian fluids in porous matrix
is quite different from that of Newtonian fluids in
porous media. In the aspect of pure heat transfer,
Chen and Chen [2], Yih [3], Wang et al. [4]
investigated the cases of the vertical flat plate [2],
cone [3], and axisymmetric and two-dimensional
bodies [4]. In the aspect of coupled heat and mass
transfer, double-diffusion from a vertical surface in a
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porous region saturated with a non-Newtonian fluid
was studied by Rastogi and Poulikakos [5]. Cheng
[6-7] examined the natural convection heat and mass
transfer of non-Newtonian power law fluids for a
vertical wavy surface [6] and vertical truncated cone
[7], respectively.

The effect of
important in several applications that include reactors

internal heat generation is
safety analyses, metal waste form development for
spent nuclear fuel, fire and combustion studies, and
the storage of radioactive materials. Grosan and Pop
[8] extended the research of Chen and Chen [2] to
investigate the free convection over the vertical flat
plate with a variable wall temperature and internal
heat generation in a porous medium saturated with a
[9] studied
effect of variable suction/injection on free convection

non-Newtonian fluid. Chamkha et al.

along a vertical plate in a nanofluid saturated
heat
generation. Yih and Huang [10-11] analyzed the

non-Darcy porous medium with internal

effect of internal heat generation on free convection
flow of non-Newtonian fluids over a vertical flat
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plate [10] and vertical truncated cone [11] in porous
media for the case of variable wall temperature and
variable  wall concentration (VWT/VWC),
respectively. The work of Yih and Huang [10] ([11])
is the extension of Grosan and Pop [8] (Cheng [7]).
Recently, Huang [12] studied the effect of thermal
radiation and internal heat generation on natural
convection from a vertical flat plate in porous media
considering  Soret/Dufour effects. Influence of
internal heat generation and thermal radiation on the
MHD-free convection of non-Newtonian fluids over
a vertical permeable plate in porous media with

Soret/Dufour effects was investigated by Huang [13].

In all the above-mentioned studies [2-13], the
viscosity of the fluid was assumed to be constant.
However, it is known that the fluid physical
properties may change significantly with temperature
changes. To accurately predict the flow behavior, it is
necessary to take into account this variation of
viscosity with temperature. Bagai [14] investigated
the effect of Reynolds viscosity model (the viscosity
decreases exponential with temperature) on free
convection over a non-isothermal axisymmetric body
in a porous medium with internal heat generation.
Kairi et al. [15] studied effect of viscous dissipation
on natural convection in a non-Darcy porous medium
saturated with non-Newtonian fluid of variable
viscosity. Mahmoud [16] analyzed variable viscosity
effect on free convection of a non-Newtonian
power-law fluid over a vertical cone in a porous
medium with variable heat flux (VHF). Mahmoud
[17] examined radiation effect on free convection of a
non-Newtonian fluid over a vertical cone embedded
in a porous medium with heat generation. Effect of
variable viscosity on free convective heat transfer

over a non-isothermal body of arbitrary shape in a

non-Newtonian fluid saturated porous medium with
internal heat generation Bagai and Nishad [18].
[19]
viscosity effects on

Narayana et al. investigated Soret and
the
convection from a vertical plate in a thermally
with

non-Newtonian liquid. Makinde, and Mishra [20]

exponential natural

stratified ~ porous  medium  saturated
studied On stagnation point flow of variable viscosity
nanofluids past a stretching surface with radiative
heat. Khan et al. [21] presented the non-aligned
MHD stagnation point flow of variable viscosity
nanofluids past a stretching sheet with radiative heat.
Bioconvection in rotating system immersed in
nanofluid with temperature dependent viscosity and

thermal conductivity was examined by Xun [22].

The objective of the present work, therefore, is
to follow Reynolds viscosity model [14-22] and
extend the work of Yih and Huang [10] to investigate
the exponential decaying viscosity and internal heat
generation effects on heat and mass transfer by the
free convection flow of a non-Newtonian fluid over a
vertical flat plate embedded in a saturated-porous
medium. To the best of our knowledge, this problem
has not been investigated before. The governing
equations have been solved numerically using Keller
box method (KBM). The results are obtained for
various values of the parameters.

2. Analysis

In this paper, we consider the problem of the
effects of the exponential decaying viscosity and
internal heat generation on combined heat and mass
free convection flow of non-Newtonian fluids over a
vertical flat plate embedded in a fluid-saturated
porous medium. Figure 1 shows the flow model and
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physical coordinate system. The origin of the
coordinate system is placed at the leading edge of the
vertical flat plate, where x and y are Cartesian
coordinates measuring distance along and normal to

the surface of vertical flat plate, respectively.

boundary layer

Ty (%)
Cuw(x)

]
0T,
/ C,

[ ]
saturated porous

medium with e

heat generation 0

Fig. 1 Flow model and physical coordinate system

We consider the boundary condition of variable wall
temperature T,(X) and variable wall concentration
Cuw(®¥) (VWT/VWC); Tyu(x) and C,(x) are higher than
the ambient temperature T, and ambient
concentration C,, respectively. The variations of fluid
properties are limited to density variation that affects
the buoyancy force term only. The viscous dissipation
effect is neglected for the low velocity.

layer

and

Introducing the boundary
approximation (0/ox<<oldy, v<<u)
Boussinesq approximation, the governing equations
and the boundary conditions based on the Darcy law
(1t is valid under the condition of low velocity and
small pores of porous medium [23]) can be written as
follows [10, 14-22]:

Continuity equation:

Q+ﬂ=0, (1)

XK ¥

Momentum (Darcy) equation:

%(uu“)wwgr«n)[ﬂ%wc@} @)

Energy equation:

2 m
u£+vﬂ=a—§z+ 4 ©)
X & A" pC,
Concentration equation:
2
u@+v@=DMg, (4)
OX oy oy

Boussinesg approximation:

p=p.i-B(T-T,)-5(C-C.) ()

Boundary conditions:

y=0: v=0, T=T,(X)=T, +ax’,

G
C=C,(x)=C_+bx",

y—>ow: u=0,T=T,6 C=C,. @)
Here, u and v are the Darcian velocities in the x- and
y- directions; K(n) is the modified permeability of the
porous medium; g is the gravitational acceleration; x,
p and p are the modified viscosity, the pressure and
the density of the fluid, respectively; T and C are the
volume-averaged temperature and concentration,
respectively; o and Dy are the equivalent thermal
diffusivity and mass diffusivity, respectively; q" is
the internal heat generation rate per unit volume; C,
is the specific heat at constant pressure; fr and Scare
the thermal and concentration expansion coefficients
of the fluid, respectively; a; and b, are positive
constants; 4 is the exponent of VWT/VWC.

The fluid is Newtonian at the power-law index n
=1;n<1andn> 1 correspond to pseudo-plastic and
dilatant fluids, respectively. The power law model of
Ostwald-de-Waele
Christopher and Middleman [24] and Dharmadhikari

and Kale [25].

adopted is according to
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The stream function y is defined by
u=owyloy, v=—0w/oX. 8)

the

automatically satisfied.

Therefore, continuity ~ equation s
Integrating equation (2) once and with the aid of
equation (7), then we get
" = p gKM[B: (T T, )+ f(C-C.)l (9)
Invoking the following dimensionless similarity

variables:
n= % Ra/# (10.1)
_ Yy
f(n) = R (10.2)
T-T,
c-C,
$(n) = CW(X)——COO (10.4)
R, = 2A LTI KO m (105)
75 a

where Ra, is the local Rayleigh number for the flow
through the porous medium.
The internal heat generation rate per unit volume

"

q" is modeled according to the following equation
[8-13]:
.k Ra/

q"=A—[T,(x)-T,] e
X

(11)

Here, k is the equivalent thermal conductivity.
A" is the coefficient of internal heat generation. Note
that when A” = 0, this case corresponds to the absence
of internal heat generation while for A* > 0, the case
corresponds to the presence of internal heat
generation.
The fluid viscosity obeying Reynolds viscosity
model is given by [14-22]:
1(0)= pe™ . (12)
where u., is the viscosity at the ambient medium and
Q is the dimensionless viscosity parameter depending

on the nature of the fluid. This model can be
applicable in many processes where pre-heating of
the fuel is used as a means to enhanced heat transfer
effect. Besides, for many fluids such as lubricants,
polymers, an appropriate constitutive relation where
viscosity is a function of temperature should be used
[15].

Substituting equations (10)-(12) into equations
(9), (3)-(4), (6)-(7), we can obtain

e (f'N=0+N g, (13)
, nN+A . , .
0"+ fo-2f0+Ae"=0  (14)
2n
BN R T (15)
Le 2n

The boundary conditions are defined as follows:
n=0: f=0, 6=1 ¢=1, (16)
0=0, ¢=0. 17)

where primes denote differentiation with respect to #.

n—>oo:

Besides, the buoyancy ratio N and the Lewis number
Le are defined as follows, respectively:
NoPlC=C.]_Ab @ g
BT -T.]  pra

Dy
In addition, in terms of the new variables, the

Darcian velocities in x- and y- directions are,
respectively, given by

i
u=2R& ¢ (19)
X
on _
yo_oRay (n+/‘tjf_(n /1)77‘”- (20)
X 2n 2n
The results of practical interest in many

applications are both the surface heat and mass
transfer rates. The surface heat and mass transfer
rates are expressed in terms of the local Nusselt
number Nu, and the local Sherwood number Sh,
respectively, which are basically defined as follows:
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where h,, h,x are local convective heat transfer

coefficient and local convective mass transfer
coefficient, respectively; g,, and m,, are the local heat
flux and the local mass flux, respectively; and
a, =h [T, () -T.] (the Newton’s law of cooling)
and m, =h,,[C,(x)-C,] (the analogy between
the mass transfer and the heat transfer).

From the Fourier’s law of heat conduction and
the Fick’s law of mass diffusion, the rate of surface
heat transfer q,, and the rate of surface mass transfer

m,, are defined as follows, respectively:

A el
w 8}/ y:O’ w M ay

Inserting equation (23) into equations (21)-(22)

. (23)

y=0

and with the aid of equation (10), the local Nusselt
number Nu, and the local Sherwood number Sh, in
terms of Rax%n are, respectively, obtained by
RNy ~[-o )], Rsa*;n _[-#0)}

For the case of Q = 0, equations (13)-(17), are
reduced to those of Yih and Huang [10] where a

(24)

similar solution was obtained previously.
3. Numerical Method

The present analysis integrates the system of
equations (13)-(17) by the implicit finite difference
approximation together with the modified Keller box
method of Cebeci and Bradshaw [26]. The Keller box
method comprises four stages: 1) Decomposition of
the N order partial differential equation system to N
first 2) Finite difference

order equations.

discretization. 3) Quasi-linearization of non-linear
4) Block-tridiagonal
elimination solution of the linearized Keller algebraic

Keller algebraic equations.

equations. To begin with, the differential equations
are first converted into a system of five first-order
equations. Then these first-order equations are
expressed in finite difference forms and solved along
with their boundary conditions by an iterative scheme.
This approach gives a better rate of convergence and

reduces the numerical computational times.

Computations were carried out on a personal
computer with the first step size 4n, = 0.01. The
variable grid parameter is chosen 1.01 and the value
of .= 20. The iterative procedure is stopped to give
the final temperature and concentration distributions
when the errors in computing the 4, and ¢, in the

next procedure become less than 10~

4. Results and Discussion

In order to verify the accuracy of our present
method, we have compared our results with those of
Yih [27], Bejan and Khair [28], Wang et al. [4],
Bagai [14], Bagai and Nishad [18], Grosan and Pop
[8], Yih and Huang [11].

Table 1 illustrates the comparison of values of
NuX/Rai/zn and ShX/RaX}/2n for various values of A
withN=1,Le=10,n=1, A" =0, Q = 0, respectively.
Table 2 shows the comparison of values of
Nu, /Ra/> for various values of n = 2 with N = A"
= Q = 0. Table 3 displays the comparison of values
of Nu,/ Rai/zn for various values of 1 and Q with n
= A" =1, N = 0. Table 4 portrays the comparison of
values of Nu, / Rax%n for various values of n, 2 and
Q with A" = 1, N = 0. Tables 5 and 6 list the
NuX/Rai/zn and

comparison of values of
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Sh, / Raff" for various values of n, 2 and A" with N =
4, Le =10, Q =0, respectively.

The comparisons in all the above cases are
found to be in excellent agreement, as shown in
Tables 1-6. The value of the heat transfer is negative
in Tables 3-5. It means the heat transfer from the
porous medium to the plate.

Table 3 Comparison of values of Nu, / Rai/zﬂ for
various values of 4 and Q

withn=A"=1,N=0

Table 1 Comparison of values of Nu, / RaX%" and

Sh, / Raff" for various values of 1 with

N=1Lle=10,n=1,A"=0,Q=0

Nu, / Ra/*"
1 Q=01 Q=05
Bagai Present Bagai Present
[14] results [14] results
0.0 | -0.1900 | -0.1892 | —-0.0800 | —0.0792
05| 0.2751 0.2750 0.4411 0.4412
1.0 | 05716 0.5713 0.7748 0.7746

Table 4 Comparison of values of Nu, / Rai/?“ for

various values of n, 4 and Q

withA"=1, N=0

Nu, /Raj Sh, /Raj*

A [Yih T present Yih Present
[27] results [27] results
0.5214 2.2019

0.0 | 0.5215 2.2021
(0.521) (2.202)
1/3 | 0.8053 0.8053 3.3394 3.3390
1/2 | 0.9179 0.9179 3.7900 3.7895
1.0 | 1.1967 1.1967 4.9064 4.9055

Results in parentheses are those of Bejan and Khair

[28]

Table 2 Comparison of values of Nu, / Rafzﬂ for

various values of n=AwithN=A"=Q=0

Nu, / Rai/zn
Q=00 Q=0.75

! ' B;r?o? | Present Bag_ai and Present
Nishad | results N['ig{]jld results

[18]
0.5]0.0 | —0.2574 | —0.2576 | 0.1659 0.1658
1/3 | (0.0800) | 0.0802 — 0.7006
1.0 | (0.4697) | 0.4698 — 1.3382
1]0.0|-0.2152 | —0.2153 | —0.0053 | —0.0054
1/3 | (0.1141) | 0.1141 — 0.4003
1.0 | (0.5254) | 0.5241 — 0.9151
2.0 0.0 | -0.1780 | —0.1780 | —0.0725 | —0.0725
1/3 | (0.1457) | 0.1457 — 0.2869
1.0 | (0.5699) | 0.5686 — 0.7563

N Nu, / Rax%n
Wang et al. [4] Present results

0.25 0.5000 0.5000
0.5 0.7071 0.7071
0.75 0.8660 0.8660
1 1.0000 1.0000
15 1.2247 1.2247
2.0 1.4142 1.4142
3.0 1.7321 1.7320

Results in parentheses are those of Grosan and Pop

[8]

Table 5 Comparison of values of Nu, / Rai/zﬂ for
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various values of n, 2 and A"

withN=4,Le=10,2=0

Nu, / Ra/*"
A" =0 A =1

n A i i
Yih and Present Yih and Present
Huang results Huang results

[11] [11]

05| 0.0 | 1.0105 | 1.0104 0.2404 0.2402
05| 1.9584 | 1.9584 1.2846 1.2846
1 |00 06811 | 0.6810 | —0.0191 | —0.0192
0.5 | 1.2206 | 1.2206 0.6468 0.6468
2.0 (0.0 | 0.6030 | 0.6030 | —0.0837 | —0.0837
0.5 | 1.0203 | 1.0203 0.4604 0.4604

Table 6 Comparison of values of Sh, / Rai/2n for
various values of n, 1 and A"

withN=4,Le=10,2=0

Sh, /Ra/”
A"=0 A=1

n A i i
Yihand Present Yih and Present
Huang results Huang results

[11] [11]

05| 00| 6.3671 6.3671 6.4412 6.4413
0.5 | 11.9022 | 11.9022 | 11.9786 | 11.9786
1 | 00| 3.2892 3.2892 3.3311 3.3311
0.5 | 5.6856 5.6856 5.7266 5.7266
20| 0.0 | 2.4022 2.4022 2.4247 2.4247
0.5 | 3.9682 3.9682 3.9901 3.9901

The following numerical results are graphically
and tabularly presented for the buoyancy ratio N = 1,
the Lewis number Le = 10, the viscosity parameter Q
ranging from 0 (constant viscosity) to 1, the internal
heat generation coefficient A* = 0 (without internal

heat generation) and 1, the power-law index of the
non-Newtonian fluid n = 0.5 (pseudo-plastic fluid)
and 2.0 (dilatant fluid), and the exponent of
VWT/NVWC A = 0 (uniform wall temperature and
uniform wall concentration) and 1.

The effects of the viscosity parameter Q and the
internal heat generation coefficient A" on the
dimensionless temperature and concentration profiles
forN=1, Le =10, 1 =0, n= 2.0, are shown in Figs.
2 and 3, respectively. In Fig. 2, on the one hand, for
the fixed @, it is observed that the dimensionless
temperature profile 6(;) increases with increasing the
heat thus
thickening the thermal boundary layer thickness, i.e.,

internal generation coefficient A’
o, yet decreasing the dimensionless wall temperature
gradient, i.e., [-@'(0)] . Besides, there is an
overshoot in the dimensionless temperature profile
for the case of Q = 0, A= 1 where heat transfer is
from the porous medium to the vertical flat plate. The
phenomenon of overshoot is also found in work of

Yih and Huang [11-12].

On the other hand, for the fixed A", increasing
the viscosity parameter 2 enhances the dimensionless
wall temperature gradient. With the aid of equation
(12), increasing the viscosity parameter 2 tends to
reduce the fluid viscosity thereby enhancing both the
flow velocity and the dimensionless wall temperature
gradient, yet reducing the dimensionless temperature
profile and the thermal boundary layer thickness.

Fig. 3 shows that for the fixed Q, the
dimensionless concentration profile ¢(r7) decreases

with

coefficient A", thus thinning the concentration

increasing the internal heat generation

boundary layer thickness, i.e., dc. For the fixed A,
when the viscosity parameter Q is increased has a
the dimensionless wall

tendency to enhance
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concentration gradient, i.e., [-¢'(0)].

121
: N=1,Le=10
B TR 2=0,n=20

Fig. 2 Effects of the viscosity parameter and the
internal heat generation coefficient on the
dimensionless temperature profile

N=1,Le=10

0.8

06

04

0.2

Fig. 3 Effects of the viscosity parameter and the
internal heat generation coefficient on the
dimensionless concentration profile

For the sake of future comparison, Tables 7 and
8 exhibit the values of Nu, /Ra/* and Sh,/Ra/*
for various values of 1, @, nand A" with N =1, Le =
10, respectively. In Table 7, on the one hand, for the
fixed 4, Q and n, the local Nusselt number tends to

decrease as the internal heat generation coefficient A"
Is increased. This is because increasing the internal
heat generation coefficient A" increases the thermal
boundary layer thickness, as revealed in Fig. 2. The
thicker the thermal boundary layer thickness, the
smaller the local Nusselt number. The negative
values of the local Nusselt number in Table 7 mean
the heat transfer from the porous medium to the
vertical flat plate.

On the other hand, for the fixed A, n and A", the
local Nusselt number increases as the viscosity
parameter Q is increased. This is due to the fact that
increasing the viscosity parameter Q tends to increase
the dimensionless wall temperature gradient, as
shown in Fig. 2. With the help of equation (24), the
greater the dimensionless wall temperature gradient,
the larger the local Nusselt number.

Table 7 VValues of Nu, / Rai/zﬂ for various values of
2, @,nand A"withN =1, Le = 10

Nu, / Ra/*"
Al Q2 n=0.5 n=2.0
A= A= A= A=
0|00 | 05395 | —0.1324 | 0.5328 | —0.1451
1/4 | 0.6641 | 0.0240 | 0.5566 | —0.1092
1/2 | 0.8199 | 0.2052 | 0.5818 | —0.0723
3/4 | 1.0151 | 0.4194 | 0.6083 | —0.0343
1.0 | 1.2599 | 0.6769 | 0.6362 | 0.0048
100 1.3633 | 0.8555 | 1.1497 | 0.6601
1/4 | 16784 | 1.1976 | 1.2022 | 0.7253
1/2 | 2.0723 | 1.6115 | 1.2574 | 0.7930
3/4 | 25651 | 2.1177 | 1.3157 | 0.8633
1.0 | 3.1824 | 27422 | 1.3771 | 0.9364
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In Table 8, for the fixed A, n and £, the local
Sherwood number tends to increase slightly as the
internal heat generation coefficient A" is increased.
This is due to the fact that increasing the internal heat
generation coefficient A" decreases slightly the
concentration boundary layer thickness, as unveiled
in Fig. 3. The thinner the concentration boundary
layer thickness, the greater the local Sherwood
number.

For the fixed 4, n and A", the local Sherwood
number increases as the viscosity parameter Q is
increased. This is owing to the fact that enhancing the
viscosity parameter Q increases the dimensionless
wall concentration gradient, as shown in Fig. 3. With
the aid of equation (24), the greater the dimensionless
wall concentration gradient, the larger the local
Sherwood number.

Table 8 Values of Sh, / Rai/2n for various values of 4,
Q,nand A"with N =1, Le =10

Sh, /Ra/”
A& n=0.5 n=2.0
A" =0 A=1 | A= A=
000 28019 | 29426 | 1.9713 | 2.0115
1/4 | 35483 | 3.7350 | 2.0855 | 2.1384
12 | 44971 | 4.7283 | 2.2066 | 2.2721
3/4 | 57031 | 5.9782 | 2.3352 | 2.4130
1.0 | 7.2358 | 7.5555 | 2.4716 | 2.5616
1]00 | 68367 | 6.9721 | 4.1713 | 4.2092
1/4 | 8.6511 | 8.8261 | 4.4113 | 4.4599
1/2 | 10.9542 | 11.1683 | 4.6659 | 4.7249
3/4 | 13.8752 | 14.1293 | 4.9360 | 5.0051
1.0 | 175734 | 17.8702 | 5.2227 | 5.3014
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Moreover, decreasing the power-law index n
tends to increase the velocity of the flow, thereby
enhancing the local Nusselt number and the local
Sherwood number. Thus, the pseudo-plastic fluids (n
= 0.5) are superior to the dilatant fluids (n = 2.0)
from the viewpoint of the free convection heat and
mass transfer rates from a vertical plate embedded in
a porous medium saturated with non-Newtonian
power-law fluids. This result corresponds with the
work of Cheng [7]. Increasing the exponent of
VWTVWC / tends to increase the buoyancy force,
accelerating the flow and thereby increasing the local
Nusselt number and the local Sherwood number.
Similar behavior was observed by Yih and Huang
[10-11].

5. Conclusions

A laminar boundary layer analysis is presented
to study the effects of exponential decaying viscosity
and internal heat generation on natural convection
flow of non-Newtonian power-law fluids in a Darcy
porous medium resulting from combined heat and
mass buoyancy effects adjacent to the vertical flat
plate maintained at variable wall temperature and
concentration (VWT/VWC). The
Ostwald—-de Waele power-law model is used to

variable wall

characterize the non-Newtonian behavior of the fluid.
The viscosity of the fluid is assumed to follow
The heat
generation is of an exponential decaying form.

Reynolds viscosity model. internal

Enhancing the viscosity parameter ©, the
buoyancy ratio N and the exponent of VWT/VWC 1
tends to increase the local Nusselt number as well as
The local Nusselt

the local Sherwood number.
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(Sherwood) number tends to decrease (increase) as
both the internal heat generation coefficient A™ and
the Lewis number Le are increased. In addition, a
decrease in the power-law index n of fluids tends to
increase the heat and mass transfer.

Nomenclature

A" internal heat generation coefficient

a; positive constant

b;  positive constant

C  concentration

C, specific heat at constant pressure

Dy mass diffusivity

f dimensionless stream function

g gravitational acceleration

hy  local convective heat transfer coefficient
hmx local convective mass transfer coefficient

K(n) modified permeability of the porous medium

k  equivalent thermal conductivity

Le Lewis number

m,, local wall mass flux

N  buoyancy ratio

Nuy local Nusselt number

n  power-law index of the non-Newtonian fluid
p  pressure

q" internal heat generation rate per unit volume
gw local wall heat flux

Ra, modified local Rayleigh number

Shy local Sherwood number

T  temperature

u  Darcy velocity in the x-direction

v Darcy velocity in the y-direction

X  streamwise coordinate

y  transverse coordinate

Greek symbols

a  equivalent thermal diffusivity
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Pc  coefficient of concentration expansion
pr coefficient of thermal expansion

doc  concentration boundary layer thickness
or thermal boundary layer thickness

n  similarity variable

6  dimensionless temperature

Z exponent of VWT/VWC

i viscosity

p  density

¢  dimensionless concentration

w  stream function

Q  viscosity parameter

Subscripts

w  condition at the wall

o ambient
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