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ABSTRACT

Object segmentation is an important research topic in computer vision. The assessment of the 
quality of the segmentation results is of crucial importance. The conventional performance measure 
for object segmentation is mainly based on the pixel error between the segmented object and ground 
truth. The pixel-based error measure does not consider the spatial distribution of segmentation errors, 
which is essential in semantic processing. This paper presents a novel block-based error measure for 
evaluating the performance of object segmentation. We first analyze the spatial distribution of 
segmentation errors and classify them into scattered error and region error. Then we develop a 
block-based error measure that enhances the contribution of the region error. The mathematical 
analysis of both error measures is also presented to demonstrate the advantages of the proposed 
block-based measure. 

Keywords: block-based error measure, object segmentation, pixel-based error measure, relative 
evaluation
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ABSTRACT 

Most search engines retrieve documents strictly based on keywords because of which other 
content that is similar in idea is not easily accessible. Therefore, query expansion becomes imperative, 
for which ontology is a critical foundation. There are two purposes of this research. The first is to 
design a novel Keyword to Formal Concept Query Expansion (K2FCQE) algorithm to automatically 
construct the relationship between ontology and vocabulary concepts and then to proceed to query 
mode verification. The second is to develop a prototype of a Military News Retrieval System based on 
the K2FCQE method (K2FCQE-MNRS). The results of this research verify that K2FCQE is more 
efficient than other query expansions methods and that the K2FCQE-MNRS is helpful for users to 
search military related news. 
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 . INTRODUCTION

Object segmentation (or detection) from 
images or videos has received wide attention 
recently since it has a large variety of 
applications such as object recognition, video 
surveillance, human-machine interface (HMI), 
traffic monitoring, object-based video coding [1], 
[2]. Extensive efforts have been made to develop 
object segmentation (detection) techniques 
either for images or videos, but much less 
attention has been paid for the performance 
evaluation of these techniques [3], [4]. Generally, 
for still images, the performance evaluation is to 
calculate the error between the segmented object 
and a reference (ground-truth) object. The 
reference object is often obtained manually, and 
the segmented object is from a segmentation 
algorithm. This approach is referred to as 
relative evaluation [5]. For video object 
segmentation, an alternative called stand-alone 
evaluation has been presented, in which the 
reference object is not available [6], [7]. In this 
work, we adopt the relative evaluation approach. 

The methods based on relative evaluation in 
the literature mainly calculate the error pixel 
counts between the segmented object and the 
reference object. The errors can be categorized 
into two types: miss detection and false alarm. 
Miss detection error refers to that a pixel 
belonging to the object is classified as 
background. False alarm error means that a pixel 
belonging to the background is classified as 
foreground (object). Using the two types of 
classification errors, the receiver operating 
characteristic (ROC) curve can be generated [8]. 
The ROC curve shows the tradeoff between the 
true positive rate (TPR) and the false positive 
rate (FPR). The FPR is also called false alarm 
rate, and TPR denotes the detection rate which is 
equal to 1 – MDR (miss detection rate). The 
ROC has been widely used in low-level 
applications such as skin segmentation 
(detection) [9] – [17]. 

Most related evaluation methods mentioned 
above are constructed by considering image 
segmentation as a process of pixel labeling. 
Consequently, they are not appropriate for 
object-level evaluation. Various metrics which 
extend the pixel error measure have been 

proposed for higher-level applications such as 
image segmentation at object level [18], [3], 
video object segmentation and tracking, and 
image understanding [2], [6].  

Martin et al. [18] proposed an object level 
error measure, including global consistency 
error (GCE) and local consistency error (LCE). 
The error metrics are very useful to quantify the 
consistency between segmentations manually 
performed by different people. However, this 
error measure is insensitive to over 
(under)-segmentation; thus it is not appropriate 
in segmentation applications in which the exact 
boundaries or sizes of the fragments are 
important. 

To attack this problem, Polak et al. presented 
the object-level consistency error (OCE) [3]. 
The OCE quantifies the discrepancy between a 
segmented image and the ground truth image at 
the object level that takes into account the 
existence, size, position, and shape of each 
fragment and penalizes both over-segmentation 
and under-segmentation. The OCE is suitable for 
specific applications in which the many small 
objects exist in a scene, and exact object size is 
critical in segmentation. The typical applications 
are the detection of crown canopies of trees, and 
segmentation of tar sands [3]. However, the 
OCE does not consider the false alarm error, 
which is essential in many higher-level 
applications such as tracking of objects.  

All the metrics based on the relative evaluation 
usually treat each pixel error independent. We 
refer to the performance metric as pixel-based 
error measure. This type of error metrics does 
not take the spatial distribution of segmentation 
errors into account. The spatial distribution of 
segmentation error pixels will affect the shape of 
the segmented object. Moreover, this would 
yield the error of the subsequent higher level 
semantic processing such as tracking and/or 
recognition of objects.  

In this paper, we first analyze the spatial 
distribution of the segmentation pixel errors and 
classify them into scattered error and region 
error accordingly. We then use an example to 
explain the limitation of the pixel-based error 
measure in the evaluation of object segmentation 
performance. Next, we propose a novel 
block-based error measure which assigns the 
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 . INTRODUCTION

Object segmentation (or detection) from 
images or videos has received wide attention 
recently since it has a large variety of 
applications such as object recognition, video 
surveillance, human-machine interface (HMI), 
traffic monitoring, object-based video coding [1], 
[2]. Extensive efforts have been made to develop 
object segmentation (detection) techniques 
either for images or videos, but much less 
attention has been paid for the performance 
evaluation of these techniques [3], [4]. Generally, 
for still images, the performance evaluation is to 
calculate the error between the segmented object 
and a reference (ground-truth) object. The 
reference object is often obtained manually, and 
the segmented object is from a segmentation 
algorithm. This approach is referred to as 
relative evaluation [5]. For video object 
segmentation, an alternative called stand-alone 
evaluation has been presented, in which the 
reference object is not available [6], [7]. In this 
work, we adopt the relative evaluation approach. 

The methods based on relative evaluation in 
the literature mainly calculate the error pixel 
counts between the segmented object and the 
reference object. The errors can be categorized 
into two types: miss detection and false alarm. 
Miss detection error refers to that a pixel 
belonging to the object is classified as 
background. False alarm error means that a pixel 
belonging to the background is classified as 
foreground (object). Using the two types of 
classification errors, the receiver operating 
characteristic (ROC) curve can be generated [8]. 
The ROC curve shows the tradeoff between the 
true positive rate (TPR) and the false positive 
rate (FPR). The FPR is also called false alarm 
rate, and TPR denotes the detection rate which is 
equal to 1 – MDR (miss detection rate). The 
ROC has been widely used in low-level 
applications such as skin segmentation 
(detection) [9] – [17]. 

Most related evaluation methods mentioned 
above are constructed by considering image 
segmentation as a process of pixel labeling. 
Consequently, they are not appropriate for 
object-level evaluation. Various metrics which 
extend the pixel error measure have been 

proposed for higher-level applications such as 
image segmentation at object level [18], [3], 
video object segmentation and tracking, and 
image understanding [2], [6].  

Martin et al. [18] proposed an object level 
error measure, including global consistency 
error (GCE) and local consistency error (LCE). 
The error metrics are very useful to quantify the 
consistency between segmentations manually 
performed by different people. However, this 
error measure is insensitive to over 
(under)-segmentation; thus it is not appropriate 
in segmentation applications in which the exact 
boundaries or sizes of the fragments are 
important. 

To attack this problem, Polak et al. presented 
the object-level consistency error (OCE) [3]. 
The OCE quantifies the discrepancy between a 
segmented image and the ground truth image at 
the object level that takes into account the 
existence, size, position, and shape of each 
fragment and penalizes both over-segmentation 
and under-segmentation. The OCE is suitable for 
specific applications in which the many small 
objects exist in a scene, and exact object size is 
critical in segmentation. The typical applications 
are the detection of crown canopies of trees, and 
segmentation of tar sands [3]. However, the 
OCE does not consider the false alarm error, 
which is essential in many higher-level 
applications such as tracking of objects.  

All the metrics based on the relative evaluation 
usually treat each pixel error independent. We 
refer to the performance metric as pixel-based 
error measure. This type of error metrics does 
not take the spatial distribution of segmentation 
errors into account. The spatial distribution of 
segmentation error pixels will affect the shape of 
the segmented object. Moreover, this would 
yield the error of the subsequent higher level 
semantic processing such as tracking and/or 
recognition of objects.  

In this paper, we first analyze the spatial 
distribution of the segmentation pixel errors and 
classify them into scattered error and region 
error accordingly. We then use an example to 
explain the limitation of the pixel-based error 
measure in the evaluation of object segmentation 
performance. Next, we propose a novel 
block-based error measure which assigns the 
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is not a good criterion for evaluating the 
performance of  

object segmentation methods because it only 
considers the number of error pixels, but cannot 
distinguish region error from scattered error.
We need to seek a new measure criterion that 
treats the region error and scattered error
differently. 

III. BLOCK-BASED ERROR 
MEASURE FOR OBJECT 

SEGMENTATION

As mentioned before, an error measure 
should be able to classify the region error and 
scattered error and treat the two errors 
differently. However, it is rather difficult to 
segment the area with region error since its size 
and shape are unknown a priori. To solve the 
problem, we present a novel block-based error 
measure which enhances the error score of the 
region-error block and suppresses that of the 
scattered error block. 

The presented measure first divides 
foreground and background into small blocks 
separately and calculates the error ratio of each 
block. Next, it calculates the error score of each 
block by transforming the error ratio with a 
nonlinear increasing function. This function 
enlarges the error score for large error blocks 
(region-error blocks), yet reduces the error score 
for small error blocks (scattered-error blocks). 
To further enhance the importance of region 
error with a large area, the error score of each 
region-error block is further modified using 
block correlation. Fig. 3 shows the block 
diagram of our algorithm. The details of the 
proposed error measure are described in the 
following subsections. 

3.1. Block Partition for Foreground and 

Background

Assume Ig is a reference (ground-truth) 
image and Is the segmented image, both with the 
size of M � N. The images contain foreground 
(object) part and background part. The 
background part of an image is divided into 
non-overlapping blocks with a size of m � n, and 
the foreground region is partitioned into 
non-overlapping blocks with a size of k � l. In 
practice, the size of a foreground block, k � l, is 
smaller than that of a background block, m � n.
It indicates that the foreground block is more 
important than the background block in 
measuring errors. The foreground block is 
dependent upon on the smallest sub-object we 
considered. For example, for hand palm 
processing, the foreground block size is 

Table 1. Error pixel counts for the segmentation 
examples in Fig. 1.

Segmentation 
examples 

Error 
pixel
count 

Segmentation error 
category 

Fig. 1(b) 540 Region false alarm error 
Fig. 1(c) 540 Scattered false alarm error
Fig. 1(d) 165 Region miss error 
Fig. 1(e) 165 Scattered miss error 

Divide the image into foreground and 
background blocks 

Calculate the error ratio of each block 

Transform the error ratio using the 
enhanced function 

Modify the error score of each block 

Compute three types of total error scores 

Ground truth 
image 

Segmented 
image 

Foreground: 
�The total miss detection error score 
�The total false alarm error score 

Background: 
� The total false alarm error score 

Fig. 3. Block diagram of our method
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Object segmentation (or detection) from 
images or videos has received wide attention 
recently since it has a large variety of 
applications such as object recognition, video 
surveillance, human-machine interface (HMI), 
traffic monitoring, object-based video coding [1], 
[2]. Extensive efforts have been made to develop 
object segmentation (detection) techniques 
either for images or videos, but much less 
attention has been paid for the performance 
evaluation of these techniques [3], [4]. Generally, 
for still images, the performance evaluation is to 
calculate the error between the segmented object 
and a reference (ground-truth) object. The 
reference object is often obtained manually, and 
the segmented object is from a segmentation 
algorithm. This approach is referred to as 
relative evaluation [5]. For video object 
segmentation, an alternative called stand-alone 
evaluation has been presented, in which the 
reference object is not available [6], [7]. In this 
work, we adopt the relative evaluation approach. 

The methods based on relative evaluation in 
the literature mainly calculate the error pixel 
counts between the segmented object and the 
reference object. The errors can be categorized 
into two types: miss detection and false alarm. 
Miss detection error refers to that a pixel 
belonging to the object is classified as 
background. False alarm error means that a pixel 
belonging to the background is classified as 
foreground (object). Using the two types of 
classification errors, the receiver operating 
characteristic (ROC) curve can be generated [8]. 
The ROC curve shows the tradeoff between the 
true positive rate (TPR) and the false positive 
rate (FPR). The FPR is also called false alarm 
rate, and TPR denotes the detection rate which is 
equal to 1 – MDR (miss detection rate). The 
ROC has been widely used in low-level 
applications such as skin segmentation 
(detection) [9] – [17]. 

Most related evaluation methods mentioned 
above are constructed by considering image 
segmentation as a process of pixel labeling. 
Consequently, they are not appropriate for 
object-level evaluation. Various metrics which 
extend the pixel error measure have been 

proposed for higher-level applications such as 
image segmentation at object level [18], [3], 
video object segmentation and tracking, and 
image understanding [2], [6].  

Martin et al. [18] proposed an object level 
error measure, including global consistency 
error (GCE) and local consistency error (LCE). 
The error metrics are very useful to quantify the 
consistency between segmentations manually 
performed by different people. However, this 
error measure is insensitive to over 
(under)-segmentation; thus it is not appropriate 
in segmentation applications in which the exact 
boundaries or sizes of the fragments are 
important. 

To attack this problem, Polak et al. presented 
the object-level consistency error (OCE) [3]. 
The OCE quantifies the discrepancy between a 
segmented image and the ground truth image at 
the object level that takes into account the 
existence, size, position, and shape of each 
fragment and penalizes both over-segmentation 
and under-segmentation. The OCE is suitable for 
specific applications in which the many small 
objects exist in a scene, and exact object size is 
critical in segmentation. The typical applications 
are the detection of crown canopies of trees, and 
segmentation of tar sands [3]. However, the 
OCE does not consider the false alarm error, 
which is essential in many higher-level 
applications such as tracking of objects.  

All the metrics based on the relative evaluation 
usually treat each pixel error independent. We 
refer to the performance metric as pixel-based 
error measure. This type of error metrics does 
not take the spatial distribution of segmentation 
errors into account. The spatial distribution of 
segmentation error pixels will affect the shape of 
the segmented object. Moreover, this would 
yield the error of the subsequent higher level 
semantic processing such as tracking and/or 
recognition of objects.  

In this paper, we first analyze the spatial 
distribution of the segmentation pixel errors and 
classify them into scattered error and region 
error accordingly. We then use an example to 
explain the limitation of the pixel-based error 
measure in the evaluation of object segmentation 
performance. Next, we propose a novel 
block-based error measure which assigns the 
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ABSTRACT 

Most search engines retrieve documents strictly based on keywords because of which other 
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T.L.Chia and C. H. Hsieh 
Block-based Error Measure for Object Segmentation 

 . INTRODUCTION

Object segmentation (or detection) from 
images or videos has received wide attention 
recently since it has a large variety of 
applications such as object recognition, video 
surveillance, human-machine interface (HMI), 
traffic monitoring, object-based video coding [1], 
[2]. Extensive efforts have been made to develop 
object segmentation (detection) techniques 
either for images or videos, but much less 
attention has been paid for the performance 
evaluation of these techniques [3], [4]. Generally, 
for still images, the performance evaluation is to 
calculate the error between the segmented object 
and a reference (ground-truth) object. The 
reference object is often obtained manually, and 
the segmented object is from a segmentation 
algorithm. This approach is referred to as 
relative evaluation [5]. For video object 
segmentation, an alternative called stand-alone 
evaluation has been presented, in which the 
reference object is not available [6], [7]. In this 
work, we adopt the relative evaluation approach. 

The methods based on relative evaluation in 
the literature mainly calculate the error pixel 
counts between the segmented object and the 
reference object. The errors can be categorized 
into two types: miss detection and false alarm. 
Miss detection error refers to that a pixel 
belonging to the object is classified as 
background. False alarm error means that a pixel 
belonging to the background is classified as 
foreground (object). Using the two types of 
classification errors, the receiver operating 
characteristic (ROC) curve can be generated [8]. 
The ROC curve shows the tradeoff between the 
true positive rate (TPR) and the false positive 
rate (FPR). The FPR is also called false alarm 
rate, and TPR denotes the detection rate which is 
equal to 1 – MDR (miss detection rate). The 
ROC has been widely used in low-level 
applications such as skin segmentation 
(detection) [9] – [17]. 

Most related evaluation methods mentioned 
above are constructed by considering image 
segmentation as a process of pixel labeling. 
Consequently, they are not appropriate for 
object-level evaluation. Various metrics which 
extend the pixel error measure have been 

proposed for higher-level applications such as 
image segmentation at object level [18], [3], 
video object segmentation and tracking, and 
image understanding [2], [6].  

Martin et al. [18] proposed an object level 
error measure, including global consistency 
error (GCE) and local consistency error (LCE). 
The error metrics are very useful to quantify the 
consistency between segmentations manually 
performed by different people. However, this 
error measure is insensitive to over 
(under)-segmentation; thus it is not appropriate 
in segmentation applications in which the exact 
boundaries or sizes of the fragments are 
important. 

To attack this problem, Polak et al. presented 
the object-level consistency error (OCE) [3]. 
The OCE quantifies the discrepancy between a 
segmented image and the ground truth image at 
the object level that takes into account the 
existence, size, position, and shape of each 
fragment and penalizes both over-segmentation 
and under-segmentation. The OCE is suitable for 
specific applications in which the many small 
objects exist in a scene, and exact object size is 
critical in segmentation. The typical applications 
are the detection of crown canopies of trees, and 
segmentation of tar sands [3]. However, the 
OCE does not consider the false alarm error, 
which is essential in many higher-level 
applications such as tracking of objects.  

All the metrics based on the relative evaluation 
usually treat each pixel error independent. We 
refer to the performance metric as pixel-based 
error measure. This type of error metrics does 
not take the spatial distribution of segmentation 
errors into account. The spatial distribution of 
segmentation error pixels will affect the shape of 
the segmented object. Moreover, this would 
yield the error of the subsequent higher level 
semantic processing such as tracking and/or 
recognition of objects.  

In this paper, we first analyze the spatial 
distribution of the segmentation pixel errors and 
classify them into scattered error and region 
error accordingly. We then use an example to 
explain the limitation of the pixel-based error 
measure in the evaluation of object segmentation 
performance. Next, we propose a novel 
block-based error measure which assigns the 



ER

where
contr
the en
g. It i
of th
obvio
error

becau
opera

3.4. M

T
block
regio
regio
big e
often
introd
highe
furthe
criter
modi
using

If
than
requi
For th
we se
one.

Fig

�11

0,                

j
Bk

j
jBk
Bk

R T
ER g

T

��
�� ����� � ��� � � �� ��� � ���
��

e BK = {B_f
rol the level 
nhanced curv
is seen that th
he transfer 
ously meets r

ratio (R <

use it is eas
ations. 

Modificatio

The error enh
k separately.
n error th
n-error bloc
error region 

n exists. The
duce more h
er-level proc
er enhanced.
rion, we 
fication sche

g block corre
f the enhance
a threshold 
red because
he block with
earch its eig
If its error v

g. 7. The enha
of g. (k �

�
, 0 1,

(1 )

                    otherwise

t

T t
T

�
�

� ��
�� � �
�

_fa}. The fac
of enhancem

ves for vario
he larger the

function
requirement

< 0.1), the 

ily removed

on of Block

hanced funct
 Thus, it is 
hat may 

ck. However
which cov

e significant
harmful effec
cessing. Ther
. To put the 
further pr

eme for each
lation as foll
ed error scor
T, no furth

 it is not a 
h significant
ght neighbor
value is high

nced curves fo
l = 8 � 6 m

1, 1

e

j j
Bk Bk

T R g
 
 


ctor t is a s
ment. Fig. 7
ous values of
R and g, the
is higher; 
above. For 
error is ne

d by morpho

k Error Sco

tion processe
suitable for

contain a 
r, in some c
vers several 
t error regio
ct on the fol
refore, it sho
effect into m
ropose an 
h region-erro
lows.
re of a block
her enhancem

great region
t error larger 
ring blocks
her than that

for various val
� n = 16 � 12

(14)

scale to 
7 shows 
f R and 
e output 

which
a small 

eglected 

ological 

ore

es each 
r small 

single
cases, a 

blocks
on will 
llowing
ould be 
measure 

error 
or block 

k is less 
ment is 
n error. 
than T,
one by 
t of the 

lues
2)

JO

neighbor bl
enhanced by
to the curr
foreground b
The first term
score of the
is the score c
The term in
the output er

1i
Fk i

Fk

ME ER
W

�
�

� �
�
�

where i
FkW

� 1j
Bk j

Bk

ME E
W

�
�

� �
��
�

where� j
BkW �

We expla
follows. If 
neighbor bl
score of the
neighbor blo
area with hig
will be furth
course, can
correlation m
indicate that
without requ

After all 
complete, w
error score,
foreground, 
background,

1
FKTE

F
�

1
BkTE

B
�

.
PIXE

OURNAL OF C.C

lock, the cu
y adding the 
ent block a
block, and (1
m in (15) an
current bloc

contributed f
n the denomi
rror in the ran

(

i i
Fk Fk

F Neighbor Fh
i hER ER TFk Fk

R g
�
� 


� � 	

� ,
k

F F Neighbol i�
� 	

j j
Bk Bk

B Neighbh
j hER ERBk B

ER g
�

�

� � 	

� , (B B Neighborl j�
� 	

ain (15) and 
both the c

ock are sig
e current bl
ock, these bl
gher errors. H
her enhanced
n be replac
measures. Ho
t this measur
uiring extra th

the blocks 
we calculate 

 false alarm
and false 

 separately, a

1

F i
FK

i
ME

�
	 ,

1

B j
Bk

j
ME

�
	 .

. COMPA
EL-BASED

C.I.T., VOL.47, N

urrent block
error score o

as defined 
16) for backg
nd (16) deno
ck, and the 
from the neig
inator is use
nge of [0, 1]

)
,h h i

F Fk FkFi
T

ER g ER
�
�

� �
�
�

�( )

l
Fk

or Fi
g .�

( )
,h h

B Bkkbor Bj
h TBk

ER g




�
�

� �
��
�

�( )

l
Bk

B j

g .

(16) in mor
current bloc

gnificant, an
lock is high
locks may fo
Hence, the c
d. Eqs. (15) 
ced with o
owever, our 
re is simple a
threshold par

of a whole
the total mi
m error sc
alarm erro

as:

ARISON O
D METH

107.11
NO.2, NOV, 2018

k is further
of that block
in (15) for

ground block
otes the error
second term
ghbor blocks
ed to restrict
.

i
FkR T
 � � � (15)

j
BkER T
 � (16)

re details as
ck and the

nd the error
her than the
orm a larger

current block
and (16), of
other block
experiments

and effective
rameters. 
e image are
iss detection
ore for the
r score for

(17)

(18)

OF
HODS

8

r
k
r
k.
r

m
s.
t

s
e
r
e
r
k
f
k
s
e

e
n
e
r

73

   107.11  
JOURNAL OF C.C.I.T., VOL.47, NO.2, NOV, 2018 

 
 

 K2FCQE: A Hybrid Query Expansion for News Retrieval 
Liang-Chu Chen*, Wen-Tsan Chao, and Chieh-Pin Lin 

Department of Information Management, National Management College, National Defense University 

ABSTRACT 

Most search engines retrieve documents strictly based on keywords because of which other 
content that is similar in idea is not easily accessible. Therefore, query expansion becomes imperative, 
for which ontology is a critical foundation. There are two purposes of this research. The first is to 
design a novel Keyword to Formal Concept Query Expansion (K2FCQE) algorithm to automatically 
construct the relationship between ontology and vocabulary concepts and then to proceed to query 
mode verification. The second is to develop a prototype of a Military News Retrieval System based on 
the K2FCQE method (K2FCQE-MNRS). The results of this research verify that K2FCQE is more 
efficient than other query expansions methods and that the K2FCQE-MNRS is helpful for users to 
search military related news. 

Keywords: ontology, formal concept analysis, query expansion, K2FCQE 
 

K2FCQE  

*

 

( ) -
(K2FCQE)

( ) K2FCQE K2FCQE
 

K2FCQE 
 
 
 
 
 
 

106.10.18; 107.5.4;*  
Manuscript received October 18, 2017; revised May 4, 2018;* Corresponding author



T.L.Chia and C. H. Hsieh 
Block-based Error Measure for Object Segmentation 

Any of the three types of block segmentation 
errors defined in the previous section may 
belong to the region error (Case 1) or scattered 
error (Case 2) defined in Section 2. Table II 
illustrates the six possible combinations of error 
types. Each type has the same error amount for 
the two cases. We mentioned before that region 
error is more critical in a semantic sense than 
scattered error. In the following, we will 
compare the conventional pixel-based error 
metric with the proposed block-based method 
error metric for the error types listed in Table 2.

4.1 False alarm error in background 
block

Assume background block is denoted as 
BBj, j = 1, 2, …, B. Consider two cases: 
region error and scattered error. For a fair 
comparison, we assume the two cases have 
the same error amount k(mn), m � n is the 
block size. 
(A) Pixel-based measure

The false alarm error value can be directly 
written as 

( ) / ( ) /k mn B mn k B�                (19) 

(B) Block-based measure 

Case 1 Region false alarm error 
Assume the region error contains l

background blocks (called error coverage 
hereafter). For convenience, assume the error is 
uniformly distributed in these blocks, and the 
region is a rectangle with size p � q (p � q = l). 
Then we can assume BBj, j = 1, 2, …, l are 
background blocks containing errors, and the 
remaining blocks BBj, j = (l + 1), …, B are 
background blocks with no error. 
Thus we have 

_

( ) / , 1,...,
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j
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k mn l k j l
R mn l

j l B
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      (20)  

After enhancement of Eq. (14), we have  
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The modification scheme in Section 3.3 applies 
eight neighbors to further enhance the region error. 
The error score contribution of the neighbor blocks 
for each block varies with the number of neighbors 
of the block. The error region is a rectangle with 
the size of p � q. The number of neighbor blocks is 
related to which area of the error region the current 
block locates. There are three types of areas 
including corner, border, and center areas. These 
areas have different numbers of neighbor blocks, 
and the numbers of blocks belonging to different 
areas are also not the same. Therefore, there are 
four corner blocks in the rectangle, each of which 
has three neighbor blocks. There are 2[(p - 2) + (q - 
2)] blocks at the boundary (with corners deducted) 
and have five neighbor blocks, and there are (p - 
2)(q - 2) blocks with eight neighbor blocks inside 
the rectangle. The relation is listed in Table 3. 
Therefore, the average error value for an image can 
be derived as 
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(22) 

Eq. (19) indicates that the error value 
calculated by pixel-based error measure is 

Table 2. Number of blocks and number of 
neighbors for three types of areas 

 Corner Border Center 
Number 

of
neighbors 

3 5 8 

Number 
of blocks 4 2[(p - 2) + 

(q - 2)] 
(p - 2)(q -

2)
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 . INTRODUCTION

Object segmentation (or detection) from 
images or videos has received wide attention 
recently since it has a large variety of 
applications such as object recognition, video 
surveillance, human-machine interface (HMI), 
traffic monitoring, object-based video coding [1], 
[2]. Extensive efforts have been made to develop 
object segmentation (detection) techniques 
either for images or videos, but much less 
attention has been paid for the performance 
evaluation of these techniques [3], [4]. Generally, 
for still images, the performance evaluation is to 
calculate the error between the segmented object 
and a reference (ground-truth) object. The 
reference object is often obtained manually, and 
the segmented object is from a segmentation 
algorithm. This approach is referred to as 
relative evaluation [5]. For video object 
segmentation, an alternative called stand-alone 
evaluation has been presented, in which the 
reference object is not available [6], [7]. In this 
work, we adopt the relative evaluation approach. 

The methods based on relative evaluation in 
the literature mainly calculate the error pixel 
counts between the segmented object and the 
reference object. The errors can be categorized 
into two types: miss detection and false alarm. 
Miss detection error refers to that a pixel 
belonging to the object is classified as 
background. False alarm error means that a pixel 
belonging to the background is classified as 
foreground (object). Using the two types of 
classification errors, the receiver operating 
characteristic (ROC) curve can be generated [8]. 
The ROC curve shows the tradeoff between the 
true positive rate (TPR) and the false positive 
rate (FPR). The FPR is also called false alarm 
rate, and TPR denotes the detection rate which is 
equal to 1 – MDR (miss detection rate). The 
ROC has been widely used in low-level 
applications such as skin segmentation 
(detection) [9] – [17]. 

Most related evaluation methods mentioned 
above are constructed by considering image 
segmentation as a process of pixel labeling. 
Consequently, they are not appropriate for 
object-level evaluation. Various metrics which 
extend the pixel error measure have been 

proposed for higher-level applications such as 
image segmentation at object level [18], [3], 
video object segmentation and tracking, and 
image understanding [2], [6].  

Martin et al. [18] proposed an object level 
error measure, including global consistency 
error (GCE) and local consistency error (LCE). 
The error metrics are very useful to quantify the 
consistency between segmentations manually 
performed by different people. However, this 
error measure is insensitive to over 
(under)-segmentation; thus it is not appropriate 
in segmentation applications in which the exact 
boundaries or sizes of the fragments are 
important. 

To attack this problem, Polak et al. presented 
the object-level consistency error (OCE) [3]. 
The OCE quantifies the discrepancy between a 
segmented image and the ground truth image at 
the object level that takes into account the 
existence, size, position, and shape of each 
fragment and penalizes both over-segmentation 
and under-segmentation. The OCE is suitable for 
specific applications in which the many small 
objects exist in a scene, and exact object size is 
critical in segmentation. The typical applications 
are the detection of crown canopies of trees, and 
segmentation of tar sands [3]. However, the 
OCE does not consider the false alarm error, 
which is essential in many higher-level 
applications such as tracking of objects.  

All the metrics based on the relative evaluation 
usually treat each pixel error independent. We 
refer to the performance metric as pixel-based 
error measure. This type of error metrics does 
not take the spatial distribution of segmentation 
errors into account. The spatial distribution of 
segmentation error pixels will affect the shape of 
the segmented object. Moreover, this would 
yield the error of the subsequent higher level 
semantic processing such as tracking and/or 
recognition of objects.  

In this paper, we first analyze the spatial 
distribution of the segmentation pixel errors and 
classify them into scattered error and region 
error accordingly. We then use an example to 
explain the limitation of the pixel-based error 
measure in the evaluation of object segmentation 
performance. Next, we propose a novel 
block-based error measure which assigns the 
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Case 2 Scattered false alarm error 
Assume that errors are uniformly distributed in 

the B background blocks. Thus the error measure 
is simply represented as  

� �
� �_

j
B fa

k mn kR
B mn B

� �             (23) 

The result is very similar to that of the 
pixel-based method in Eq. (19). The minor 
differences are when (k / B) < T, the error 
measure is set to zero, and for small k / B, the 
error is suppressed by the enhanced function. 

4.2 False alarm error in foreground block 

Assume that all foreground blocks are 
denoted as FBj, j = 1, 2, …, F. They also can be 
classified into two cases: region false alarm error 
and scattered false alarm error. Again, we 
assume the two cases have the same error 
amount k(mn).
(A) Pixel-based measure

The false alarm error value can be simply 
written as 

( ) / ( ) /k mn F mn k F�      (24) 

(B) Block-based measure 

Case 1 Region false alarm error 
Assume the region error contains l

foreground blocks. Again, assume the errors are 
uniformly distributed in these blocks, and the 
region is a rectangle with size p � q (p � q = l). 
Then we can assume FBi, i = 1, 2, …, l are 
foreground blocks containing errors, and FBj, j = 
(l + 1), …, F are foreground blocks with no 
error. 
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After enhancement of Eq. (13), we obtain 
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Then we apply the modification scheme in 
Section 3.3 to further raise the region error based 
on eight neighbor blocks.  Using the similar 
analysis in Case 1 of Section 4.1, we can derive 
the average error value for an image as  
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Case 2 Scattered false alarm error 
Assume that errors are uniformly distributed 

in the F background blocks. Thus the error 
measure is simply represented as  

� �
� �_

i
F fa

k mn kR
F mn F

� �       (28)

The result is also similar to that of the 
pixel-based method in Eq. (24). 

The miss detection error in foreground block 
can be analyzed in a way similar to the 
procedure above, and the result is also similar. 
Therefore we neglect the analysis here.

V. CONCLUSIONS 
In this paper, we investigated the 

segmentation error of object segmentation and 
classified it into scattered error and region error.
We concluded that the region error is more 
critical than the scattered error for segmentation 
since it significantly affects the performance of 
the following higher-level processing modules. 
We developed a block-based error measure in 
which the region error is enhanced, but the 
scattered error is suppressed. Mathematical 
analysis proved that the block-based error 
measure achieves expected a result and it is 
more reasonable than the conventional 
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pixel-based error measure in the semantic scene. 

ACKNOWLEDGEMENTS
This work was supported in part by 

Ministry of Science and Technology granted 
MOST 104-2221-E-130 -014 -MY2. 

REFERENCES
[1] Shantaiya, S., Verma, K., and Mehta, K., 

“A Survey on Approaches of Object 
Detection,” International Journal of 
Computer Applications, Vol. 65, No. 18, 
pp.14-20, 2013.  

[2] Kim, C., and Hwang, J. N., “Fast and 
Automatic Video Object Segmentation and 
Tracking for Content-Based Applications,” 
IEEE Transactions on Circuits and 
Systems for Video Technology, Vol. 12, 
No. 2, pp.122-129, 2002. 

[3] Polak, M., Zhang, H., and Pi, M. H., “An 
Evaluation Metric for Image Segmentation 
of Multiple Objects,” Image and Vision 
Computing, Vol. 27, pp. 1223-1227, 2009. 

[4] Erdem, C. E., Tekalp, A. M., and Sankur, 
B., “Metrics for Performance Evaluation of 
Video Object Segmentation and Tracking 
without Ground-Truth,” Proc. of IEEE 
International Conference on Image 
Processing, Vol. 2, pp. 69-72, 2010. 

[5] Correia, P. L., and Pereira, F., “Objective 
Evaluation of Video Segmentation 
Quality,” IEEE Transactions on Image 
Processing, Vol. 12, No. 2, pp. 186-200, 
2003. 

[6] Hemery, B., Laurent, H., and Rosenberger, 
C., “Evaluation Metric for Image 
Understanding,” Proc. of the International 
Conference on Image Processing, pp. 
4381-4384, 2009. 

[7] Correia, P. L., and Pereira, F., 
“Stand-Alone Objective Segmentation 
Quality Evaluation,” EURASIP Journal on 
Applied Signal Processing, Vol. 2002, 
Issue 4, pp. 389-400, 2002.  

[8] Zhou, X. H., Obuchowski, N. A., and 
McClish, D. K., Statistical Methods in 
Diagnostic Medicine, New York, NY: 
Wiley & Sons, 2002. 

[9] Brand, J., and Mason, J. S., “A 
Comparative Assessment of Three 
Approaches to Pixel Level Human 
Skin-Detection,” Proc. of the International 
Conference on Pattern Recognition, pp. 
1056-1059, 2000. 

[10] Sebe, N., Cohen, I., Huang, T. S., and 
Gevers, T., “Skin Detection: A Bayesian 
Network Approach,” Proc. of IEEE 
International Conference on Pattern 
Recognition, Vol. 2, pp. 903-90, 2004. 

[11] Jedynak, B., Zheng, H., and Daoudi, M., 
“Statistical Models for Skin Detection,” 
Proc. of IEEE Conference on Computer 
Vision and Pattern Recognition Workshop, 
Vol. 8, pp. 92-97, 2003. 

[12] Phung, S. L., Bouzerdoum, A., and Chai 
Sr, D., “Skin Segmentation Using Color 
Pixel Classification: Analysis and 
Comparison,” IEEE Transactions on 
Pattern Analysis and Machine Intelligence, 
Vol. 27, No. 1, pp. 148-154, 2005. 

[13] Ramamoorthy, A., Vaswani, N., 
Chaudhury, S., and Banerjee, S., 
“Recognition of Dynamic Hand Gestures,” 
Pattern Recognition, Vol. 36, No. 9, pp. 
2069–2081, 2003. 

[14] Jones, M. J., and Rehg, J. M., “Statistical 
Color Models with Application to Skin 
Detection,” International Journal of 
Computer Vision, Vol. 46, No. 1, pp. 81–
96, 2002. 

[15] Yang, J., Lu, W., and Waibel, A., 
“Skin-Color Modeling and Adaptation,” 
Proc. of Asian Conference on Computer 
Vision, pp. 687-694, January 1998. 

[16] Zhu, X., Yang, L., and Waibel, A., 
“Segmenting Hands of Arbitrary Color,” 
Proc. of the Fourth IEEE International 
Conference on Automatic Face and 
Gesture Recognition, pp. 446–453, 2000. 

[17] Sigal, L., Sclaroff, S., and Athitsos, V., 
“Skin Color-Based Video Segmentation 
under Time-Varying Illumination,” IEEE 
Transactions on Pattern Analysis and 
Machine Intelligence, Vol. 26, No. 7, pp. 
862-877, 2004. 

[18] Martin, D., Fowlkes, C., Tal, D., and 
Malik, J., “A Database of Human 
Segmented Natural Images and Its 

76

T.L.Chia and C. H. Hsieh 
Block-based Error Measure for Object Segmentation 

 . INTRODUCTION

Object segmentation (or detection) from 
images or videos has received wide attention 
recently since it has a large variety of 
applications such as object recognition, video 
surveillance, human-machine interface (HMI), 
traffic monitoring, object-based video coding [1], 
[2]. Extensive efforts have been made to develop 
object segmentation (detection) techniques 
either for images or videos, but much less 
attention has been paid for the performance 
evaluation of these techniques [3], [4]. Generally, 
for still images, the performance evaluation is to 
calculate the error between the segmented object 
and a reference (ground-truth) object. The 
reference object is often obtained manually, and 
the segmented object is from a segmentation 
algorithm. This approach is referred to as 
relative evaluation [5]. For video object 
segmentation, an alternative called stand-alone 
evaluation has been presented, in which the 
reference object is not available [6], [7]. In this 
work, we adopt the relative evaluation approach. 

The methods based on relative evaluation in 
the literature mainly calculate the error pixel 
counts between the segmented object and the 
reference object. The errors can be categorized 
into two types: miss detection and false alarm. 
Miss detection error refers to that a pixel 
belonging to the object is classified as 
background. False alarm error means that a pixel 
belonging to the background is classified as 
foreground (object). Using the two types of 
classification errors, the receiver operating 
characteristic (ROC) curve can be generated [8]. 
The ROC curve shows the tradeoff between the 
true positive rate (TPR) and the false positive 
rate (FPR). The FPR is also called false alarm 
rate, and TPR denotes the detection rate which is 
equal to 1 – MDR (miss detection rate). The 
ROC has been widely used in low-level 
applications such as skin segmentation 
(detection) [9] – [17]. 

Most related evaluation methods mentioned 
above are constructed by considering image 
segmentation as a process of pixel labeling. 
Consequently, they are not appropriate for 
object-level evaluation. Various metrics which 
extend the pixel error measure have been 

proposed for higher-level applications such as 
image segmentation at object level [18], [3], 
video object segmentation and tracking, and 
image understanding [2], [6].  

Martin et al. [18] proposed an object level 
error measure, including global consistency 
error (GCE) and local consistency error (LCE). 
The error metrics are very useful to quantify the 
consistency between segmentations manually 
performed by different people. However, this 
error measure is insensitive to over 
(under)-segmentation; thus it is not appropriate 
in segmentation applications in which the exact 
boundaries or sizes of the fragments are 
important. 

To attack this problem, Polak et al. presented 
the object-level consistency error (OCE) [3]. 
The OCE quantifies the discrepancy between a 
segmented image and the ground truth image at 
the object level that takes into account the 
existence, size, position, and shape of each 
fragment and penalizes both over-segmentation 
and under-segmentation. The OCE is suitable for 
specific applications in which the many small 
objects exist in a scene, and exact object size is 
critical in segmentation. The typical applications 
are the detection of crown canopies of trees, and 
segmentation of tar sands [3]. However, the 
OCE does not consider the false alarm error, 
which is essential in many higher-level 
applications such as tracking of objects.  

All the metrics based on the relative evaluation 
usually treat each pixel error independent. We 
refer to the performance metric as pixel-based 
error measure. This type of error metrics does 
not take the spatial distribution of segmentation 
errors into account. The spatial distribution of 
segmentation error pixels will affect the shape of 
the segmented object. Moreover, this would 
yield the error of the subsequent higher level 
semantic processing such as tracking and/or 
recognition of objects.  

In this paper, we first analyze the spatial 
distribution of the segmentation pixel errors and 
classify them into scattered error and region 
error accordingly. We then use an example to 
explain the limitation of the pixel-based error 
measure in the evaluation of object segmentation 
performance. Next, we propose a novel 
block-based error measure which assigns the 
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pixel-based error measure in the semantic scene. 
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ABSTRACT 

Most search engines retrieve documents strictly based on keywords because of which other 
content that is similar in idea is not easily accessible. Therefore, query expansion becomes imperative, 
for which ontology is a critical foundation. There are two purposes of this research. The first is to 
design a novel Keyword to Formal Concept Query Expansion (K2FCQE) algorithm to automatically 
construct the relationship between ontology and vocabulary concepts and then to proceed to query 
mode verification. The second is to develop a prototype of a Military News Retrieval System based on 
the K2FCQE method (K2FCQE-MNRS). The results of this research verify that K2FCQE is more 
efficient than other query expansions methods and that the K2FCQE-MNRS is helpful for users to 
search military related news. 
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ABSTRACT 

Small-cells can improve the system capacity and coverage with low power for heterogeneous 
networks (HetNets). However, the two-tier interference from macrocell and small-cells is the key 
challenge when small-cells are densely deployed in an apartment building. In this paper, we propose 
the three-dimension directional antenna to decrease the two-tier interference and improve the system 
capacity for the ultra-dense heterogeneous small-cell network. The three-dimension directional 
antenna can provide the strong signal to users with the high main lobe gain, and mitigate the 
interference to the neighboring small-cells with low side lobes. Therefore, the average system 
throughput can be significantly improved under the link reliability requirement. Simulation results 
show that our proposed 6-sector directional antenna can improve 146% average system throughput 
compared to the omnidirectional antenna under the link reliability requirement. Meanwhile, the 
omnidirectional antenna cannot provide the stable service quality for users in the ultra-dense 
heterogeneous small-cell network. 
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 . INTRODUCTION

Object segmentation (or detection) from 
images or videos has received wide attention 
recently since it has a large variety of 
applications such as object recognition, video 
surveillance, human-machine interface (HMI), 
traffic monitoring, object-based video coding [1], 
[2]. Extensive efforts have been made to develop 
object segmentation (detection) techniques 
either for images or videos, but much less 
attention has been paid for the performance 
evaluation of these techniques [3], [4]. Generally, 
for still images, the performance evaluation is to 
calculate the error between the segmented object 
and a reference (ground-truth) object. The 
reference object is often obtained manually, and 
the segmented object is from a segmentation 
algorithm. This approach is referred to as 
relative evaluation [5]. For video object 
segmentation, an alternative called stand-alone 
evaluation has been presented, in which the 
reference object is not available [6], [7]. In this 
work, we adopt the relative evaluation approach. 

The methods based on relative evaluation in 
the literature mainly calculate the error pixel 
counts between the segmented object and the 
reference object. The errors can be categorized 
into two types: miss detection and false alarm. 
Miss detection error refers to that a pixel 
belonging to the object is classified as 
background. False alarm error means that a pixel 
belonging to the background is classified as 
foreground (object). Using the two types of 
classification errors, the receiver operating 
characteristic (ROC) curve can be generated [8]. 
The ROC curve shows the tradeoff between the 
true positive rate (TPR) and the false positive 
rate (FPR). The FPR is also called false alarm 
rate, and TPR denotes the detection rate which is 
equal to 1 – MDR (miss detection rate). The 
ROC has been widely used in low-level 
applications such as skin segmentation 
(detection) [9] – [17]. 

Most related evaluation methods mentioned 
above are constructed by considering image 
segmentation as a process of pixel labeling. 
Consequently, they are not appropriate for 
object-level evaluation. Various metrics which 
extend the pixel error measure have been 

proposed for higher-level applications such as 
image segmentation at object level [18], [3], 
video object segmentation and tracking, and 
image understanding [2], [6].  

Martin et al. [18] proposed an object level 
error measure, including global consistency 
error (GCE) and local consistency error (LCE). 
The error metrics are very useful to quantify the 
consistency between segmentations manually 
performed by different people. However, this 
error measure is insensitive to over 
(under)-segmentation; thus it is not appropriate 
in segmentation applications in which the exact 
boundaries or sizes of the fragments are 
important. 

To attack this problem, Polak et al. presented 
the object-level consistency error (OCE) [3]. 
The OCE quantifies the discrepancy between a 
segmented image and the ground truth image at 
the object level that takes into account the 
existence, size, position, and shape of each 
fragment and penalizes both over-segmentation 
and under-segmentation. The OCE is suitable for 
specific applications in which the many small 
objects exist in a scene, and exact object size is 
critical in segmentation. The typical applications 
are the detection of crown canopies of trees, and 
segmentation of tar sands [3]. However, the 
OCE does not consider the false alarm error, 
which is essential in many higher-level 
applications such as tracking of objects.  

All the metrics based on the relative evaluation 
usually treat each pixel error independent. We 
refer to the performance metric as pixel-based 
error measure. This type of error metrics does 
not take the spatial distribution of segmentation 
errors into account. The spatial distribution of 
segmentation error pixels will affect the shape of 
the segmented object. Moreover, this would 
yield the error of the subsequent higher level 
semantic processing such as tracking and/or 
recognition of objects.  

In this paper, we first analyze the spatial 
distribution of the segmentation pixel errors and 
classify them into scattered error and region 
error accordingly. We then use an example to 
explain the limitation of the pixel-based error 
measure in the evaluation of object segmentation 
performance. Next, we propose a novel 
block-based error measure which assigns the 


