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Block-Based Error Measure for Object Segmentation
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ABSTRACT

Object segmentation is an important research topic in computer vision. The assessment of the
quality of the segmentation results is of crucial importance. The conventional performance measure
for object segmentation is mainly based on the pixel error between the segmented object and ground
truth. The pixel-based error measure does not consider the spatial distribution of segmentation errors,
which is essential in semantic processing. This paper presents a novel block-based error measure for
evaluating the performance of object segmentation. We first analyze the spatial distribution of
segmentation errors and classify them into scattered error and region error. Then we develop a
block-based error measure that enhances the contribution of the region error. The mathematical
analysis of both error measures is also presented to demonstrate the advantages of the proposed
block-based measure.

Keywords: block-based error measure, object segmentation, pixel-based error measure, relative
evaluation
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I.INTRODUCTION

Object segmentation (or detection) from
images or videos has received wide attention
recently since it has a large variety of
applications such as object recognition, video
surveillance, human-machine interface (HMI),
traffic monitoring, object-based video coding [1],
[2]. Extensive efforts have been made to develop
object segmentation (detection) techniques
either for images or videos, but much less
attention has been paid for the performance
evaluation of these techniques [3], [4]. Generally,
for still images, the performance evaluation is to
calculate the error between the segmented object
and a reference (ground-truth) object. The
reference object is often obtained manually, and
the segmented object is from a segmentation
algorithm. This approach is referred to as
relative evaluation [5]. For video object
segmentation, an alternative called stand-alone
evaluation has been presented, in which the
reference object is not available [6], [7]. In this
work, we adopt the relative evaluation approach.

The methods based on relative evaluation in
the literature mainly calculate the error pixel
counts between the segmented object and the
reference object. The errors can be categorized
into two types: miss detection and false alarm.
Miss detection error refers to that a pixel
belonging to the object is classified as
background. False alarm error means that a pixel
belonging to the background is classified as
foreground (object). Using the two types of
classification errors, the receiver operating
characteristic (ROC) curve can be generated [8].
The ROC curve shows the tradeoff between the
true positive rate (TPR) and the false positive
rate (FPR). The FPR is also called false alarm
rate, and TPR denotes the detection rate which is
equal to 1 — MDR (miss detection rate). The
ROC has been widely used in low-level
applications such as skin segmentation
(detection) [9] — [17].

Most related evaluation methods mentioned
above are constructed by considering image
segmentation as a process of pixel labeling.
Consequently, they are not appropriate for
object-level evaluation. Various metrics which
extend the pixel error measure have been

proposed for higher-level applications such as
image segmentation at object level [18], [3],
video object segmentation and tracking, and
image understanding [2], [6].

Martin et al. [18] proposed an object level
error measure, including global consistency
error (GCE) and local consistency error (LCE).
The error metrics are very useful to quantify the
consistency between segmentations manually
performed by different people. However, this
error measure is insensitive to  over
(under)-segmentation; thus it is not appropriate
in segmentation applications in which the exact
boundaries or sizes of the fragments are
important.

To attack this problem, Polak et al. presented
the object-level consistency error (OCE) [3].
The OCE quantifies the discrepancy between a
segmented image and the ground truth image at
the object level that takes into account the
existence, size, position, and shape of each
fragment and penalizes both over-segmentation
and under-segmentation. The OCE is suitable for
specific applications in which the many small
objects exist in a scene, and exact object size is
critical in segmentation. The typical applications
are the detection of crown canopies of trees, and
segmentation of tar sands [3]. However, the
OCE does not consider the false alarm error,
which is essential in many higher-level
applications such as tracking of objects.

All the metrics based on the relative evaluation
usually treat each pixel error independent. We
refer to the performance metric as pixel-based
error measure. This type of error metrics does
not take the spatial distribution of segmentation
errors into account. The spatial distribution of
segmentation error pixels will affect the shape of
the segmented object. Moreover, this would
yield the error of the subsequent higher level
semantic processing such as tracking and/or
recognition of objects.

In this paper, we first analyze the spatial
distribution of the segmentation pixel errors and
classify them into scattered error and region
error accordingly. We then use an example to
explain the limitation of the pixel-based error
measure in the evaluation of object segmentation
performance. Next, we propose a novel
block-based error measure which assigns the
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higher weight to the region error and lower
weight to the scattered error. Finally, analysis of
the pixel-based measure and block-based
measure are presented to justify the advantages
of the proposed block-based error measure.

II. ANALYSIS OF PIXEL-BASED
ERROR MEASURE

The pixel-based error measure does not
consider the spatial distribution of the detection
error pixels. This work classifies the
segmentation errors into scattered error and
region error according to their distributions in
two-dimensional (2-D) space. The scattered
error means that the locations of the error pixels
are sparse in the 2-D space, yet the region error
refers to the type that the error pixels locate
densely in a particular region.

The object segmentation is a preprocessing
step in vision systems [13]. The following
process after the preprocessing is often to group
those pixels with similar property into an object
using segmentation techniques like
connected-component labeling, region growing,
etc. [19]. Before segmentation, morphological
operations such as erosion and dilation are
usually used to remove segmentation errors. The
erosion/dilation is far more powerful in
removing scattered error than in removing
region error. The underlying assumption of this
work is that the region error will cause more
serious destruction than the scattered error in a
semantic sense. Therefore, the segmentation
performance criterion should not consider the
region error and scattered error in equal
importance like the conventional pixel-based
measure.

A set of hand palm images shown in Fig. 1
is used to explain our proposed idea. Fig. 1(a) is
the ground truth image. Figs. 1(b) to 1(¢) are the
images that the ground-truth was corrupted by
various errors. Figs. 1(b) and 1(d) are region
errors, yet Fig. 1(c) and Fig. 1(e) are scattered
errors. The pixel-based measure obtains the error
pixel counts for the four cases, and the results
are listed in Table 1. The error pixel count of Fig.
1(b) and Fig. 1 (c) are the same (540). Similarly,
the error pixel counts of Fig. 1(d) and Fig. 1(e)
are the same (165) as well. However, the effects
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of these two types of errors on semantic object
segmentation are significantly different. We
apply some morphological operations to Fig. 1(b)
to Fig. 1(e), and the results are shown in Fig. 2(a)
to Fig. 2(d), respectively. It is obvious that the
scattered errors can be reduced significantly (see
Fig. 2(b)), or be remedied (see Fig. 2(d)).
However, the morphological operations do not
work well for the region errors as shown in Fig.
2(a) and Fig. 2(c). For the following higher
level processing, the star pattern noise in Fig.
2(a) may be regarded as another semantic object;
similarly, the missed finger in Fig. 2(c) may
cause the recognition error of a posture. In short,
for the same number of error pixels, the effect of
the region error is far more significant than the
scatter error. Thus, the pixel-based error measure

(a) (b)

V

(d) (e)

Fig. 1. Four types of errors: (a) Ground truth, (b)
Region false alarm error, (c) Scattered
false alarm error, (d) Region miss error, (¢)
Scattered miss error

W

(a) (b)
(©) (d)

Fig. 2. Results of performing morphological
operations
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is not a good criterion for evaluating the
performance of

Table 1. Error pixel counts for the segmentation
examples in Fig. 1.

Segmentation ls):;eo: Segmentation error
examples count category
Fig. 1(b) 540 Region false alarm error
Fig. 1(c) 540 Scattered false alarm error
Fig. 1(d) 165 Region miss error
Fig. 1(e) 165 Scattered miss error

object segmentation methods because it only
considers the number of error pixels, but cannot
distinguish region error from scattered error.
We need to seek a new measure criterion that
treats the region error and scattered error
differently.

I1I1. BLOCK-BASED ERROR
MEASURE FOR OBJECT
SEGMENTATION

As mentioned before, an error measure
should be able to classify the region error and
scattered error and treat the two errors
differently. However, it is rather difficult to
segment the area with region error since its size
and shape are unknown a priori. To solve the
problem, we present a novel block-based error
measure which enhances the error score of the
region-error block and suppresses that of the
scattered error block.

The presented measure first divides
foreground and background into small blocks
separately and calculates the error ratio of each
block. Next, it calculates the error score of each
block by transforming the error ratio with a
nonlinear increasing function. This function
enlarges the error score for large error blocks
(region-error blocks), yet reduces the error score
for small error blocks (scattered-error blocks).
To further enhance the importance of region
error with a large area, the error score of each
region-error block is further modified using
block correlation. Fig. 3 shows the block
diagram of our algorithm. The details of the
proposed error measure are described in the
following subsections.

3.1. Block Partition for Foreground and

Ground truth
image

Segmented
image

Divide the image into foreground and
background blocks

Calculate the error ratio of each block

Transform the error ratio using the
enhanced function

Modify the error score of each block

Compute three types of total error scores

Foreground:
@ The total miss detection error score
@ The total false alarm error score
Background:
® The total false alarm error score

Fig. 3. Block diagram of our method
Background

Assume [, is a reference (ground-truth)
image and /; the segmented image, both with the
size of M x N. The images contain foreground
(object) part and background part. The
background part of an image is divided into
non-overlapping blocks with a size of m x n, and
the foreground region is partitioned into
non-overlapping blocks with a size of £ x /. In
practice, the size of a foreground block, & x /, is
smaller than that of a background block, m x n.
It indicates that the foreground block is more
important than the background block in
measuring errors. The foreground block is
dependent upon on the smallest sub-object we
considered. For example, for hand palm
processing, the foreground block size is
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designed approximately the same to the finger
size; the maximal allowed size of a background
block is limited by the size of a hand palm in an
image. In our experiments, the block sizes of the
foreground and background are set to be 8§ x 6
and 16 x 12, respectively.

3.2. Types of Block Segmentation Error

Assume a reference image /g is divided into F'
foreground blocks and B background blocks.
Thus, the image can be represented as

I,={FB}U(BB{, i=12,..F,j=12..B )
k-l-F+m-n-B=M-N
A foreground block contains object pixels and
non-object pixels (denoted as 1 and O
respectively) and is represented as (refer to Fig.
4)
FB, = FO, UFNO, (2)
where,
FO, ={1,(x,»)|(x.) € FB,, I,(x,) =1}
FNO, = {Ig (x,)|(x. ) € FB,, I,(x,) = o‘} 3.
|FB,|=|FO,|+|FNO|=k-1
The background block contains non-object
pixels only, which is represented as

BNO, ={1,(x,)|(x.y) € BB,, I, (x,») = 0}

|BB | =|BNO | =m-n )

Similarly, we can define the segmented
image /; as a binary image which contains the
object and non-object pixels and represented by

I, =S80 USNO %)
where

SO = {1 ML (x ) =1}
SNO ={I (x,»)|I,(x,y)=0}

In measuring segmentation errors, we
superimpose the reference image and segmented
image; then each foreground block is
represented as (refer to Fig. 4).

FO,={a}ulb) PNO=[c}old) (o)
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FB =FO, UFNO, ={aju{b}u{c}u{d} (1)

1

where

{a;}: The set of miss detected part of the
foreground block FB; with some pixels of g;,

{b;}: The set of correctly detected part of the
foreground block F'B; with some pixels of b,

{c;}: The set of correct detected of background
pixel in the foreground block FB; with some
pixels of ¢;, and

{d;}: The set of false alarm of the foreground
block FB; with some pixels of d,.

Similarly, each background block can be
represented as (refer to Fig. 5)

BNO, ={e}.}u{fj} (8)

where

{e;}: The set of correctly detected part of the
background block BB; with some pixels of e,

FO; €

a; b‘,- d,‘

FB;

FNO;

Fig. 4. Definition of segmentation error in a
foreground block. The blue rectangle
and orange rectangle denote the original
object in /, and segmented object in I,
respectively

BNO;

%

BB;

Fig. 5. Definition of segmentation error in a
background block. The orange rectangle
denotes the segmented background region
in the background block BB;
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and

{fi}: The set of incorrectly detected part of the
background block BB; with some pixels of £;.

3.3. Design of Enhanced Function

Based on the block error definition above,
three types of error ratios can be defined in the
following.

(a) Miss detection ratio for the foreground block
FB;

i
i _ F_md __ a,‘
F md i -
- NFJ a;, +b,

€)

(b) False alarm ratio for the foreground block
FB;

i

i _NF,.ﬁJ _ d,

1
A A

(10)

(c) False alarm ratio for the background block
BB;

J
;o N S

a _ej+fj_mn

B_fa J
NBitn (11)

In general, if the error ratio (miss or false
alarm) of a block is small, it implies that the
possibility of scattered error is high for this
block. On the other hand, if the error ratio is
very high, it indicates the block suffers from
region error with a high possibility; thus the
error of the block should be enhanced.

However, for the case of the very little
foreground, i.e., (a + b) is tiny; the small ¢ may
result in large miss detection error ratio.
Similarly, the small d may also yield large false
alarm ratio if (¢ + d) is small. Fig. 6 illustrates
the phenomenon by showing the miss detection
ratio under different object pixel ratios. It shows
a small miss detection (¢ = 5) from the
foreground block containing a small object ((a +
b) / 48 = 0.2) yields the same miss detection
ratio (0.6) as the large miss detection (a = 20)
from the foreground block containing a large
object ((a + b) / 48 = 0.7). It is obvious that a

small ground-truth object in the foreground
block often generates a large miss detection
ratio.

To consider the error ratio and small
foreground (or background) region size
Miss detection ratio

N
09
0.8 \ i
0.7

—asl0

—a=l5
al(@a+d) ¢

—a=20
Miss detectlion

——anl3
—a=30
—a=33

a0
—a=4$

04
0.3
0.2
0.1

0

O o o o

o ol 2 03 04 05 06 07 05 0%

Object plxel ratlo In foreground block
Fig. 6. The phenomenon of the miss detection
ratio under different object pixel ratios

simultaneously, two requirements should be met

in the design of enhanced function.

(a) For the tiny error ratio (< threshold 7), the
error is very likely a noise. Thus it is
neglected. If the error ratio is higher than 7,
the error should be amplified with different
factors. Generally, the higher the error ratio,
the larger the amplification factor needs.

(b) The amplification factor should be related to
the size of foreground object region (a;+ b;)
or background region (c; + d;), or f. The
factor should be reduced to a small region.
The region sizes relative to the block sizes
below are used to determine the amplification
factor:

a +b, ¢ +d

_ I
gl"'imd_ Kl ’gFL/h il o

> OB fu

(12)

mn

This work designs three enhanced functions
for the three types of block errors defined before.
The block errors in Egs. (9) to (11) is amplified
by the following transfer functions:

R-T
B (13 e )

0, otherwise

, 0<r<LT<R,<lg <I

(13)
where FK = {F md, F_fa}, and
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(14)
R-T
A He-oem)

0 otherwise

0<t<L, T<R, <lg, <l

where By = {B fa}. The factor ¢ is a scale to
control the level of enhancement. Fig. 7 shows
the enhanced curves for various values of R and
g. It is seen that the larger the R and g, the output
of the transfer function is higher; which
obviously meets requirement above. For a small
error ratio (R < 0.1), the error is neglected

1 -
t=04,T=0.1 ’

— )
—g=0.1
—g=0.2
3 = - —g=0.3
ER ¥ i . —— —g=04
5 3 — —g=05
g=0.6
g=0.7
g=0.8
g=09
g=1.0

R

Fig. 7. The enhanced curves for various values
of g. (kx[=8x6>mxn=16x12)

because it is easily removed by morphological
operations.

3.4. Modification of Block Error Score

The error enhanced function processes each
block separately. Thus, it is suitable for small
region error that may contain a single
region-error block. However, in some cases, a
big error region which covers several blocks
often exists. The significant error region will
introduce more harmful effect on the following
higher-level processing. Therefore, it should be
further enhanced. To put the effect into measure
criterion, we further propose an error
modification scheme for each region-error block
using block correlation as follows.

If the enhanced error score of a block is less
than a threshold 7, no further enhancement is
required because it is not a great region error.
For the block with significant error larger than T,
we search its eight neighboring blocks one by
one. If its error value is higher than that of the
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neighbor block, the current block is further
enhanced by adding the error score of that block
to the current block as defined in (15) for
foreground block, and (16) for background block.
The first term in (15) and (16) denotes the error
score of the current block, and the second term
is the score contributed from the neighbor blocks.
The term in the denominator is used to restrict
the output error in the range of [0, 1].

1

M= | Ry gyt Y gyl R>T  (15)
W, HyeNeighbor(F)
R 2R T
where W), = L -
Fy e{F; ,Neighbor(F;)}
) 1 o ) 16
MEy, = LRy gy + Z Eng 'gzhsk . ERy >T ( )
Wm By<Neighbor(B})
ER}y >ERpy >T
where W), = > L -

By E{Bj ,Neighbor(:Bj )}

We explain (15) and (16) in more details as
follows. If both the current block and the
neighbor block are significant, and the error
score of the current block is higher than the
neighbor block, these blocks may form a larger
area with higher errors. Hence, the current block
will be further enhanced. Egs. (15) and (16), of
course, can be replaced with other block
correlation measures. However, our experiments
indicate that this measure is simple and effective
without requiring extra threshold parameters.

After all the blocks of a whole image are
complete, we calculate the total miss detection
error score, false alarm error score for the
foreground, and false alarm error score for
background, separately, as:

[Neske

MEL, , 17)

I~

TE . =

TE ME}, . (18)

B

T M=

| —

Bk

IV. COMPARISON OF
PIXEL-BASED METHODS
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Table 2. Number of blocks and number of
neighbors for three types of areas

Corner Border Center
Number
of 3 5 8
neighbors
Number 4 2[p-2)+ | (p-2)gq -
of blocks (g -2)] 2)

Any of the three types of block segmentation
errors defined in the previous section may
belong to the region error (Case 1) or scattered
error (Case 2) defined in Section 2. Table II
illustrates the six possible combinations of error
types. Each type has the same error amount for
the two cases. We mentioned before that region
error is more critical in a semantic sense than
scattered error. In the following, we will
compare the conventional pixel-based error
metric with the proposed block-based method
error metric for the error types listed in Table 2.

4.1 False alarm error in background
block

Assume background block is denoted as
BBj, j = 1, 2, ..., B. Consider two cases:
region error and scattered error. For a fair
comparison, we assume the two cases have
the same error amount k(mn), m x n is the
block size.

(A) Pixel-based measure

The false alarm error value can be directly

written as

k(mn)/ B(mn)=k/B (19)
(B) Block-based measure
Case 1 : Region false alarm error
Assume the region error contains /
background blocks (called error coverage

hereafter). For convenience, assume the error is
uniformly distributed in these blocks, and the
region is a rectangle with size p x g (p x g = I).
Then we can assume BB;, j = 1, 2, ..., [ are
background blocks containing errors, and the
remaining blocks BB;, j = (I + 1), ..., B are
background blocks with no error.

Thus we have

k(mn)/1 k.
/ = :1,...,1 20
lef_/iz = mn l J ( )
0, j=1+1..,B
After enhancement of Eq. (14), we have
. _ Tk=ID | e P (21)
ER; =1\ (T-1)(k-1(1+T)) s o J =l
0, j=({+1),...,B

The modification scheme in Section 3.3 applies
eight neighbors to further enhance the region error.
The error score contribution of the neighbor blocks
for each block varies with the number of neighbors
of the block. The error region is a rectangle with
the size of p x ¢g. The number of neighbor blocks is
related to which area of the error region the current
block locates. There are three types of areas
including corner, border, and center areas. These
areas have different numbers of neighbor blocks,
and the numbers of blocks belonging to different
areas are also not the same. Therefore, there are
four corner blocks in the rectangle, each of which
has three neighbor blocks. There are 2[(p - 2) + (g -
2)] blocks at the boundary (with corners deducted)
and have five neighbor blocks, and there are (p -
2)(g - 2) blocks with eight neighbor blocks inside
the rectangle. The relation is listed in Table 3.
Therefore, the average error value for an image can
be derived as

18 1.
TE, s ZMZL fa :; Z}M[L fa
=

_Ja B

1

J J
= 2| B g
Jj=l B fa

R h
z 3 1 8B fu
BBy eNeightor (BB)) - -

ERL >R

81> 1T

V(o i (22)
4'7 EREiﬁz'7+3'EREiju'7
i

1 k k
= +2((P_2)+(q_2)) '7(ERBJH '7+5'ERBJa 7]
6.X

/

k k
(ERBJa ‘7+8‘ERBJH 7)

H(p-2)-(q-2):
9.

~i=

_l K k[ 1e-m Tk
71[m(ERB*’“ l]jfERBf"” l((T—l)(k—l(HT))J l

Eq. (19) indicates that the error value
calculated by pixel-based error measure is
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proportional to the error amount (k), but not
related to the error coverage (/) (/ blocks
containing errors). The result can also be seen in
Fig. 8, which shows the error value is constant
over / when £ is kept fixed. On the contrast, Eq.
(22) shows that the error value computed by the
proposed block-based method is determined by &
and /, as demonstrated in Fig. 8. The figure
indicates that the error measure raises with the
increase of error amount k£ when error coverage (/)
is fixed. The more important thing is

Table 3. Six possible combinations of error
types

Case 1 Case 2

Type

Type

Type

\

Type 1: false alarm error in background block
Type 2: false alarm error in foreground block
Type 3: miss detection error in foreground block
Case 1: region error

Case 2: scattered error

that the error measure increases with the decrease
of / when £k is kept fixed.

By subtracting block-based error measure
(Fig. 9) from pixel-based error measure (Fig. 8),
we obtain the difference curve in Fig. 10. The case
that the error amount (k) is small and the error
coverage (/) is substantial belongs to scattered
error. It is observed from the bottom-left area of
the figure, the difference is negative, which
indicates the scattered error is suppressed in our
block-based measure. On the contrast, in the
diagonal area, the difference is positive, which
means the error is enhanced. This is because this
area belongs to region error. Besides, for the fixed

¢

75

PEEEE fwttE o8 B 107.11
JOURNAL OF C.C.I.T.,, VOL.47, NO.2, NOV, 2018

error amount, the difference value is increasing,
which means amplification factor is becoming
larger, with the decreasing of the error coverage.
In this case, the average number of error pixels of
a block is becoming larger, which indicates the
region error is becoming more compact. Thus the
amplification factor is increased accordingly, as
expected.

Pixel-based error measure
mi0
m20
m30
1 =40
) u 30
0.5 - & e =60
& pia i ‘--_-'-»--‘..' 10 70
0 +Sa T e
et b L | =.==70 90
lf 30 50 70 =" 100 f 100

Fig. 8. The pixel-based error measure with the error
amount k(mn) and / blocks containing errors

Block-based error measure
ml0

=30

Fig. 9. The block-based error measure with the
error amount k(mn) and [ blocks
containing errors

ul0
m20
m30
40
u50
w60
70
80
90
100

Fig. 10. The difference between the block-based
error measure (Fig. 9) and the pixel-based
error measure (Fig. 8)
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Case 2 . Scattered false alarm error

Assume that errors are uniformly distributed in
the B background blocks. Thus the error measure
is simply represented as

R/ = k(mn)

- (23)
B_fa B(mn)

k
B

The result is very similar to that of the
pixel-based method in Eq. (19). The minor
differences are when (k / B) < T, the error
measure is set to zero, and for small &k / B, the
error is suppressed by the enhanced function.

4.2 False alarm error in foreground block

Assume that all foreground blocks are
denoted as F'B;, j =1, 2, ..., F. They also can be
classified into two cases: region false alarm error
and scattered false alarm error. Again, we
assume the two cases have the same error
amount k(mn).

(A) Pixel-based measure

The false alarm error value can be simply

written as

k(mn)! F(mn)=k/F (24)
(B) Block-based measure
Case 1 : Region false alarm error
Assume the region error contains /

foreground blocks. Again, assume the errors are
uniformly distributed in these blocks, and the
region is a rectangle with size p x g (p x g = I).
Then we can assume FB;, i = 1, 2, ..., [ are
foreground blocks containing errors, and FB;, j =
(Il + 1), ..., F are foreground blocks with no
error.

km)/1_k

i i=1.../
&:ﬁz: nm / i=l,..,
0 i=Il+],...F
(25)
After enhancement of Eq. (13), we obtain
' 26
[&] e (26)
ER,;;FJa= (T*l)(k*l(]JrT)) F_fa> seens
% i=(+1),.. F

Then we apply the modification scheme in
Section 3.3 to further raise the region error based
on eight neighbor blocks. Using the similar
analysis in Case 1 of Section 4.1, we can derive
the average error value for an image as

1
ER, . -g, ER,. . -g,
[Wf'/u[ - gf,m*‘FR,YFM%”_‘FR’) s gFf“H . (27)

i SERM
ER p,2ERY T

1 k k
= +2((P*2)+(‘1’2))' r (ERr TS ER '7)
4 6.k ! !

i

1 k k
+((P*2)'(f1*2))‘ k[ERI- /u‘7+8‘ER/ m'?]
9.2

!

T(k—IT) ] k
1

1 k k
_7[”[””’ 7]} =ERs 7= [(T—l)(k—/(HT))

Case 2 : Scattered false alarm error

Assume that errors are uniformly distributed
in the F background blocks. Thus the error
measure is simply represented as

i _k(mn) _k (28)

F_fa™ F(mn) F

The result is also similar to that of the
pixel-based method in Eq. (24).

The miss detection error in foreground block
can be analyzed in a way similar to the
procedure above, and the result is also similar.
Therefore we neglect the analysis here.

V. CONCLUSIONS

In this paper, we investigated the
segmentation error of object segmentation and
classified it into scattered error and region error.
We concluded that the region error is more
critical than the scattered error for segmentation
since it significantly affects the performance of
the following higher-level processing modules.
We developed a block-based error measure in
which the region error is enhanced, but the
scattered error 1is suppressed. Mathematical
analysis proved that the block-based error
measure achieves expected a result and it is
more reasonable than the conventional
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pixel-based error measure in the semantic scene.
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