以方向性天線改善異質性無線網路之二階層式干擾

蔡昂勳1* 陳文彬2 梁世孟1 紀博源1

¹國防大學理工學院電機電子工程學系 ²國防大學理工學院國防科學研究所

摘 要

小細胞(Small-Cell)能以低功率之異質性網路(Heterogeneous Network, HetNet)架構改善系統容量和覆蓋區域,但是伴隨產生的巨細胞(Macrocell)與小細胞間的二階層式干擾(Two-Tier Interference)卻是異質性網路中的主要挑戰,尤其是在公寓大樓中密集佈建的小細胞網路更是顯著。在本文中,我們以三維方向性天線來減少二階層式干擾,以提高超密集異質小細胞網路的系統容量,採用三維方向天線能以其主波瓣的高功率增益特性提供較強的信號給用戶,而以較低增益的旁波瓣來減輕鄰近小細胞基地台間的干擾,得以管理二階層式干擾之影響,透過模擬結果顯示,6扇區的方向性天線較全向性天線可增加146%的系統平均傳輸率。

關鍵詞:方向性天線,異質性網路,二階層干擾,系統容量

Two-Tier Interference Mitigation with Directional Antennas in Heterogeneous Networks

Ang-Hsun Tsai1*, Wen-Pin Chen2, Shi-Meng Liang1, and Po-Yuan Chi1

¹Department of Electrical and Electronic Engineering, Chung Cheng Institute of Technology, National Defense University

²School of Defense Science, Chung Cheng Institute of Technology, National Defense University

ABSTRACT

Small-cells can improve the system capacity and coverage with low power for heterogeneous networks (HetNets). However, the two-tier interference from macrocell and small-cells is the key challenge when small-cells are densely deployed in an apartment building. In this paper, we propose the three-dimension directional antenna to decrease the two-tier interference and improve the system capacity for the ultra-dense heterogeneous small-cell network. The three-dimension directional antenna can provide the strong signal to users with the high main lobe gain, and mitigate the interference to the neighboring small-cells with low side lobes. Therefore, the average system throughput can be significantly improved under the link reliability requirement. Simulation results show that our proposed 6-sector directional antenna can improve 146% average system throughput compared to the omnidirectional antenna under the link reliability requirement. Meanwhile, the omnidirectional antenna cannot provide the stable service quality for users in the ultra-dense heterogeneous small-cell network.

Keywords: directional antenna, heterogeneous network (HetNet), two-tier interference, capacity 文稿收件日期 106.12.29; 文稿修正後接受日期 107.6.4;*通訊作者 Manuscript received December 29, 2017; revised June 4, 2018;* Corresponding author

一、前 言

無線通訊網路已成為人們日常生活中不 可缺少的一環,舉凡電話、資訊、物聯網、雲 端、乃至大數據…等都離不開無線通訊網路的 便利服務。為了提高使用者的服務品質 (Quality of Service, QoS), 追求更高的系統容 量(Capacity)、傳輸率(Throughput)以及鏈結可 靠度(Link Reliability)之要求,其所面對的挑戰 也與日俱增[1]。異質性(Heterogeneous)結構的 小細胞(Small-Cell)密集(Ultra-Dense)佈建已被 認為是增強網路容量的有效手段[2][3]。結合 超密集小細胞的異質性網路已成為網路營運 商普遍的架構[4][5][6],其優點是可改善系統 容量、增加傳輸率,其缺點是易造成二階層式 干擾。因此,改善巨細胞終端用戶(Macro-cell Users Equipment, MUE)與小細胞終端用戶 (Small-cell Users Equipment, SUE)的干擾管理 則成為影響超密集小細胞的異質性網路效能 良窳重要關鍵(如圖 1)。

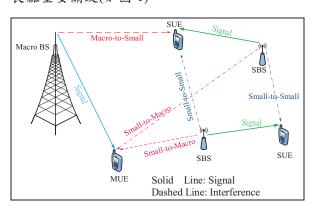


圖 1. 異質性網路二階層式干擾圖

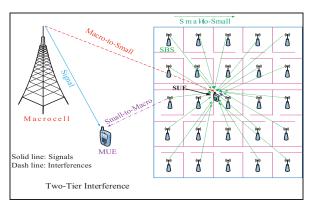


圖 2. 大樓內超密集小細胞異質性網路干擾

由於異質性通訊網路密集佈建產生的互相干擾,對於訊號而言產生不利的影響,尤其

佈建在高密度公寓大樓內的超密集小細胞網路中,巨細胞(Macro-cell)與小細胞之間[7]、小細胞與小細胞之間以及小細胞與巨細胞之間二階層式干擾現象[8][9]尤其嚴重(如圖 2)。

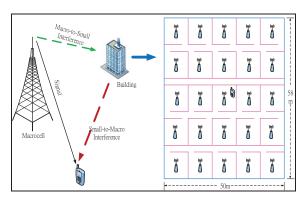


圖 3. 異質性網路二階層式干擾圖

二、系統模型

本研究系統模型是以五層樓之公寓建築物為構型,區分內部及外部實施系統架構規劃,建築物外部具有大功率基地台(Macro-Cell Base Station, MBS),建築物內部則佈署小細胞基地台(Small-Cell Base Station, SBS)(如圖 3)。

建築物內部長度為 58 公尺,寬為 50 公尺,分隔為 25 間住戶,五層共計 125 間;第一層高度為 0 公尺,各樓層之間高度相差為 3 公尺,每間住戶面積為 10 公尺*10 公尺。每間房間內部均架設小細胞基地台 1 部,並且以第 3 層樓中間住戶(第 63 間)的終端用戶(Users Equipment, UE),作為本文所探討的系統干擾量測模擬之基準。

2.1 通道模型

電磁波在空間中傳播,從發射端到接收端之間之大氣環境稱為通道(Channel),為簡單起見,本研究採用 3GPP TR36.814 V9.0.0 (2010-03)之規範[10],並以室內小細胞對用戶參數做為參考模型,其中無線通訊載波頻率為2 GHz,巨細胞基地台發射功率為46 dBm,小細胞基地台發射功率為20 dBm,用戶發射功率為23 dBm,站點間距離500公尺,工作頻寬10 MHz,小細胞基地台和用戶之間遮蔽摔落為10 dB,其他鏈結為8 dB,小細胞基地台和用戶間之滲透損失為0 dB,其他鏈結為20 dB,其小細胞基地台和室內用戶鏈結通道路

徑損失模型[11]如公式(1):

$$PL = 127 + 30\log_{10} R \tag{1}$$

其中 R 為發射端與接收端之間距離,單位為 Km。另用戶與巨細胞(Macrocell)之路徑損失 通道模型如公式(2):

$$\overline{PL} = 128 + 37.6 \log_{10} R$$
 (2)

2.2 訊號雜訊干擾比 SINR

發射端傳送訊號由接收端接收後,其訊號 與來自其他發射源之干擾及其他雜訊的比值 (Ratio)稱為 SINR,這是衡量接收機接收情況 好壞的重要指標,在接收機中 SINR_{min}則表示 該接收機能夠接收到訊號的最小數值,小於該 數值就無法正常接收訊號;隨環境及設備的不 同,一般為-2.5 dB。另外最大 SINR_{max}表示接 收機能達到最大接收傳輸率(Throughput)的數 值,也就是接收機最佳工作情況的數值,如公 式(3)所示:

$$SINR = \frac{S}{I+N} \tag{3}$$

其中,S 為用戶接收機接收之訊號(Signal)強度,I 為來自其他細胞之干擾(Interference)訊號總和,N 為雜訊(Noise)功率。

在應用上,接收機之訊雜比公式(4)如下:

$$\gamma_{m,k,i} = \frac{P_{r,m,k,i}}{P_{r,m,k,i}^{M} + \sum_{j=1, j \neq i}^{N_{S}} P_{r,m,k,j} + N_{0}}$$
(4)

其中 $\gamma_{m,k,i}$ 為第i個基地台使用第m個資源塊 (Resource Block)傳送給第k個用戶(User)之訊 號雜訊干擾比(SINR), $P_{r,m,k,i}$ 為第i個基地台使用第m個資源塊傳送給第k個用戶的接收訊 號功率, $P_{r,m,k,i}^{M}$ 為第i個基地台使用第m個資源塊傳送給第k0月時接收到來自巨細胞的干擾訊號功率, $\sum_{i=1,i\neq i}^{N_s} P_{r,m,k,i} + N_0$ 為第i

個小細胞基地台使用第m個資源塊傳送給第k個用戶時,所接收到來自鄰近小細胞基地台j的干擾訊號功率總和(j)從 $1\sim N_s$)。 N_0 為熱雜

訊干擾訊號功率(Additive White Gaussian Noise, AWGN)。

2.3 性能指標

在無線通訊系統中,用來評估系統性能的有系統容量、傳輸率和鏈結可靠度等指標,基於用戶所感受到的服務品質,因此我們採用服務效率和可靠度。服務效率是指在給定的通道中所傳輸信息內容的多少,稱為傳輸率或是吞吐量。鏈結可靠度是指接收信息的正確程度,也就是傳輸的品質,茲分述如下:

2.3.1 系統傳輸率(System Throughput)

無線通訊系統中通常以資料傳輸率,即單位時間內所有用戶所能傳輸之資料量總和,又稱為系統容量(System Capacity),做為系統性能的標準。本研究中以建築公寓內用戶對第63個小細胞之資料傳輸率為性能指標,其計算公式(5)如下:

$$C_S = \sum_{m=1}^{N_{RB}} B_{RB} \log_2(1 + \gamma_m)$$
 (5)

 C_s :系統總傳輸率。

m:第m個資源塊

B_{RB}: 資源塊的頻寬(180 KHz)

 γ_m : 第 m 個資源塊的訊雜比(SINR)。

2.3.2 鏈結可靠度

當用戶接收機之 SINR 大於預設之靈敏度 (門檻值)時,才能與小細胞基地站正常鏈結, 亦即接收機才能正常地接收資料;若用戶環境 干擾或遮蔽情況嚴重,造成接收功率無法大於 SINR 設定之門檻值時,就無法與基地台做正 常接收資料,造成通訊品質不佳或斷線。其鏈 結可靠度如公式(6):

$$P_{rel} = P_r [\gamma_m \ge \gamma_{th}]$$
 (6)

其中 P_{rel} 為鏈結可靠度(Link Reliability)機率。 P_r 為接收機接收功率; γ_m 為用戶之 SINR; γ_t 加為用戶預設 SINR 之最低可接收門檻值。

三、干擾管理機制

3.1 三維方向性天線設計

方向性天線是具有定向和決定波東寬窄 的輻射器,它具有集中功率的能力,能經由設 計製作和控制其波束的寬窄和角度的方向。使 電磁波在指定的方向[12],將能量集中在設計 的波束角度寬內做有效的輻射,當方向性天 波束角度越寬,其集中功率的能力就越低,天 線輻射功率增益就越小,反之當天線波束角度 越窄,其集中功率的能力就越高,對天線輻射 功率的增益就越大;天線集中功率的能力即指 向性(Directivity, D)和天線增益 G 之公式(7)、 (8)如下:

$$D = \frac{P_{\text{max}}}{\left\lceil \frac{P_r}{4\pi} \right\rceil} \tag{7}$$

其中,
$$P_{\max}=\frac{輻射功率}{立體角}$$
, $P_r=輻射功率$ 。
$$G=\frac{P_{\max}}{P_c/4\pi}=e_f\cdot D \tag{8}$$

 P_t 為發射功率,當 P_t (發射功率)= P_r (輻射功率)時,天線輻射效率 e_f =1時,G=D。

當天線功率增益並不是指天線能自己創造出功率,而是指把能量輻射在指定的有限方向強度和輻射在全部方向的輻射強度的比值。假設其電磁波能量以球型座標 360 度均匀向上下四方輻射,沒有特別強或特別弱的方向,其等輻射功率如下式(9):

$$P(\theta, \phi) = \frac{P_R}{4\pi} \tag{9}$$

其中, P_R 為總輻射功率。透過公式(9)可以計算出指方向性天線發射的功率($P_{Numeric}$)和全向性天線的發射功率($P_{Isotropic}$),利用功率增益的計算,可以得知天線功率增益(G_{dBi}),如公式(10)所示:

$$G_{dBi} = 10\log(\frac{P_{Numeric}}{P_{Isotropic}}) = 10\log(P_{Numeric}) \quad (10)$$

通常方向性天線由 x-y 平面的水平 (Horizontal)方位角,和垂直於 x-y 平面的 y-z 垂直(Vertical)方位角組成,方向角度寬的計算是以天線輻射波束之主波瓣的半功率點(-3 dB) 的波束角寬為量測依據,以 3GPP 定義之方向性天線 3 扇區水平-3dB 角度寬(H_{ϕ})為 70° ,垂直 -3dB 角度寬(V_{ϕ})為 10° ,如圖 4 所示。因方向性天線有集中功率的能力和指向性優點,故可作為較長距離通信或提升接收機接收信號強度以增強鏈結可靠度,且因波束寬窄可控制,能降低與鄰近基地台的互相干擾。

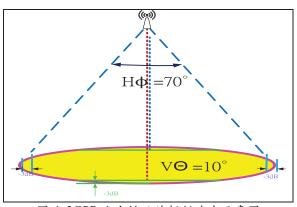


圖 4.3GPP 方向性天線輻射波束示意圖

在傳統的無線通訊中,小基地台天線都以全向性天線工作,其優點是涵蓋用戶範圍較大,缺點是易產生彼此之間的干擾,尤其是在密集異質小細胞網路系統中更為嚴重。而方向性天線波束寬可被設定,天線增益高,鏈結可靠度好,涵蓋範圍小,產生的相互干擾也較少。本文利用方向性天線波束可控制的特性,採用了全向性(Omni)、3 扇區、6 扇區做模擬比較。

下面公式(11)是方向性天線在水平和垂直 角度增益的表示式:

$$G(\varphi,\theta) = -\min\left\{-\left[G_H(\varphi) + G_V(\theta)\right], A_m\right\}$$
 (11)

其中, $G_H(\varphi)$ 為水平角度(Horizontal)增益。 $G_V(\theta)$ 為垂直角度(Vertical)增益。 A_m 為天線輻射最大增益值。無線通訊在 360° 涵蓋區中畫分為三區,每區各為 120° ,由一個扇形天線負責涵蓋,稱為 3 扇區方向性天線,3 扇區方向性天線水平方向增益公式(12)如下:

$$G_{H}(\varphi) = -\min\left[12\left[\frac{\varphi}{\varphi_{3dB}}\right]^{2}, A_{m}\right] \text{ where } -180^{\circ} \le \varphi \le 180^{\circ}$$

(12)

其中, φ_{3dB} 是天線在水平方向輻射圖形的半功率幅射角,角度寬為 70° ,最大增益為 $25 \, \mathrm{dB}$,如圖 $5 \, \mathrm{mm}$ mm $6 \, \mathrm{s}$ 區天線水平方向角度輻射角度波形圖如圖 $6 \, \mathrm{mm}$ mm s mm s mm s s s s s d s s s s d s s d s s d s d s d s d d s d d

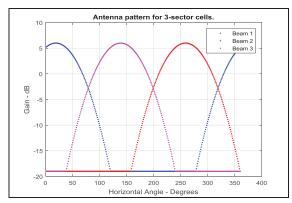


圖 5. 3-Sector Antenna Pattern

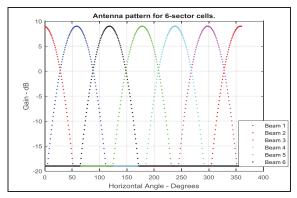


圖 6. 6-Sector Antenna Pattern

3.2 限制可用資源塊

在無線通訊系統中,頻率資源的使用度和系統效益息息相關,通常以資源塊(Resource block)的方式來分配給使用者,而為了確保系統傳輸率的穩定和避免細胞間交互干擾,並建立偵測協調機制,我們假設資源塊的使用率為 ρ_s ,一般來說,不同的基地台間重複使用相同資源塊,可以有比較好的頻譜效率,但相對地很可能產生相互間的干擾。

為了體現基地台彼此之間彼此的同頻干擾,我們假設載波通道頻段為10 MHz,在此頻段中共有50個可用資源塊,把它以5個為

級距,共分為 10 級,採隨機分配的方式給所有小細胞基地台使用,透過不同的資源塊使用率 ρ_s ,作為驗證資源塊使用率對於不同的天線方式之間相互的關係,以及對系統鏈結可靠度和總傳輸率的影響。

3.3 功率控制

小細胞基地台的發射功率過小,影響系統效能;但功率過大,易產生彼此之間互相的干擾,並且浪費能源,也增加營運成本。所以必須在功率控制與系統效能間妥慎權衡,本研究透過模擬小細胞基地台的發射功率從 1 mW (0 dBm)到 100 mW (20 dBm),如表 1 所示,共分 11 級,來模擬小細胞基地台在不同的發射功率下,對系統總傳輸率和鏈結可靠度的影響。

表 1. 小細胞基地台發射功率分級表

發射 功率 (mW)	1	10	20	30	40	50	60	70	80	90	100
(dBm)	0	10	13	14.7	16	17	17.8	18.5	19	19.5	20

四、模擬結果與分析

4.1 模擬環境設定

本研究模擬環境是以大功率基地台 (Macrocell)之有效涵蓋半徑 500 公尺為基礎, 在範圍內重複隨機佈建五層樓公寓建築 10000 次,為在不同位置、不同方向、不同距離取樣 做模擬測試,以獲得接收信號平均值的準確 度。模擬場景如圖 7 所示。

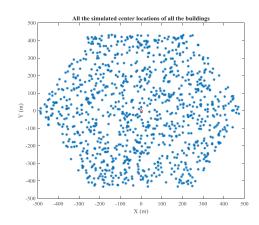


圖 7. 模擬場景(一)

圖中菱形紅點為巨細胞(Macrocell);在建築物內部,各層樓住戶內各佈建小細胞基地台1台,以第三層樓中間住戶(第63間)的單一終端用戶(UE),如圖8表示,以作為模擬干擾量測之基準點,模擬參數如表2。

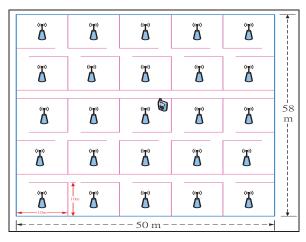


圖 8. 模擬場景(二)

表 2. 模擬參數表[10]	表	2.	模擬	參	數	表	[1	0	Ì
----------------	---	----	----	---	---	---	----	---	---

模擬參數(Parameters)	設定數值
載波頻率(Carrier Frequency), f_c	2.0 GHz
巨細胞半徑(Macrocell Radius), R _m	500 meters
巨細胞基地台(MBS)發射功率, P_{t-m}	46 dBm
小細胞基地台(SBS)發射功率, P _{t-s}	10 mW
Noise Figure (MBS/SBS/UE)	5/5/7 dB
系統載波通道頻寬	10 MHz
FFT Size	1024
資源塊數(RB)	50
資源塊頻寬	180 khz
訊擾雜比(SINR)之門檻(Threshold)	-2.5 dB
發射時間週期(TTP)	20 ms
室內遮蔽(Shadowing)鏈結	10 dB
其他遮蔽(Shadowing)鏈結	8 dB
天線扇區(Sector)種類	3/6 Sector
資源塊使用率(RB Usage Ratio), ρ _s	0.1~1.0
Noise Power, N_0	-174 dBm

此外,方向性天線仰賴之波束成型技術 (Beamforming)之複雜度與成本非本論文探討 之重點,另一方面,本論文的環境非移動性用 戶,因此,移動性用戶所造成的追蹤挑戰也不 在本論文中探討。

4.2 模擬結果與探討

圖 9 為在發射功率 10 mW,資源塊使用率 ρ 。從 $0.1\sim1.0$ 增加時的鏈結可靠度變化,圖中 0.9 紅色虛線是鏈結可靠度需求標準線,3 扇區天線在資源塊使用率 0.15 以下時,鏈結可靠度可以達到 0.9 之標準線以上,6 扇區是在小於 0.28 可達到標準線 0.9 以上。

從模擬結果來看,6 扇區方向性天線比 3 扇區提升了 87%,而全向性天線鏈結可靠度最高為 0.78,完全無法達到 0.9 的標準線。 且全向性天線在資源塊使用率 ρ_s 從 $0.1\sim1.0$ 增加,鏈結可靠度從 0.78 降低至 0.28,下降了 0.5;而 3 扇區方向性天線從 0.93 降低至 0.62,下降了 0.31;6 扇區從 0.96 降低至 0.74,下降了 0.22;結果是扇區數愈多,鏈結可靠度下降愈小,系統越穩定。

圖 10 顯示當發射功率為 10 mW 時,資源塊使用率 ρ_s 和各天線之系統傳輸率的變化,當各扇區天線在 0.9 鏈結可靠度標準點時之系統傳輸率,3 扇區天線約為 7 Mbps,6 扇區為 12.3 Mbps,全向性天線則小於 5 Mbps,3 扇區天線的系統傳輸率比全向性天線增加了 40%,6 扇區天線又比 3 扇區天線增加 76%,比全向性天線增加 146%。

而全向性天線在資源塊使用率 ρ_s 從 $0.1\sim1.0$ 增加時,系統傳輸率增加 1.85 Mbps,而 3 扇區方向性天線增加 11 Mbps,6 扇區增加 17 Mbps,隨著天線扇區數的增加,系統傳輸率也相對地呈線性增加。

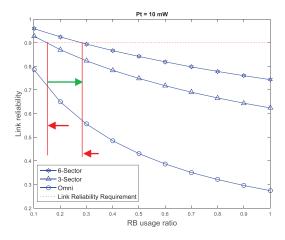


圖 9. 發射功率為 10 mW 各型天線對資源塊使用率 ρ_s 與鏈結可靠度之關係

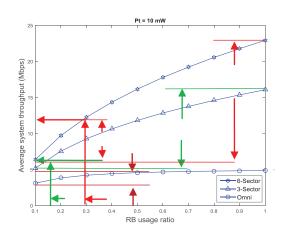


圖 10. 發射功率為 10 mW 各型天線對資源塊使用率 ρ_s 與傳輸率之關係

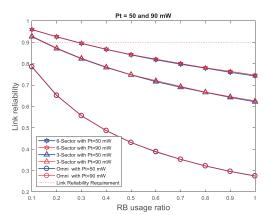


圖 11. 發射功率為 50 mW 及 90 mW 各型天線對資源塊使用率 ρ_δ 與鏈結可靠度之關係

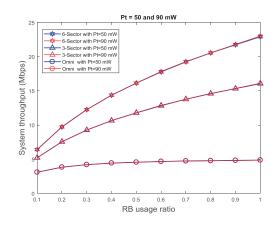


圖 12. 發射功率為 50 mW 及 90 mW 各型天線對資源塊使用率 ρ_s 與傳輸率之關係

圖 11、12 顯示當發射功率 50 mW 和 90 mW 時,鏈結可靠度與系統傳輸率的模擬結果幾乎重疊在一起,追究其原因可以訊雜比公式(4)說明,因為發射功率越大,所產生的干擾也越大,造成功率相消的情況,因此,功率的大小對鏈結可靠度與系統傳輸率貢獻不大,反而是資源塊使用率 ρ s 的增加才是關鍵,故發射功率建議以 10 mW 即可正常工作,既可提升能源使用效率,達到節能減碳之目標。

五、結論

本研究從模擬結果證明方向性天線的系統鏈結可靠度優於全向性天線,並驗證在超密集小細胞異質性網路中,運用方向性天線來達到干擾管理的效能,因方向性天線的扇區數增加,同時也提升了強化鏈結可靠度及降低同頻干擾的效能,可有效達成改善用戶服務品質之日標。

另外在系統傳輸率方面,雖然因天線結構不同而有差別,但經實驗結果證實了方向性天線效能優於全向性天線,並且隨方向性天線的扇區數增加系統傳輸率的能力也增加,但是必須要納入考量的是因為資源塊使用率 ρ_s 增高,同時也造成系統鏈結可靠度無法達到 0.9的需求標準線,以致系統整體工作在不穩定的狀態。

誌謝

本文承行政院科技部提供經費補助(計畫 編號 MOST 106-2221-E-606-001),特此誌謝。

参考文獻

- [1] Baldemair, R., Dahlman, E., Fodor, G., Mildh, G., Parkvall, S., Selen, Y., Tullberg, H., and Balachandran, K., "Evolving Wireless Communications: Addressing the Challenges and Expectations of the Future," IEEE Vehicular Technology Magazine, Vol. 8, No. 1, pp. 24-30, Mar. 2013.
- [2] Khandekar, A., Bhushan, N., Tingfang, J., and Vanghi, V., "LTE Advanced: Heterogeneous Networks," in European Wireless Conference (EW), Apr. 2010.
- [3] Gao, L., Acharya, J., and Gaur, S., "Heterogeneous Networks-Theory and Standardization in LTE," in IEEE WCNC

- Tutorial Presentation, 2013.
- [4] Lopez-Perez, D., Guvenc, I., Roche, G. D. L., Kountouris, M., Quek, T. Q. S., and Zhang, J., "Enhanced Intercell Interference Coordination Challenges in Heterogeneous Networks," IEEE Wireless Communications, Vol. 18, No. 3, pp. 22-30, Jun. 2011.
- [5] Feng, M., Jiang, T., Chen, D., and Mao, S., "Cooperative Small Cell Networks: High Capacity for Hotspots with Interference Mitigation," IEEE Wireless Communications, Vol. 21, No.6, pp. 108-116. Dec. 2014.
- [6] Ho, L., Lopez-Perez, D., and Claussen, H., "Downward Facing Directional Antennas for Ultra-high Density Indoor Small Cells," The Journal of Signal Processing Systems, Vol. 83, No. 2, pp. 255-263, May 2016.
- [7] Gougeon, G., Corre, Y., Domenico, A. D., Clemente, A., Kaddour, A. S., Bories, S., and Lostanlen, Y., "LTE System-Level Evaluation of Directive Compact Antennas for Small-Cell Networks," in 10th European Conference on Antennas and propagation (EuCAP), Apr. 2016.
- [8] Qian, R., and Sellathurai, M., "Interference Mitigation in Femtocell Networks using Single-Radio Parasitic Antennas," in IEEE International Conference on Communications (ICC), Sept. 2015.
- [9] Kim, T., Bang, I., and Sung, D. K., "Design Criteria on a mm-Wave-based Small Cell with Directional Antennas," in IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Sept. 2014.
- [10] 3GPP, "Further advancements for E-UTRA physical layer aspects," 3GPP, Tech. Rep., TR 36.814 V9.0.0, Mar. 2010.
- [11] 3GPP, "Spacial channel model for Multiple Input Multiple Output (MIMO) Simulations," 3GPP, Tech. Rep., TR 25.996 V6.1.0, Sept. 2003.
- [12] Razavizadeh, S. M., Ahn, M., and Lee, I., "Three-Dimensional Beamforming: A new enabling technology for 5G wireless networks," IEEE Signal Processing Magazine, Vol. 31, No. 6, pp. 94-101, Oct. 2014.