東沙島附近海域蒸發導管特性模擬與分析

1國防大學理工學院環境資訊及工程學系

摘 要

東沙島位於南海北部海域,而南海海域低層大氣因海水蒸發效應旺盛,容易發生蒸發導管 (Evaporation Duct)現象,此現象將造成電磁波傳播路徑的異常偏折,對海上通訊或雷達偵蒐效能影響甚鉅。本研究利用 2015 年東沙氣象台探空觀測及東沙近海浮標資料,進行蒸發導管季節特性統計分析,並與 PJ 模式模擬結果進行比對,結果顯示 PJ 模式對於蒸發導管高度低於 30m 的情況表現較佳,且當近海平面空氣海水溫度差越大其準確率越高。此外,本研究亦針對東沙蒸發導管個案,進行電波射線軌跡模擬(Ray Tracing),模擬結果顯示其臨界限捕角 (Critical Trapping Angle)與理論值相當接近,未來應可有效應用於雷達通訊效能之評估。

關鍵詞:蒸發導管,PJ模式,射線軌跡模擬,臨界限捕

Simulation and Analysis of Evaporation Duct in the Sea Area near Dongsha Island

Shih-Chiao Tsai ¹, Meng-Ling Chiao ¹, and Jou-Ping Hou ^{1*}

ABSTRACT

Dongsha island is located in the northern South China Sea. Due to the strong evaporation effect of sea in the low-level atmosphere, evaporation ducts are prone to occur. This phenomenon will cause abnormal deflection of the propagation path of electromagnetic wave, and the impact of maritime communications or radar detection efficiency is very large. This study employed the data which collected in 2015 by the Dongsha sounding observations and buoy data, make statistical analysis of seasonal characteristics of evaporation duct, and compare with the PJ model simulation results of evaporation duct. The results show that the PJ mode is better for evaporation duct height below 30 m, and the accuracy rates are higher when the air-sea temperature differences are bigger. Simultaneously, this study also addresses the case of evaporation duct in Dongsha, to perform a radio ray tracing simulation. The simulation results show that the critical trapping angle is quite close to the theoretical value, and should be effectively applied to the assessment of radar performance in the future.

Keywords: Evaporation duct, PJ model, Ray tracing, Critical Trapping Angle

¹ Department of Environmental Information and Engineering, Chung Cheng Institute of Technology, National Defense University

文稿收件日期 107.1.24; 文稿修正後接受日期 107.6.29;*通訊作者 Manuscript received January 24, 2018; revised June 29, 2018;* Corresponding author

一、前 言

由於無線電波在大氣中傳播時,會受到大 氣折射指數(Atmospheric Refractive Index)隨 空間變化的影響而產生折射效應,而當大氣折 射指數垂直梯度值小於-157 N/km 時,電波傳 播軌跡將彎向地面,當射線曲率半徑小於地球 半徑時,電波會被限捕在一定厚度的大氣層內 而無法逸出,猶如在波導管(Waveguide)中傳 播,此種現象被稱為大氣導管(Atmospheric Duct)效應。依照大氣導管發生的地理位置不 同,通常將其分為三種型熊:地面導管 (Surface-Based Duct)、空中導管(Elevated Duct) 及蒸發導管(Evaporation Duct),其中位於廣大 洋面之蒸發導管的生成原因,係由於靠近海面 的空氣含有來自海水蒸發所釋放出的充足水 汽,並且以飽和的方式持續性的存在,導致靠 近洋面的大氣折射指數值遠大於離海面稍高 處的數值。過去的研究證實蒸發導管現象將導 致無線電及雷達的傳輸距離大幅提升[1],顯 示其對船艦無線電波超視距 (Over-The-Horizon)通訊以及軍用雷達的負搜 功能都有顯著的影響。

研究證實,南海海域蒸發導管的發生機率 高達 80%以上[2],因此,準確的量測和預報 南海海域蒸發導管高度可有效提升雷達及通 信系統之性能;而量測蒸發導管高度的方法有 許多種,包含微波折射儀量測、鐵塔上密集架 設氣象儀器觀測、探空氣球觀測及 GPS 反演 技術等。其中,探空氣球觀測具有垂直方向高 解析度之優勢,極適合用來分析蒸發導管高 度。一般來說,由於蒸發導管發生高度較低, 因此各國主要利用探空氣球、海上浮標及海岸 鐵塔等方法獲得近海面之大氣折射率梯度;但 由於廣大海洋上的氣象觀測資料較為缺乏,且 海上施放探空氣球作業上不但費時費力,受海 象影響也較大。因此,過去許多專家學者透過 研究宏觀觀測資料的經驗發展蒸發導管診斷 模型,藉此計算大氣折射率垂直剖面分布,並 獲得蒸發導管高度。此一方法通常運用於評估 電磁波傳播的開發軟體中,例如美國海軍海洋 系統中心研製的個人電腦版的工程折射效應 預報系統 (Engineer's Refractive Effects Prediction System, EREPS)中應用的就是 PJ 模 式(Jeske, 1973; Paulus, 1984, 1985, 1989) [3] ~[6]; Tian et al. (2009) 利用 PJ 模式分析亞熱 帶海域之蒸發導管,並指出此模式適合用於估算蒸發導管高度[7];除此之外,還有 MGB 模式 (Musson-Genon et al., 1992) [8]以及 Babin 模式 (Babin et al., 1996) [9],這些模式都可藉由地面觀測資料中的空氣溫度、海水溫度、大氣壓力、相對溼度及風速獲得大氣折射率垂直剖面及蒸發導管高度。

東沙島是我國於南海北部之海上戰略通 道,具有重要之戰略價值,而南海低空也是蒸 發導管發生率高的區域,容易造成岸基或艦載 雷達出現超視距傳播和探測盲區等現象,因 此,研究東沙近海蒸發導管特性對於海上探 測、通信應用系統等具有重要之參考價值。本 研究利用中央氣象局於東沙島近海之浮標觀 測資料,及海軍東沙氣象台之探空觀測資料, 進行東沙島近海蒸發導管高度及發生率等季 節特性統計分析,並與PJ模式蒸發導管高度 模擬結果進行驗證比對,以了解不同天氣狀況 下蒸發導管診斷模型之表現;此外,對於電磁 波探測影響的部分,則以 EREPS 射線軌跡理 論(Patterson et. al, 1994)[10]為基礎,模擬蒸發 導管發生時電磁波之射線軌跡,以進一步評估 對雷達偵蒐之影響。

二、理論分析

2.1 蒸發導管分析方法

在探空資料中有大氣氣壓、大氣溫度、 露點溫度、相對溼度等氣象參數隨高度的分佈 資料,利用這些參數我們可以計算出大氣折射 指數隨高度的分佈,其計算方法表示如下 (Smith and Weintraub, 1953) [11]:

$$n = 1 + \left(\frac{77.6P}{T} + \frac{373000e}{T^2}\right) \times 10^{-6}$$
 (1)

其中 P 為大氣壓力,單位是百帕(h Pa), T 為大氣溫度,單位是 K,e 為大氣中的水汽壓,單位是百帕(h Pa)。要注意到在探空資料中並沒有大氣水汽壓的資料,因此在此要用水汽壓與露點溫度的關係式來計算,表示如下:

$$e = 6.11 \times EXP \left(19.7 \times \frac{T_d(^{\circ}C)}{T_d(K)}\right)$$
 (2)

其中 T_d 為大氣的露點溫度。經過(1)式實際計算的結果發現大氣折射指數的值非常接近 1,

其值變動範圍大約在 1.0001~1.0004 之間。因此為了能更清楚的顯示其擾動的情形,定義一個新參數,即大氣折射率 (Atmospheric Refractivity),其計算方式如下:

$$N = (n-1) \times 10^6 = 77.6 \frac{P}{T} + 373000 \frac{e}{T^2}$$
 (3)

而在將地球曲率的因素考慮進去後,可以得到 一個新的折射率參數,稱作修正後的折射率 (Modified Refractivity),其定義如下:

$$M(h) = \left[(n-1) + \frac{h}{a} \right] \times 10^6 = N(h) + \frac{h}{a} \times 10^6$$
 (4)

其中 a 為實際地球半徑(約 6400 公里)。當 dM/dh 小於等於 0 時,代表電波射線之曲率將大於地球表面之曲率,電波將會向地球表面彎折而被陷捕(即導管現象)。因此,藉由上式變可計算出修正後的折射率隨高度分佈的時程。例_Profile),並可以此來判斷是否有蒸發導管的存在並決定其高度、強度等特性參數。圖 1 為一典型蒸發導管之 M_Profile, A 點代表 dM/dh 由小於 0 轉為大於 0 的轉折點, B 點代表 海表面(或最接近海表面)之 M 值,圖中 A、B 兩點的高度差定義為導管高度,而 A、B 兩點的 M 值差則定義為導管的強度。

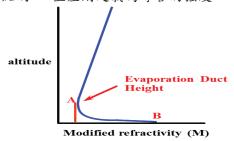


圖 1. 蒸發導管修正後的折射率剖面示意圖。

2.2 PJ 模式蒸發導管診斷

Paulus 於 1985 年提出蒸發導管模式的應用,並延續 Jeske 的研究於美國海軍海洋系統中心研發出蒸發導管診斷模式,可以藉由輸入當時海洋表面的空氣溫度、海洋表面的海水溫度、相對溼度以及風速等,計算出蒸發導管的高度。由於蒸發導管發生在海洋與大氣交會之邊界層內,故模式原理導入相當之邊界層理論,其步驟一為計算理查森數(bulk Richardson's number),以判斷對流穩定度關係:

$$R_{ib} = 369 h_1 \frac{T_a - T_s}{u^2 T_{ok}}$$
 (5)

其中 h_1 為量測參考高度(在此設定為6公尺), T_a 為量測參考高度的空氣溫度(單位 \mathbb{C}), T_a 為 T_a 之絕對溫標(單位 K), T_s 為海洋表面的海水溫度(單位 \mathbb{C}),U 為海洋表面的風速(單位 \mathbb{C}),U 為海洋表面的風速(單位 \mathbb{C}),U 為海洋表面的風速(單位 \mathbb{C}), \mathbb{C} 以 为海洋表面的风速(單位 \mathbb{C}), \mathbb{C} 以 为海洋表面的是分佈的影響因素考慮了進去。接下來利用步驟一求出的理查森數來計算 \mathbb{C} Monin-Obukhov length,其計算方法表示如下:

$$L' = \frac{10 h_1 \Gamma_e}{R_{ib}} \tag{6}$$

其中函數 Γ_e 會根據不同 R_i)值而有不同的計算方式,其計算方式如下所示:

$$\begin{split} &\Gamma_e = 0.05 & \text{for} & R_{ib} \leq -3.75 \\ &\Gamma_e = 0.065 + 0.004 \, R_{ib} & \text{for} & -3.75 \leq R_{ib} \leq -0.12 \\ &\Gamma_e = 0.109 + 0.367 \, R_{ib} & \text{for} & -0.12 \leq R_{ib} \leq 0.14 \\ &\Gamma_e = 0.155 + 0.021 \, R_{ib} & \text{for} & 0.14 \leq R_{ib} \end{split}$$

下一步為計算量測參考高度的空氣折射率 (N_a) 及與海水表面接觸之空氣折射率 (N_s) 的差值 $(\Delta N_p = N_a - N_s)$,其中兩種折射率計算方法如下:

$$N_{a} = \frac{77}{T_{ak}} \cdot \begin{bmatrix} 6 & 0 & 0+0 & 4 & \frac{e^{2}}{T_{ak}} \end{bmatrix} (7)$$

$$N_{s} = \frac{77}{T_{sk}} \cdot \begin{bmatrix} 6 & 0 & 0+0 & 4 & \frac{e^{0}}{T_{sk}} \end{bmatrix} (7)$$

在上式中的 T_{sk} 為 T_s 之絕對溫標(單位 K), e_0 為 與 海 水 表 面 接 觸 之 空 氣 飽 和 水 汽 壓 (Saturation Vapor Pressure),e 為量測參考高度 之空氣的水汽壓(Vapor Pressure)其計算方式表示如下:

$$e = \frac{RH}{100} e_s$$

$$e = \frac{RH}{100} \left[6.105 EXP \left[25.22 \left(\frac{(T_{ak} - 273.2)}{T_{ak}} \right) - 5.31 \log_e \left(\frac{T_{ak}}{273.2} \right) \right] \right]$$

(8) , e_s 為 其中 RH 代表量測參考高度之相對溼度 量測參考高度之空氣飽香(蒼)羅門,雅鄭酚芬蘊 壓的計算方式是利用 式[12],表示如下:

$$e_{0} = 6.105EXP \left[25.22 \left(\frac{T_{sk} - 273.2}{T_{sk}} \right) - 5.31 \log_{e} \left(\frac{T_{sk}}{273.2} \right) \right]$$
 (9)
$$e_{s} = 6.105EXP \left[25.22 \left(\frac{T_{ak} - 273.2}{T_{ak}} \right) - 5.31 \log_{e} \left(\frac{T_{ak}}{273.2} \right) \right]$$

最後一步要先判斷大氣與海洋表面之間的穩定性(Stability)情況,以決定要用何種方程式來計算蒸發導管的高度。由(5)可以知道,當 $0 \le R_{ib} \le 1$ 時,代表量測參考高度的空氣溫度大於海洋表面的海水溫度,此時熱量的傳播方向是由空氣往海水傳播,因此空氣不易產生對流,此為穩定的狀態。在此種狀態下蒸發導管高度的計算方式表示如下:

$$\delta = 0 \quad \text{for} \quad \Delta N_p \ge 0 \quad \text{or}$$

$$\delta = \frac{\Delta N_p}{\left[-0.125 \left(\log_e \left(\frac{h_1}{h_0} \right) + 5.2 \frac{h_1}{L'} \right) - 5.2 \frac{\Delta N_p}{L'} \right]}$$
(10)

如果上式計算出來的 $\delta < 0$ 或 $\delta / L' > 1$,那麼蒸發導管的高度改由下式計算:

$$\delta = \frac{6.2 \,\Delta N_p + 0.65 \,h_1}{-0.125 \log_e \left(\frac{h_1}{h_0}\right)} \tag{11}$$

其中 h_0 為空氣動力學(Aerodynamic)上的一個表面粗糙度(Surface Roughness)參數(在此設定為 0.00015 公尺)。而當 $R_{ib}<0$ 時,代表海洋表面週遭的空氣溫度小於海洋表面的海水溫度,此時熱量的傳播方向是由海水往空氣傳播,因此空氣會受熱並上升,造成對流的情形發生,此為不穩定的狀態。在這種狀態下蒸發導管高度的計算方式表示如下:

$$\delta = \frac{1}{\sqrt[4]{A^4 - 18\frac{A^3}{L'}}} \tag{12}$$

其中 $A=-0.125B/\Delta N_p$, $B=\log_e(h_1/h_0)-\psi$,而函數 ψ 的計算方式可表示如下(Lumley and Panofsky, 1964) [13]:

$$\begin{split} \psi &= -4.5 \ \frac{h_1}{L'} \\ \psi &= 10^{\left[\frac{1.02 \log_{10}\left(-\frac{h_1}{L'}\right) + 0.69}{L'}\right]} & \text{for} & \frac{h_1}{L'} \ge -0.01 \\ \psi &= 10^{\left[\frac{0.776 \log_{10}\left(-\frac{h_1}{L'}\right) + 0.306}{L'}\right]} & \text{for} & -0.026 \ge \frac{h_1}{L'} \ge -0.026 \\ \psi &= 10^{\left[\frac{0.630 \log_{10}\left(-\frac{h_1}{L'}\right) + 0.16}{L'}\right]} & \text{for} & -0.12 \ge \frac{h_1}{L'} \ge -0.1 \\ \psi &= 10^{\left[\frac{0.6414 \log_{10}\left(-\frac{h_1}{L'}\right) + 0.16}{L'}\right]} & \text{for} & -12 \ge \frac{h_1}{L'} \ge -2.2 \\ \psi &= 2 & \text{for} & \frac{h_1}{L'} < -2.2 \end{split}$$

透過上述的步驟便可以利用量測到的海水溫 度、空氣溫度、相對溼度和風速等氣象參數, 計算出蒸發導管高度。

2.3 電磁波射線軌跡模擬

本研究以 EREPS 射線軌跡理論(Patterson et. al, 1994)[10]為基礎,其射線軌跡方程式是基於司乃爾定律的小角度近似,以及假設修正後的折射率 M 隨高度呈線性變化。在這些方程式中,高度的單位為 m,水平距離的單位為 km,角度的單位為徑度量,而由海面反射的射線皆假設其有相同的入射角與反射角。在軌跡模擬的每一步驟都需要 M 值垂直梯度,其方程式可表示為:

$$\frac{dM}{dh_i} = 10^{-3} \frac{M_{j+1} - M_j}{H_{i+1} - H_j} \tag{13}$$

其中 M_j 代表修正後的折射率數列矩陣中的第 j 個元素, H_j 則代表高度數列矩陣中的第 j 個元素。而水平方向的 M 值梯度在射線軌跡模擬中也是需要的,其方程式可表示為:

$$\frac{dM}{dh_{i,j}} = 10^{-3} \frac{M_1 - M_0}{H_1 - H_0} \tag{14}$$

其中M值與H值代表在水平距離為 r_m (距離間隔的中間點)所對應的修正後的折射指數及高度(圖 2)。指標 i 為水平距離方向,指標 j 為垂直方向,當 dM/dh_j 為負值時,表示為陷捕層,當射線超過高度數列矩陣中的最大值時,定義為標準大氣梯度(4/3 地球半徑),即 $dM/dh_{j+1}=0.000118$,其中j代表高度數列矩陣中的最後一個的元素。射線軌跡方程式採用了高度、M值及M值垂直梯度,在射線終端水平距離 (r^2) 已知的狀況下,射線終端高度 (h^2)

及終端仰角(α')可由以下式子計算出:

$$\alpha' = \alpha + (r' - r)dM / dh_j$$

$$h' = h + \frac{\alpha'^2 - \alpha^2}{0.002dM / dh_j}$$
(15)

其中 α 、h、r分別代表射線之初始仰角、初始高度及初始水平距離(如圖 2 所示)。在本研究中假定雷達波傳播水平距離間隔為 1 m,並輸入射線之初始仰角(α)、初始高度(h)、初始水平距離(r)、終端水平距離(r)及 M 值垂直梯度(dM/dh_i)據以求得每公里之射線終端高度及終端仰角變化,模擬出電磁波射線軌跡圖。

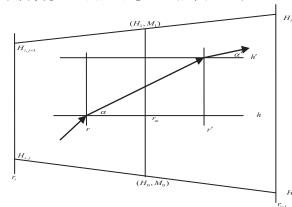


圖 2. 射線軌跡模擬示意圖(Patterson et. al, 1994)。

三、 模擬結果分析與討論

3.1 東沙島近海蒸發導管季節特性

為了瞭解東沙島近海蒸發導管發生次 數、發生機率及導管高度等特性參數之季節分 佈,本研究利用海軍東沙氣象台 2015 年每日 08 時之探空觀測資料進行蒸發導管特性分 析;首先將探空資料中隨高度分佈之大氣氣壓 及大氣溫度等參數代入方程式(3),再將隨高 度分佈之露點溫度代入方程式(2),以獲得隨 高度分佈之水汽壓參數,接著再將其代入方程 式(3)便可得到大氣折射率隨高度之分佈,最 後利用方程式(4)可得到修正後的折射率,並 利用 2.1 節的蒸發導管分析方法,即可判斷有 無蒸發導管發生及其發生高度等特性參數。由 於 Paulus (1984, 1985)指出在廣大洋面的船所 量測到的相對濕度,幾平沒有低於75%的例子 出現[4][5],且本研究統計結果顯示,當月平 均相對濕度低於 85%時,蒸發導管發生機率低 於25%(如圖3及圖5所示);因此為了確保統 計資料均為蒸發導管個案,本研究中僅挑選探空資料第一筆(近海平面)相對濕度大於85%之個案進行統計分析,並藉此排除因沉降效應所導致之地面導管現象。統計結果顯示,東沙島近海蒸發導管發生機率以4至8月(夏季)較高,最高可達70%以上;發生機率較低的月份則是1至2月(冬季),僅有約15至25%之發生機率,有很明顯之季節分佈特性(圖3)。

在 PJ 模式中主要是利用理查森數(bulk Richardson's Number)來區分大氣穩定度,原 理是可利用其值進而得到層化係數(stability parameter)(Graf et al., 1984)[14]; 而海氣間的 層化狀況是由此係數所決定,其與海氣間的熱 量通量的傳輸有關,過去研究指出當層化係數 大於等於 0 時,大氣處於穩定及中性分層;反 之則處於不穩定分層(Hsu et al., 1999)[15]。因 此由式(5)可知,當海表面溫度大於空氣溫度 時,理查森數及層化係數均小於 0,海氣間處 於一個不穩定的分層狀態;反之則處於穩定的 分層狀態。為了進一步分析東沙島近海蒸發導 管發生機率季節特性之成因,並考量蒸發導管 形成機制為海水表面之蒸發效應,本研究利用 2015年每日08時探空資料第一筆之空氣溫度 减去同時段中央氣象局東沙浮標資料的海水 表面溫度,統計獲得 2015 年空氣溫度海水溫 度差逐月平均(圖 4);其中中央氣象局東沙浮 標位於東經 118.82 度,北緯 21.0683 度,浮 標水面下約0.5公尺處設置有水溫計,每日觀 測 12 次,自 0 時起每 2 小時觀測一次,每次 由奇數小時50分取樣至偶數小時整點共10分 鐘,取樣頻率為2Hz。由圖中可看出,東沙島 近海海水温度大部分月份均高於空氣溫度,僅 有7月是空氣溫度略高於海水溫度,再將圖4 與圖 3 比較後發現,空氣海水溫度差與蒸發導 管發生機率並無明顯之關聯性,顯示海水蒸發 效應強弱可能受到其他因素之影響(如相對濕 度、太陽輻射強度等)。因探空及浮標資料均 無太陽輻射強度之觀測,本研究利用探空資料 第一筆之相對濕度,統計獲得 2015 年近海平 面相對濕度逐月平均(圖 5)。由圖中可以看 出,1至2月平均相對濕度較低,均在85%以 下,剛好是蒸發導管發生機率較低(低於25%) 的月份;至於其他月份則看不出相對濕度與導 管發生機率有明顯的正相關。由此可知近海平 面相對濕度可視為蒸發導管發生之門檻值,高 於85%較容易有蒸發導管現象發生。

至於蒸發導管高度部分,本研究將 2015 年所有蒸發導管個案,依照不同的高度區間進 行分佈統計(圖 6)。由圖中可看出,蒸發導管 高度分佈相當接近高斯常態分佈,主要集中於 16 至 25 公尺的高度區間,40 公尺以上僅有 11 個個案,此結果與PJ模式理論相符。



圖 3.2015 年東沙蒸發導管發生機率逐月平均。

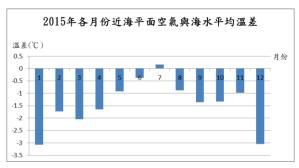


圖 4.2015 年東沙空氣海水溫度差逐月平均。

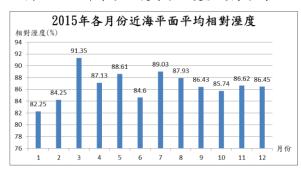


圖 5.2015 年東沙近海平面相對濕度逐月平均。

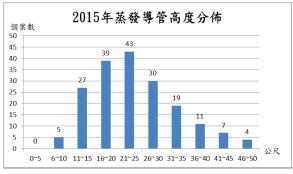


圖 6.2015 年東沙蒸發導管高度分佈圖。

3.2 PJ 模式蒸發導管高度參數之驗證

為了瞭解 PJ 模式蒸發導管診斷在不同季 節對東沙島近海蒸發導管高度模擬的準確 性,本研究將 2015 年每日 08 時東沙探空所獲 得之蒸發導管高度,與PJ模式所模擬之蒸發 導管高度進行比對,其中 PJ 模式所需的海洋 表面空氣溫度、海洋表面海水溫度、相對溼度 以及風速等參數是取自 08 時東沙浮標觀測資 料。首先,我們將 2.2 節所述之 PJ 模式理論 寫入 Matlab 建立蒸發導管高度判讀程式,可 藉由輸入海洋表面空氣溫度、海洋表面海水溫 度、相對溼度以及風速四項參數獲得蒸發導管 高度,為確保此程式輸出結果之正確性,先將 程式輸出之蒸發導管高度與美國海軍先進折 射效應預報系統(AREPS,新一代的 EREPS)輸 入上述四項參數所獲得之蒸發導管高度進行 比對(圖 7)。由圖中可看出,兩者輸出的結果 幾乎一致,證實此程式執行結果與 PJ 模式理 論相符。根據 2.1 節理論,蒸發導管高度計算 原理主要是透過修正後的折射率剖面來判 讀,因此,若欲獲得蒸發導管高度資訊,最直 接的方法便是利用探空氣球的施放或是氣象 鐵塔的架設,本研究將探空資料計算之修正後 的折射率剖面判讀而來的蒸發導管高度視為 是實測值;然而,當船艦航行在廣大的洋面 時,考量人力、經費及海象等因素,上述的觀 測方法並不易實現,因此 PJ 模式便成為一個 替代方案。接下來,為了定量分析 PJ 模式在 東沙島的表現,我們依照 PJ 模式中穩定狀態 (空氣溫度大於海水溫度)及不穩定狀態(海水 溫度大於空氣溫度),分別進行探空資料及PJ 模式蒸發導管高度比對(圖8及圖9)。由圖8 可以看出,穩定狀態下個案數 30,方均根誤 差值 13.42,大部分 PJ 模式蒸發導管高度均較 探空蒸發導管高度低;而由圖9可以看出,不 穩定狀態下個案數 155, 比穩定狀態個案多, 方均根誤差值 16.44,且 PJ 模式蒸發導管高度 亦偏低,結果顯示不論是穩定還是不穩定狀 態,PJ模式蒸發導管高度均有偏低的現象。

為進一步確認 PJ 模式蒸發導管模擬結果 是否偏低,本研究將蒸發導管高於 30m 及低 於 30m 的個案分別分別進行探空資料及 PJ 模 式蒸發導管高度比對(圖 10 及圖 11)。由圖中

可以明顯看出,當蒸發導管高度為 30m 以下 的情況(方均根誤差值 11.18), PJ 模式的蒸發 導管高度雖較探空實測值低,惟相對差異較 小;但當蒸發導管高度在 30m 以上時,PJ 模 式的蒸發導管高度與探空實測值相比則明顯 偏低(方均根誤差值 24.87),因此更加確認 PJ 模式模擬的蒸發導管高度有偏低的趨勢。分析 其主要原因有三:一、高層的氣象參數與近海 平面的氣象參數有落差,而 PJ 模式僅用近海 平面的氣象參數模擬蒸發導管高度,因此對於 高度較高之蒸發導管無法準確掌握;二、東沙 浮標與探空氣球施放地點並非同一位置,因此 造成些許環境參數誤差。未來若欲進行更精確 之比對,應於浮標上長鐵桿密集架設氣象觀測 儀器取代探空氣球,方能將環境參數誤差降至 最低;三、根據過去研究指出,在30米以下情 況 PJ 模式計算的蒸發導管高度與實測相比之 方均根誤差值約為 4 至 7 米左右(Babin, 1997)[16],但其蒸發導管實測值是利用浮標上 長鐵桿密集架設氣象觀測儀器所計算之修正 後的折射率剖面而獲得,其垂直解析度較本研 究中所使用之探空資料高,可能是造成本研究 方均根誤差值偏大的原因之一。

舉例來說,由 2015年8月21日08時探 空資料所獲得之修正後的折射率剖面圖(圖 12) 可以看出,蒸發導管高度為 19m;而用同一時 間的浮標觀測資料代入 PJ 模式所獲得之蒸發 導管高度為 14.59m,比探空資料所獲得之值 略為偏低。但由圖 12 可以看出,19m 以下僅 有兩筆觀測資料,因此有可能蒸發導管實際是 發生在此區域,但因受限於探空資料解析度而 無法精準解析出來。有鑑於此,本研究將符合 此條件之個案視為 PJ 模式準確診斷蒸發導管 高度, 並重新統計 2015 年各月份 PJ 模式準確 率(圖13)。由圖中可以看出,12月及1月(冬 季) PJ 模式準確率高達 80%以上, 4 月至 11 月則是偏低,準確率不到 40%。若與圖 4 相 比,我們可以發現到 PJ 模式準確率似乎與近 海平面空氣海水溫差成正比關係,也就是近海 平面空氣海水溫差越大,PJ 模式準確率越高。 此結果說明了 PJ 模式運用在東沙島近海上, 有其氣候條件上之限制性。

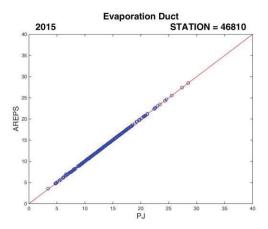


圖 7. PJ 模式與 AREPS 蒸發導管高度比較圖。



圖 8. PJ 模式與探空蒸發導管高度比較圖(穩定)。

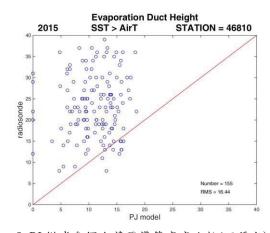


圖 9. PJ 模式與探空蒸發導管高度比較(不穩定)。

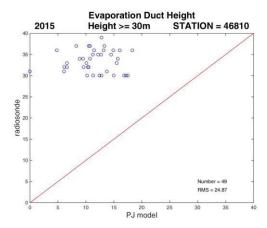


圖 10. PJ 模式與探空蒸發導管高度比較(>30m)。

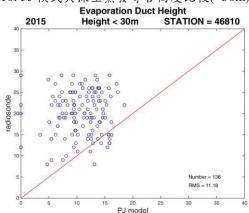


圖 11. PJ 模式與探空蒸發導管高度比較(<30m)。

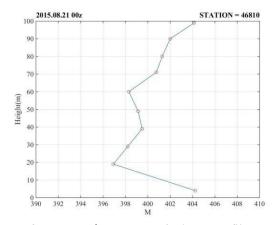


圖 12. 2015 年 8 月 21 日探空 M_profile。

圖 13.2015 年各月份 PJ 模式準確率。

3.3 電磁波射線軌跡模擬

位於海面上的蒸發導管,由於靠近海面的空氣含有來自海水蒸發所釋放出的充足水汽,並且以飽和的方式持續性的存在,導致靠近洋面的大氣折射指數值遠大於離海面稍高處的數值,其對正常的無線電波越平地(Over-The-Horizon)通訊以及軍用雷達的偵搜功能都有顯著的影響,因此為提昇通訊品質並強化軍用雷達的偵搜能力,必須對其影響電磁波射線軌跡現象進行詳細分析與研究。

本研究選取 2015 年 7 月 19 日東沙探空高 解析觀測資料為個案,由探空資料所獲得之修 正後的折射率剖面(圖 14)可以明顯看出,當 日約在0-30公尺有蒸發導管發生(圖右側桃紅 色區域)。為了測試此蒸發導管對電磁波傳播 影響的效應,本研究使用視窗版大氣折射效應 預報系統 AREPS,藉由電磁波射線軌跡的模 擬,可以預示發射出去的電磁波是否會被蒸發 導管所陷捕;條件設定電磁波發射的高度為 5 公尺、射線數量 20 組、發射仰角範圍為 0-2 度,測試模擬電磁波在導管中傳遞軌跡(圖 15),背景色階為大氣折射環境特徵,紅色區 域即為蒸發導管所在範圍。圖中顯示發射角度 較小的三組射線受到蒸發導管效應,將電磁波 限捕在特定的高度範圍(約 20m)內傳遞,其餘 較大角度之射線則不被蒸發導管所限捕,繼續 往更高的高度傳播。

為了進一步驗證此電磁波射線軌跡模擬之正確性,本研究引用電磁波臨界限捕角理論(Gough, 1962)[17],此臨界限捕角是電磁波被限捕在導管內傳播的條件之一,計算方式表示如下:

$$\theta_c = 2\sqrt{|\Delta M|} \quad (\hat{\epsilon}_{\rm M} \hat{\epsilon}_{\rm D})$$
 (16)

其中 ΔM 代表導管強度。當位於導管內之電磁波發射仰角小於此臨界限捕角時,將被限捕在導管內傳播,反之則會穿透導管。此外,Doviak and Zrnic(1984) [18]亦曾提出電磁波射線穿透角之計算公式,惟其推導前提為假設大氣折射率隨高度呈線性分布,本研究為了使分析結果更接近真實的大氣狀況,仍採用公式(17)計算臨界限捕角。根據 2015 年 7 月 19 日東沙探空高解析觀測資料可得到蒸發導管強度值為12,代入(17)式可得臨界限捕角為6.928(毫弧

度),換算成角度為 0.397(度);接下來利用 2.3 節之射線軌跡模擬方程式,進行不同發射仰角之電磁波射線軌跡模擬(圖 16),圖中藍色軌跡為發射仰角 0.1 度之電磁波,綠色軌跡為發射仰角 0.2 度之電磁波,紅色軌跡則為發射仰角 0.3 度之電磁波,其中發射仰角 0.1 及 0.2 度之電磁波都被導管所限捕,發射仰角 0.3 之電磁波則穿透導管,與理論計算出之臨界限捕角相當接近,證明模擬之結果有一定之可信度。

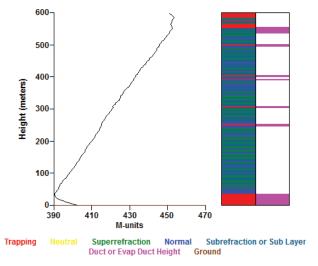


圖 14. 2015 年 7 月 19 日東沙探空 M_Profile(紅色 代表限捕區,黃色代表中性大氣區,綠色代 表超折射區,淺藍色代表標準折射區,深藍 色代表次折射區,紫色代表空中導管或蒸發 導管高度,褐色代表地面)。

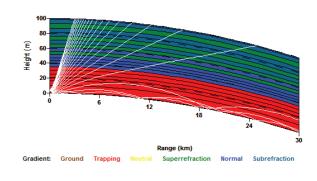


圖 15.2015年7月19日電磁波射線軌跡模擬(顏色 代表意義同圖 14)。

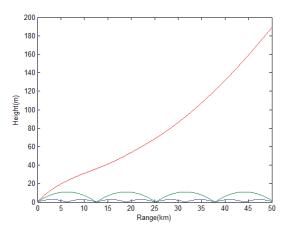


圖 16.2015 年 7 月 19 日臨界限捕角測試圖(藍色軌 跡為發射仰角 0.1 度之電磁波,綠色軌跡為 發射仰角 0.2 度之電磁波,紅色軌跡則為發 射仰角 0.3 度之電磁波)。

四、未來精進方向及建議

4.1 結合長期觀測及數值模式資料建立蒸 發導管預報機制

本研究利用探空觀測資料進行蒸發導管 特性統計分析針,但受限於每日僅 1 次的觀 測,無法獲得連續性的導管特性資料;未來可 藉由氣象觀測塔的架設,對東沙島附近海域之 蒸發導管現象,進行長期觀測及彙整統計天氣 系統特性後,預測其在不同天氣條件下之發生 機率及日夜變化,並結合氣象預報數值模式建 立蒸發導管效應預報機制。

4.2 考量衰減因子推導雷達探測距離公式

本研究中的電磁波射線軌跡模擬,僅考慮 大氣折射效應影響,並未考慮不同頻率之電磁 波在大氣傳播的路徑衰減、雨衰減及分子吸收 散射衰減等,未來應結合上述各項衰減因子, 推導出大氣環境影響雷達探測距離之計算公 式,以分析訂定各頻段雷達超視距探測之理論 值。

4.3 進行雷達參數實地測試及驗證

選定蒸發導管好發季節執行海上雷達效 能實測,針對發射仰角、限捕頻率及最大探測 距離進行實地測試,除可驗證理論結果之正確 性,相關測試結果亦可應用於各岸基雷達及艦 載雷達之參數調整,以達到最佳之雷達偵蒐效 能。

4.4 發展適用於南海海域之蒸發導管模式

由於 PJ 模式推導過程中所需要之氣象參數,均是參考美國附近海域環境之氣候值,可能不適用於南海海域之熱帶海洋環境;而本研究亦發現 PJ 模式所計算出來的蒸發導管高度誤差偏大,未來或可根據南海海域之氣候特性,針對 PJ 模式進行微調,發展出適用於南海海域之蒸發導管模式。

五、結論

臺灣位處亞洲地區海路之樞紐,四面環海 且位於太平洋與歐亞大陸交接地帶,為亞洲地 區戰略位置重要之處,對於其周遭環境情資更 需相關專業人員蒐集研析,以求爭取戰場最大 之優勢,奪得致勝之先機。有鑒於我海軍多數 艦艇作戰環境為廣大洋面,其部署範圍及機動 性較陸空等友軍大上數十至百倍不等,各單位 之間的距離可達數十至數百公里,其各項裝備 性能在各種天氣及環境條件下將受到不同程 度之影響,尤以通訊裝備所受影響更為劇烈, 而通訊即為艦隊海上活動的命脈,其影響可左 右整體之勝敗,不可不重視。本研究結果指 出,東沙近海蒸發導管發生機率除冬季(12~3 月)較低,其餘月份均在50%以上,並以近海 平面相對濕度 85%為導管發生之門檻指標。而 PJ 模式蒸發導管診斷對於冬季(12~1 月)東沙 近海蒸發導管高度之模擬有一定之準確性,在 其他季節則有偏低之趨勢,顯示連續性的即時 氣象觀測仍有其必要性。我國軍唯有持續加強 對大氣環境參數之掌握,發展精進數值天氣預 報模式,深入研究各項武器裝備與環境適應性 之關聯,積極發展適用於臺灣附近及南海海域 之大氣折射效應預警平台,以提升雷達偵蒐效 能,建構更完善之雷達預警網,有效提升防空 作戰能量。

誌謝

感謝交通部中央氣象局及海軍大氣海洋 局東沙氣象台提供浮標及探空觀測資料,使本 研究能順利完成。

参考文獻

- [1] Jobson, Harvey E. "Evaporation into the atmosphere: theory, history, and applications", agricultural & forest Meteorology, 33(2–3), pp.267–268, 1984.
- [2] Cheng YH, Zhang YS, Zhao ZW, Zhu FQ, "Analysis on the evaporation duct environment near coast of the northern South China Sea in winter", Chinese Journal of Radio Science, 28(4), pp.697-708, 2013.
- [3] Jeske H., "State and limits of prediction methods of radar wave propagation conditions over the sea", Modern Topics in Microwave Propagation and Air–Sea Interaction, A. Zancla, Ed., D. Reidel Publishing, pp.130–148, 1973.
- [4] Paulus, R. A., "Practical application of the IREPS evaporation duct model", NOSC Tech. Rep. 966, pp.68, 1984.
- [5] Paulus, R. A., "Practical application of an evaporation duct model", Radio Sci., 20, pp.887–896, 1985.
- [6] Paulus, R. A., "Specification for environmental measurements to assess radar sensors", NOSC Tech. Document 1685, pp.43, 1989.
- [7] Tian B,Yu SJ, Li J, Jiang HJ., "Study on the applicability of PJ evaporation duct model in semitropical sea areas", Ship Science and Technology, 31(9), pp.96-103, 2009.
- [8] Musson-Genon, L.,S.Gauthier, and E. Bruth, "A simple method to determine evaporation duct height in the sea surface boundary layer", Radio Sci., 27, pp.635–644, 1992.
- [9] Babin, S.M., "A new model of the oceanic evaporation duct and its comparison with current models", Ph.D. dissertation, University of Maryland, pp.190, 1996.
- [10] Patterson, W. L., Hattan, C. P., Lindem, G. E., Paulus, R. A., Hitney, H. V., Anderson, K. D., and Barrios, A. E., "Engineer's Refractive Effects Prediction System (EREPS)", Technical Document 2648, Naval Command, Control and Ocean Surveillance Center, RDT&E Division, California, USA, pp.128, 1994.
- [11] Smith, E. K., and Weintraub, S., "The constants in the equation for atmospheric refractive index at radio frequencies", Journal of Research of the Notional Bureau

- of Standards, Vol.50, No.1, pp.39-41, 1953.
- [12] Kiefer, P. J., "The thermodynamic properties of water and water vapor", Mon. Wea. Rev., 69, pp.329-331, 1941.
- [13] Lumley, J.L., and H.A. Panofsky, "The structure of atmospheric turbulence", New York, Interscience Publishers, pp.113, 1964.
- [14] Graf, W. H., Merzi, N., and Perrinjaquet, C., "Aerodynamic drag meatured at a nearshored platform on Lake of Geneva", Arch. Meteorol., Gephys. Bioklimatol, Ser. A, 33, pp.151-173, 1984.
- [15] Hsu, S. A., "A relationship between the Bowen ratio and sea-air temperature defference under unstable conditions at sea", J. Phys. Oceanogr., 28, pp.2222-2226, 1999.
- [16] Babin, Steven., M., Young, G. S., and Carton, J. A., "A New Model of the Oceanic Evaporation Duct", Journal of Applied Meteorology, Vol.36, pp.193-204, 1997.
- [17] Gough, M. W., "Propagation influences in microwave link operation", British IRE, 24, pp.53-72, 1962.
- [18] Doviak, R. and D., Zrnic, <u>Doppler radar and Weather Observations</u>, Academic Press, Chap. 2, pp.18-24, 1984.

蔡世樵等

東沙島附近海域蒸發導管特性模擬與分析