

● 作者/Zi Yang

● 譯者/趙炳強

中共的電子戰發展概況

Blinding the Enemy:

How the PRC Prepares for Radar Countermeasures

取材/2018年4月9日美國詹姆斯頓基金會網站專文(*China Brief*, April 9/2018)

研究中共出版品《雷達對抗原理》乙書,應可對中共電 子戰有進一步理解。

中共的電子戰能力始終蒙上一層神 祕面紗,外界難以一窺究竟;然而, 若透過研究中共所使用的公開出版 品《雷達對抗原理》乙書,或許就能 對其戰術戰法有更進一步的理解。

Z 訊戰與資訊作戰構成了共軍準則中所謂 「資訊化戰爭」的勝利基礎(編按:共軍以 「信息」代表「資訊」)。1作為資訊戰五大支柱之 一的電子戰,已在共軍的戰爭準備進程中走到了 最前沿,共軍現在所有的大型演習也都大規模地 納入了電子戰部隊。

這些發展對於世界現況產生了影響:2018年1 月底,中共媒體披露了西安轟-6G長程重型轟炸 機上所裝載的新型空中干擾系統,並大張旗鼓宣 告其將在南海中扮演強化電磁頻譜優勢的角色 (環球網,1月24日)。該武力展示彰顯了中共對於 電子戰技術的信心漸豐,並擴大了中共與鄰國之 間的電子戰能力差距。

儘管如此,共軍電子戰能力仍一直是一個為人

忽略的議題,主要是因為缺乏高品質的資訊來 源。不過,本文所要檢驗共軍分析的新資訊來源, 卻能讓吾人以獨特眼光來檢視過去未曾驗證過 的課題。為了簡化討論,本文將擱置諸如感測器、 通信裝備及武器系統等議題,並置重點於電子戰 此一面向,亦即中共如何針對「雷達反制」(radar countermeasure, RCM,編按:共軍以「雷達對抗」 代表「雷達反制」)所進行的概念化與準備。2電 子戰在現代戰爭中是不可或缺的,電子戰設備對 敵雷達的屏蔽,可在戰鬥中為友軍提供明顯的優 勢;因此,在本文分析中所指出的共軍思維,以及 包含針對敵航艦戰鬥群的模擬攻擊等,都值得未 來進行深入檢驗與評估。

文本分析

本文分析主體借鑒《雷達對抗原理》(以下簡稱

「原理」)乙書,該書由中共中 央軍事委員會「2110工程」資 助,國防工業出版社發行,並 於2016年1月進行最新一次更 新印製,以及由中共「國防科 技大學電子對抗學院」與來自 五大軍種頂尖的雷達和電子戰 專家所共同編著。

該書根據電子對抗學院的 內部教科書,揭示中共頂尖電 子戰學府的雷達反制教育,以 及中共學者如何將雷達反制進 行概念化。因此吾人可以很肯 定地説,這本書是一本具備該 領域可靠資訊的權威性文本,以往只能從一些官 方、公開性的英文出版品取得這些資訊,而此書 的出版則讓外界得以更深入的研究這門課題。3

美「中」對電子戰的認知差異

值得注意的重點是,中共正在快速地向其頭 號敵人美國學習電子戰事務,中共學者也不斷密 切關注著美國所發展出的新思維。在最近一次的 「錢學森論壇」中,共軍頂尖科學家和工程師齊 聚一堂,其中一位共軍戰略支援部隊專家做了一 場「人工智慧與電磁頻譜戰」的主題報告,並對中 共在2015年時首次公開電子戰構想及當前作為 進行擴大補充,惟某些想法尚未被美國國防部完 全採納(軍橋網,2月22日)。

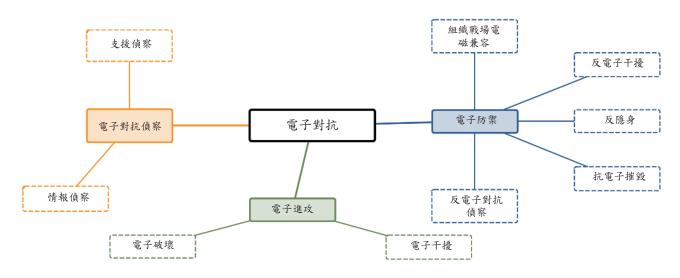
由於雙方見解不同,也使得中共與美國學者使 用不同的術語來描述各種電子戰領域事務,但大

中共正快速地向其頭號敵人美國師法電子戰事務。

(Source: DoD/Seaman Edward Guttierrez III)

部分概念卻是重疊的。美國專 家將電子戰細分為三種領域:電 平支援、電子攻擊及電子防護; 對照中共術語,這三項則分別 為:電子對抗偵察、電子進攻及 電子防禦(原理,頁2-3)。

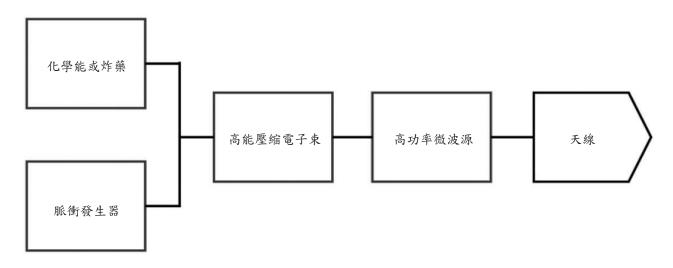
此處須注意兩點關鍵差異: 首先,中共術語「目標電子防 護」係專指目標防護,而美軍 用語中的電子防護則涵蓋範圍 較廣。其次,美軍視干擾(jamming)與欺騙(deception)為兩種 獨立概念,但中共專家則將此 二者視為一整體概念(原理,頁 3-4) •


中共對「電子戰」兩字的用語 為「電子對抗」;至於對「雷達 反制」則稱為「雷達對抗」,且 進一步將該詞定義為「一種旨 在保護友軍雷達, 並破壞敵方 雷達(包括雷達對抗設備)效能 的電子對抗措施」(原理,頁4)。

中共的雷達反制「硬殺」

「硬殺」意指對敵裝備的實 質性破壞。中共學者認為反輻 射飛彈、無人機、炸彈與高功率 微波武器,是對敵雷達系統執 行實質破壞的主要工具。《雷達 對抗原理》詳述了以上各種破 壞手段的優缺點,以及在戰場 上的應用方式。

反輻射飛彈一般使用被動式 雷達歸向,此種飛彈爆炸範圍


通常為20至60公尺,通常具有 高匿蹤性與智能性,但某些飛 彈能力則因配備的被動式雷達 尋標器而有所限制。中共擁有 四種型式的反輻射飛彈,分別 是CM-103、鷹擊-91(YJ-91)、雷 電-10(LD-10)和飛騰-2000(FT-2000)(The National Interest, November 30, 2017)。在這些 飛彈中,最值得注意的是飛騰 -2000,其為一種獨特的地對空 反輻射飛彈,目的在攻擊空中 預警與管制機和電戰機。飛騰 -2000採用冷發射與主動式雷 達歸向,可在12至100公里外, 海拔高度在3至20公里之間攻 擊目標(中國網,2015年8月21

中共電子戰作為概念圖

資料來源:賀平主編,《雷達對抗原理》(北京:國防工業出版社,2016年),頁3。

中共高功率微波炸彈示意圖

資料來源:賀平主編,《雷達對抗原理》(北京:國防工業出版社,2016年),頁243。

日)。

反輻射無人機的重量通常在 200公斤(或更輕),它們可對預 定目標執行自殺式攻擊,爆炸 範圍較反輻射飛彈大50至100 公尺。此種無人機的最大優勢 是可作為滯空彈藥(原理,頁 241-243)。2017年8月,共軍在 「朱日和聯合戰術訓練基地」 所舉行的一場閱兵典禮上展示 了ASN-301型反輻射無人機。 該型機與以色列的哈比(Harpv) 無人機有驚人相似之處,並擁 有288公里的作戰半徑、20公 尺的破壞範圍,以及4小時的續 航力(Israel Defense, March 1, 2017)。

即使《雷達對抗原理》書中

提到了反輻射炸彈,但該書作 者們也承認,由於這種炸彈需 要空中優勢,所以鮮少在戰鬥 中運用。

高功率微波武器雖然還沒有 成為正式裝備,但中共專家仍 將其視為重要的未來電子戰武 器。高功率微波脈衝能透過各 種途徑(例如天線與目標上的任 何罅隙)進入電子裝備(原理,頁 244)。高功率微波可依其輻射 強度,使敵電子裝備失效或完 全摧毀。

高功率微波也會對雷達操作 人員造成傷害。在低強度(3至 13毫瓦/平方公分)時,高功率微 波可造成意識混亂、記憶力衰 退、行為異常、失明、失聰、失

去意識,甚至心臟衰竭。當微 波在最高強度(80瓦/平方公分) 時,則無異於暴露在「死光」之 下,可在一秒內殺死敵戰鬥人 員(原理,頁245-246)。

關於那些能透過火砲、火箭、 空用炸彈與飛彈投射的小型高 功率微波炸彈,《雷達對抗原 理》的作者們似乎透露出了較 多資訊,但對於高功率微波武 器設施則較少著墨。這可看出 中共在前者的技術成熟度,或 者是意圖掩蓋其在後者發展上 所取得的進展。4

中共的雷達反制「軟殺」

「軟殺」意指使用電子戰反 制裝備來阻擾或混淆敵人。《雷

欺敵干擾為使用假訊號來誤導敵雷達,所謂「主動欺敵干擾」也有一系列技術。(Source: USN/Richard Doolin)

達對抗原理》書中指出了兩種雷達干擾方式:制 壓和欺騙。這兩個主題都各自探討了主動與被動 兩個面向,並進一步細分出了十餘種不同的干擾 技巧。

主動式制壓干擾使用噪音或脈衝,以抑制並干 擾敵雷達接收器的運作,而這種干擾技巧的其中 一個例子,即是使用隨機脈衝干擾,這是以不規 則參數的方式來運用脈衝,以掩蓋目標反彈回來 的雷達回波(原理,頁167)。被動式制壓干擾,則 是指干擾絲和雷達波反射器在實體戰場上的運 用。

欺敵干擾為使用假訊號來誤導敵雷達。所謂的 「主動欺敵干擾」(有源欺騙性干擾)也有一系列 的技術。舉例來說,地表反跳干擾用於對付主動 或半主動歸向飛彈是相當有效的。在此狀況中,

空中電子戰系統向地面發射一個高功率的模擬雷 達回波,並以相同反射角反射至來襲的飛彈。如 果成功,該飛彈將會改變路徑並朝向地面反射的 模擬回波方向飛行(原理,頁198)。被動欺敵干擾 則是指無人機和火箭推進的誘標。誘標的雷達截 面反射能力必須比真正目標要來得好,卻又不能 太過明顯,否則也會提高誘標暴露的風險。

中共的雷達反制防禦而向

《雷達對抗原理》書中表示,保護友軍裝備以 對付敵軍雷達最重要的方式,便是偽裝和匿蹤。 這些技術同樣也區分為「天然」和「人為」兩種。

舉例來說,《雷達對抗原理》指出地球表面曲 度所造成的雷達死角,讓友軍可以把部隊和裝備 安置在敵雷達視線之外,諸如森林、山地、丘陵 和谷地等崎嶇地形,也有利於 隱藏友軍資產,而降雨也能降 低雷達回波強度(原理,頁219-221)。不過,天然偽裝是可遇不 可求的,所以也不是最佳選項。

複合光譜迷彩是一項防護友 軍資產免於雷達偵測的便利工 具,但如果手邊沒有此種裝備, 《雷達對抗原理》建議使用樹 枝、蘆葦及乾草等替代方案,但 這些替代品厚度也必須足以偏 轉電磁波的方向(原理,頁222223)。

另一方面,匿蹤技術則是著 重於透過極小化裝備邊緣、稜 角的平滑外部設計來減少雷達 橫截面。

除了這些被動式措施外,《雷 達對抗原理》建議自衛式干擾 也可透過干擾敵雷達的主波 束,達成目標掩蔽之目的。

針對反輻射武器的防禦, 《雷達對抗原理》認為可使用 誘標和欺敵干擾來混淆進犯的 武器,或讓其提早引爆(原理, 頁255)。針對高功率微波武器, 該書特別主張加裝濾波器、使 用抗燃材質的電子零件、增加自 動關閉機制,以因應預期的高 功率微波攻擊,並採用能吸收 高功率微波的材質,來彌封裝 備上的所有孔隙(原理,頁257-259)。

整合運用

《雷達對抗原理》最後特別

保護友軍裝備以對付敵軍雷達最重要的方式,即是偽裝和匿蹤。這些技術也區分為天然與人為兩種。(Source: USN/Eric Coffer)

介紹了一系列的雷達反制狀況模擬,揭示中共如 何在戰術層面上整合各種雷達反制工具與技術的 思維;然而,值得注意的是,這些範例是根據共軍 對國外軍演和狀況模擬的觀察而來。

其中一場針對航艦戰鬥群的空中打擊模擬案 例,對未來亞太地區衝突具有極大的相關性。

該案例的攻擊方是由超過20架裝備電子戰反 制措施的飛機所組成;包括16架轟炸機、1架空中 預警與管制機、1架雷達反制支援機、3架空中遠 距干擾機,以及2架掛載反輻射飛彈的電戰機。

攻擊開始時,先由雷達反制機識別並定位敵方 雷達,接著將此資訊傳遞至整個攻擊編隊。3架遠 距干擾機開始對航艦戰鬥群雷達進行截斷,2架 電戰機則以反輻射飛彈開始攻擊敵雷達,同時領 隊的轟炸機群施放干擾絲走廊,以利在友軍轟炸 機接近目標時提供防護。每架轟炸機上的自衛干 擾系統亦同時啟用。

當轟炸機接近目標時,干擾絲施放機進行大坡 度急彎。轟炸機開始以精確導引彈藥對敵攻擊。 友軍遠距干擾機接著轉移目標,對敵火控雷達、 飛彈導引接收器、監偵雷達及指揮導引鏈路進行 干擾,直到攻擊結束(原理,頁282-283)。

該狀況模擬預期整場攻擊可在10至15分鐘內 結束。

結論

相較於對俄羅斯新興電子戰能力的理解(ICDS, September 2017),外界對中共實際的電子戰、雷 達反制能力實在知之甚少。在中共嚴格的資訊控 管制度背景下,從《雷達對抗原理》內容所推斷出

的訊息,讓吾人得以一窺中共如何將雷達反制概 念化,以及渠等教育電子戰專業人員的方式。本 文簡要的概述及分析無法完整囊括該書所有內 容,有興趣的讀者可再詳閱此書,就能以全面、權 威性視角來了解共軍如何在整體電子戰準則的架 構下,將雷達反制作為概念化。

作者簡介

Zi Yang係新加坡南洋理工大學拉惹勒南國際研究學院(S. Rajaratnam School of International Studies)中國大陸項目的高級分 析師。

Reprint from Jamestown Foundation with permission.

註釋

- 1. 據美國傳統基金會(Heritage Foundation)資深研究員 成彬(Dean Cheng)表示,「2011年版的《中國人民解放 軍軍語》將資訊化戰爭(信息化戰爭)描述爲在陸、海、 空、太空、電磁領域,以及認知領域中,廣泛的將資訊 化武器及設備和網路化資訊系統,共同運用於聯合作 戰中。在資訊化戰爭中,系統體系(systems-of-systems) 之間的對抗構成了衝突主要形式。在系統體系的架構 下,對資訊化戰爭的設想即是資訊化部隊,後者可透 過網路化的戰鬥系統、指管系統與後勤支援系統遂行 作戰。」請參閱,成彬著,《網路巨龍:探討中共資訊戰 與網路行動》(Cyber Dragon: Inside China's Information Warfare and Cyber Operations [Santa Barbara, California: Praeger, 2016]), 頁39。
- 2. 雷達反制(雷達對抗)、通信反制(通信對抗)、光電反制 (光電對抗)與水下音響反制(水聲對抗)組成了中共電子 戰(電子對抗)的四個子領域。
- 3. 即使是最權威、深入的美國國防部年度中共軍力報告, 也幾乎無法對此題材多所著墨。有興趣的讀者,可在 2014年的年度報告第66頁找到目前針對中共電子戰最 詳盡的因應作爲。
- 4. 關於中共高功率微波武器的最新發展,請參閱,2017 年3月11日的外交家(The Diplomat)網站專文。