J Med Sci 2018;38(4):188-191 DOI: 10.4103/jmedsci.jmedsci 6 18

CASE REPORT

Delayed Subcutaneous Emphysema in an Acute Weight Loss Female following Robotic Surgery

Huang Nian-Cih¹, Lai Hou-Chuan¹, Huang Yu-Ting², Wu Zhi-Fu¹

Departments of ¹Anesthesiology and ²Nursing, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, ROC

Robotic-assisted laparoscopy with the use of carbon dioxide (CO_2) for insufflation is rapidly adopted procedure for gynecological surgery. Insufflation of the abdomen with CO_2 can potentially cause complications such as hypercarbia, subcutaneous emphysema (SE), pneumothorax, and pneumomediastinum. The incidence of SE ranges from 0.43% to 77%. Numerous potential mechanisms were proposed for the development of these complications. Several authors speculated that the surgical time, surgical ports, age, and peritoneal insufflation pressures are related to the development of these complications. These potentially lethal complications must be diagnosed and managed promptly. We experienced a case who developed delayed massive SE extended to neck and face after robotic ovarian cystectomy, it perhaps due to weaker tissues bonding fascial planes because she was acute weight loss within 1 month.

Key words: Laparoscopy, subcutaneous emphysema, acute weight loss

INTRODUCTION

Robotic-assisted laparoscopic application of this gynecological surgery has been demonstrated to be a feasible minimally invasive alternative to the open abdominal technique insufflation with carbon dioxide (CO₂) of the abdomen for laparoscopic procedures and is considered to be relatively safe. However, it can potentially cause complications such as subcutaneous emphysema (SE), hypercapnia, pneumothorax, and pneumomediastinum.¹ SE, a well-known complication of laparoscopic surgery, results from leakage of CO₂ into the subcutaneous tissue.² If there was complication, it is mostly found after surgery immediately. To the best of our knowledge, its occurrence after robotic-assisted laparoscopic ovarian cystectomy has not been reported. We present the case of a patient who underwent Robotic ovarian cystectomy for endometrioma, complicated by delayed massive SE.

CASE REPORT

A 35-year-old female, height, 168 cm and weight, 56 kg body mass index (BMI) =19.8 kg/m², who was classified as the

Received: January 14, 2018; Revised: January 15, 2018; Accepted: January 22, 2018

Corresponding Author: Prof. Wu Zhi-Fu, Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, No. 325, Section 2, Chenggong Road, Neihu, Taipei 114, Taiwan, ROC. Tel: +886-2-87923311; Fax: +886-2-87927127. E-mail: aneswu@gmail.com

American Society of Anesthesiology Physical Status I due to being relatively robust without any systemic disease. She was diagnosed with endometrioma of the right ovary base on the results of the sonography and laboratory study that revealed elevated cancer antigen 125. She had acute weight loss from 70 to 56 kg in 2 months, and she was scheduled for robot-assisted laparoscopic ovarian cystectomy.

Anesthesia was induced using intravenous fentanyl (2 μg/kg) and 2% lidocaine (1.5 mg/kg). General anesthesia was maintained with target-controlled infusion propofol infusion and 1.0 L/min flow with 50% oxygen.³⁻¹¹ The mean blood pressure was kept between 80–100 mm Hg. The end-tidal CO₂ (Et CO₂) pressure was maintained at 35–45 mmHg. The CO₂ insufflation pressure, in this case, was 12 mmHg and maintained throughout. The operative time was 92 min. At the end of the procedure, propofol was discontinued, and the lungs were ventilated with 100% oxygen at a fresh gas flow of 6 L/min. When the patient regained consciousness by name with spontaneous and smooth respiration, the endotracheal tube was removed, and the patient was sent to the postoperative

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Nian-Cih H, Hou-Chuan L, Yu-Ting H, Zhi-Fu W. Delayed subcutaneous emphysema in an acute weight loss female following robotic surgery. J Med Sci 2018;38:188-91.

anesthetic care unit for further care. We did not find any SE on her body in the postoperative anesthetic care unit.

Four hours after surgery, the patient complained of crepitus sensation on the abdomen, and then, SE was diagnosed. In addition, 6 h later, her crepitus sensation progressed to the chest and associated with shortness of breath with a mild decrease in SpO₂ to 92% in room air, which was corrected by additional oxygen through nasal cannula.

In the next morning, the crepitus was also palpated and extended to her upper extremities, neck, and face. Her chest radiograph [Figure 1] showed SE over bilateral lower neck, chest wall, and abdominal wall. In addition, the right subphrenic lucency is noted as potentially due to postoperative residual intraperitoneal gas. Five days after surgery, she was discharged and her SE was resolved 2 weeks later without any clinical sequelae.

DISCUSSION

The incidence of SE associated with laparoscopy surgery ranges from 0.3% to 13.5%. ^{12,13} However, delayed SE is a rare complication after laparoscopic procedure. The mechanism of SE is when gas or air spread through deep fascial planes to subcutaneous tissue from the port sites, ¹⁴ through the peritoneo-pleural communication, ¹⁴ diaphragmatic defects, ¹⁵ or from the gastrointestinal tract following mucosal disruption. ¹⁶ However, the mechanism of delayed SE was still unknown. Murray *et al.* ¹⁷ reported that CO₂ can enter the weaker tissues and migrate along fascial planes into the subcutaneous. In addition, Lee *et al.* ¹³ reported that the suture method during laparoscopic surgery could be another reason for the development of SE, which is most responsible

Figure 1: A chest radiograph after the robot-assisted laparoscopic ovarian cystectomy showed pneumoperitoneum with extensive subcutaneous emphysema surrounding the abdominal and chest wall (left > right side), extending into the neck region

for emphysema due to likely leakage of the CO, that was infused into the abdominal cavity subcutaneous tissue. This procedure may cause loosening of the port site, possibly enabling intraabdominal CO, to leak into the subcutaneous tissue. Second, the large peritoneal surface tissue area exposed to CO2 is associated with SE.18 Mekaru et al.19 reported a 40-year-old female and her BMI was 19.1 and developed a delayed pneumothorax and SE after laparoscopic ovarian cystectomy. Wolf et al.20 found a relationship between low BMI and increase in CO, elimination, which suggested that weight might influence the development of SE. This explained a latent pocket of CO, in the large peritoneal cavity which following delayed absorption of CO2.21 In our case, acute weight loss (BMI 19.8 kg/m²) within 1 month and skin sags were noticed in her whole body. Furthermore, robotic ovarian cystectomy as the sacrocolpopexy may increase insufflation complications including massive SE, possibly because of the extensive retroperitoneal dissection, operating time, and patient positioning.²¹ In addition, she was being placed in the semi-fowler's position may accelerate the gas from abdominal fascia to chest, neck, and face postoperatively. SE is usually self-limiting and resolve over several hours or sometimes after 3-4 days.²² Severe SE may cause severe hypercarbia in cases in which a large amount of CO, is infused into the circulation through the blood vessels distributed in the subcutaneous tissue. Further, SE may also develop in the prefascial planes, causing life-threatening complications such as pneumothorax, pneumomediastinum, and pneumopericardium.²³

Pneumothorax and pneumomediastinum present with a sudden onset of unilateral thoracic pain and dyspnea. Physical examination findings depend on the size of the pneumothorax; decreased breath sounds, hyperresonance to percussion on the affected side, desaturated, tachycardia, and/or decreased arterial blood pressure. A chest radiograph further supports the diagnosis. Pneumopericardium was asymptomatic and was diagnosed incidentally at radiography. Some patients reported abdominal pain as the initial symptom,²⁴ and some mimics acute myocardial ischemia, severe enough to cause electrocardiograph abnormalities.²⁵ Physical examination may show tachycardia, distended neck veins, and hypotension. Computed tomography can determine the pneumothorax, pneumomediastinum, and pneumopericardium if unclear by physical assessment.

Management of these life-threatening complications requires closely monitor of the patient's condition. Patent airway and sustain the patient at a normal pH value. Adequate hydration and sodium bicarbonate administration may be necessary for excessive acidosis. Moreover, tube thoracostomy may be necessary when the patient is hemodynamically unstable or has a compromised ventilatory status in pneumothorax.

Delayed subcutaneous emphysema following robotic surgery

Pneumopericardium is relatively stable if it does not generate a tension effect on the heart, but if the tension pneumopericardium it requires immediate evacuation of the pericardial air.

The following are recommended to reduce the likelihood of SE: awareness of its potential; physician vigilance; attention to detail regarding abdominal entry; monitoring insufflator settings for pressure, and volume of gas with alarm settings; shorten the procedure; reduce the number of attempts to enter the abdomen; and monitor Et CO₂. Dramatic physical changes that occurred because of massive SE prompted remarkable patient concern and anxiety. Therefore, explanation and reassurance may be necessary for the patient postoperatively.

CONCLUSION

Among our case, low BMI, acute weight loss with skin sags, the sutured techniques, and semi-fowler's position were the confounding factors to delayed severe SE.

Declaration of patient consent

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Kalhan SB, Reaney JA, Collins RL. Pneumomediastinum and subcutaneous emphysema during laparoscopy. Cleve Clin J Med 1990;57:639-42.
- Worrell JB, Cleary DT. Massive subcutaneous emphysema and hypercarbia: Complications of carbon dioxide absorption during extraperitoneal and intraperitoneal laparoscopic surgery – case studies. AANA J 2002;70:456-61.
- Lai HC, Chan SM, Lin BF, Lin TC, Huang GS, Wu ZF. Analysis of anesthesia-controlled operating room time after propofol-based total intravenous anesthesia compared with desflurane anesthesia in gynecologic laparoscopic surgery: A retrospective study. J Med Sci 2015;35:157-61.
- 4. Lai HC, Chang YH, Huang RC, Hung NK,

- Lu CH, Chen JH, *et al.* Efficacy of sevoflurane as an adjuvant to propofol-based total intravenous anesthesia for attenuating secretions in ocular surgery. Medicine (Baltimore) 2017;96:e6729.
- Lai HC, Tseng WC, Pao SI, Wong CS, Huang RC, Chan WH, et al. Relationship between anesthesia and postoperative endophthalmitis: A retrospective study. Medicine (Baltimore) 2017;96:e6455.
- 6. Lai HC, Chan SM, Lu CH, Wong CS, Cherng CH, Wu ZF, et al. Planning for operating room efficiency and faster anesthesia wake-up time in open major upper abdominal surgery. Medicine (Baltimore) 2017;96:e6148.
- 7. Wu ZF, Jian GS, Lee MS, Lin C, Chen YF, Chen YW, et al. An analysis of anesthesia-controlled operating room time after propofol-based total intravenous anesthesia compared with desflurane anesthesia in ophthalmic surgery: A retrospective study. Anesth Analg 2014;119:1393-406.
- 8. Chen JL, Chen YF, Chen YW, Yu JC, Lu CH, Yeh CC, *et al.* Do anesthetic techniques affect operating room efficiency? Comparison of target-controlled infusion of propofol and desflurane anesthesia in breast cancer surgery. J Med Sci 2013;33:205-10.
- Chan SM, Lee MS, Lu CH, Cherng CH, Huang YS, Yeh CC, et al. Confounding factors to predict the awakening effect-site concentration of propofol in target-controlled infusion based on propofol and fentanyl anesthesia. PLoS One 2015;10:e0124343.
- Chan WH, Lee MS, Lin C, Wu CC, Lai HC, Chan SM, et al. Comparison of anesthesia-controlled operating room time between propofol-based total intravenous anesthesia and desflurane anesthesia in open colorectal surgery: A Retrospective study. PLoS One 2016;11:e0165407.
- 11. Lai HC, Pao SI, Huang YS, Chan SM, Lin BF, Wu ZF. The relationship between postoperative pneumonia and endotracheal suctioning under general anesthesia in ophthalmic surgery: A retrospective study. Asian J Anesthesiology 2018;56:33-8.
- 12. Murdock CM, Wolff AJ, Van Geem T. Risk factors for hypercarbia, subcutaneous emphysema, pneumothorax, and pneumomediastinum during laparoscopy. Obstet Gynecol 2000;95:704-9.
- 13. Lee DW, Kim MJ, Lee YK, Lee HN. Does intraabdominal pressure affect development of subcutaneous emphysema at gynecologic laparoscopy? J Minim Invasive Gynecol 2011;18:761-5.
- 14. Macklin CC. Transport of air along sheaths of pulmonic blood vessels from alveoli to mediastinum: Clinical implications. Arch Intern Med 1939;64:913-26.
- 15. Browne J, Murphy D, Shorten G. Pneumomediastinum, pneumothorax and subcutaneous emphysema

- complicating MIS herniorrhaphy. Can J Anaesth 2000;47:69-72.
- Sahni S, Verma S, Grullon J, Esquire A, Patel P, Talwar A, et al. Spontaneous pneumomediastinum: Time for consensus. N Am J Med Sci 2013;5:460-4.
- 17. Murray DP, Rankin RA, Lackey C. Bilateral pneumothoraces complicating peritoneoscopy. Gastrointest Endosc 1984;30:45-6.
- 18. Abe H, Bandai Y, Ohtomo Y, Shimomura K, Nayeem SA, Idezuki Y, *et al.* Extensive subcutaneous emphysema and hypercapnia during laparoscopic cholecystectomy: Two case reports. Surg Laparosc Endosc 1995;5:183-7.
- 19. Mekaru K, Yagi C, Uezato T, Masamoto H, Aoki Y. Delayed pneumothorax after laparoscopic ovarian cystectomy. Arch Gynecol Obstet 2009;280:157-9.
- Wolf JS Jr., Monk TG, McDougall EM, McClennan BL, Clayman RV. The extraperitoneal approach and subcutaneous emphysema are associated with greater

- absorption of carbon dioxide during laparoscopic renal surgery. J Urol 1995;154:959-63.
- 21. Ott DE. Subcutaneous emphysema beyond the pneumoperitoneum. JSLS 2014;18:1-7.
- 22. Abu-Omar Y, Catarino PA. Progressive subcutaneous emphysema and respiratory arrest. J R Soc Med 2002;95:90-1.
- Siu W, Seifman BD, Wolf JS Jr. Subcutaneous emphysema, pneumomediastinum and bilateral pneumothoraces after laparoscopic pyeloplasty. J Urol 2003;170:1936-7.
- 24. Barba MA, Saez L, García-Molinero MJ, Aguilera M. Pneumopericardium without subcutaneous emphysema, pneumomediastinum, or pneumothorax after laparoscopy. Gastrointest Endosc 1993;39:740.
- 25. Beaver J, Safran D. Pneumopericardium mimicking acute myocardial ischemia after laparoscopic cholecystectomy. South Med J 1999;92:1002-4.

