

運用 Arduino 建置網路控制門禁 開關一以中心教官辦公室爲例

作者/楊海波士官長

提要

- 一、Arduino系統是在2005年由義大利的伊夫雷亞(Ivrea)鎮的互動設計學院裡,教師因目前產品零件昂貴,且設計界面複雜,學習過程困難,所開發出的系統。其宗旨也希望讓更多人不會害怕寫程式及電子電路設計。
- 二、Arduino是開源的硬體,採用創用CC授權許可,可供任何人複製、生產及銷售這 塊電路板,並且能重新設計,但須遵守的是產品後面需加入Duino的字樣。
- 三、從本研究中得知,此裝置能減少人員開門所花費之時間,並能提升作業人員專注力。倘若建置在戰情室,並增加感測設備,更能協助戰情官掌握重要機敏處所。

關鍵詞:Arduino、感測模組、物聯網IOT。

前言

近幾年智能管控的議題相當熱門,但外界一般店家的產品,均是以無線的方式才能建置,但並不符合我國軍規定。因此,於網路搜尋後發現創客 Maker(自由創造作品的人)的名號,也就是運用如 Arduino 等電子積木創作各種智能管控裝置的人。此產品也是推廣正火熱的物聯網系統(Internet OfThing, IOT)之幕後功臣。因此,也由此找到一種可以運用有線網路的方式,建置本軍的網路管控系統,故以此為研究目標。

探討 A rduino 系統

一、何謂 Arduino

Arduino 是在 2005 年由義大利伊夫雷亞(Ivrea)鎮的互動設計學院,¹教師因目前坊間的零件昂貴,擔心學生負擔不起,且設計界面複雜,學習過程困難,所開發出的系統。是希望使用者能夠輕鬆將自己腦袋的想法化成實際的產品。

Arduino 是一塊小型的單晶片電路板,可透過 USB 方式與電腦連接,並編撰程式碼,燒入在板子上。電路板的兩側有兩排訊號接座,能接馬達、開關、喇叭、超音波、感光、發光、RFID、溫濕度感測、陀螺儀、無線電、藍芽等裝置(如圖一)。只要有一點電子學的常識,就可完成想開發的專案,如燈光管控、四軸飛行器、開關控制、智能車、溫濕度管控等。更有其他公司為與此產品競爭,推出有內建 linunx 及 windows

¹葉難,《A rduino 輕鬆入門:範例分析與實作設計》(臺北市:博碩文化股份有限公司,民國 103 年 2 月),頁 3。

10 系統,如現今很火紅的樹梅派與 Lattepanda 等產品。本研究以 Arduino 系統外加運 用繼電器模組及網路模組,去執行門禁開關專案之研究,供各級參考運用。

資料來源:〈Wireless surveillance system〉《CODECHEF》, https://discuss.codechef.com/questions/38261/wireless-surveillance-system, 2017年4月 30 ⊟ ∘

二、Arduino 各式產品簡介

Arduino 本身晶片模組是開源硬體²,採用創用 CC(Creative Commons,CC)的授權許 可,任何人都能生產這塊電路板的複製品、重新設計及銷售,不用取得原團隊許可, 但須遵守產品後面加入 Duino 的字樣。所以後來就有許多非 Arduino 公司的產品,但 功能都大同小異。現就其出產的產品來了解其差異,綜整如下。

(一)Arduino Uno 系列

Uno 非常適合初學者的第一選擇,其核心採用 Atmel ATmega328 微控制板,具有 14 組數位輸出入腳位及 6 組類比腳位,可用來控制周邊、監測感應器數值,如圖二。

資料來源:〈Arduino Uno 功能簡介〉《openhome.cc 良葛格學習筆記》, https://openhome.cc/Gossip/Books/mBlockArduino1-3and1-4.html, 2017年4月30日。

A rduino, Wikipedia, https://zh.wikipedia.org/wiki/Arduino, 2017/04/17.

(二) Arduino Nano

是 Arduino Uno 的微型版本,和 Uno 一樣,核心為 Atmel ATmega328 微處理器, 具有 14 組數位輸出/入腳位,以及 8 組類比腳位,可以用來控制周邊、監測感應器數 值,如圖三。

圖三 Arduino Nano 產品圖

資料來源:〈Arduino Nano〉《GoHappy 最大百貨零售購物網》, http://www.gohappy.com.tw/ec2/product?mid=1&sid=593&cid=333779&pid=5374503&k w=arduino%20&pi=0,2017年4月30日。

(三) Arduino DUE

是運算能力數一數二的成員,其核心為 Atmel 的 ARM 架構 Cortex-M3 CPU,這 顆時脈 84MHz 的 32 位元心臟在 DUE 上可以控制 54 組數位腳位的輸出入、12 組類比 腳位,如圖四。

圖四 Arduino Due 產品圖

資料來源:〈Arduino DUE〉《GoHappy 最大百貨零售購物網》, http://www.gohappy.com.tw/ec2/product?mid=1&sid=593&cid=333779&pid=5374504&k w=arduino%20&pi=0,2017年4月30日

(四) Arduino Leonardo

核心採用 Atmel ATmega32u4 的微控制板,具有 20 組數位輸出/入腳位及 7 組類比 腳位,可同時控制更多周邊,進行更複雜的電路專案。另外在電路設計上亦有差異, 由於擁有獨立晶片處理序列埠串接,透過電腦重置時,並不會中斷其 USB 或序列埠連 線,如圖五。

圖开 Arduino Leonardo 產品圖

資料來源:Arduino Leonardo,《GoHappy 最大百貨零售購物網》,http://www. gohappy.com.tw/ec2/product?mid=1&sid=593&cid=333779&pid=5373649&kw=arduino% 20&pi=0,2017年4月30日。

(元)Arduino Micro

是功能完整 Arduino Leonardo 的微型版,具有 20 組數位輸出/入腳位及 7 組類比 腳位,可用來控制周邊、監測感應器數值,大小如口香糖,如圖六。

圖六 Arduino Micro 產品圖

資料來源:Arduino Micro,《GoHappy 最大百貨零售購物網》, http://www.gohappy.com.tw/ec2/product?mid=1&sid=593&cid=333779&pid=5373648&k w=arduino%20&pi=0,2017年4月30日

(六)Arduino MEGA ADK

是一個款透過 Android 系統介面來控制資訊家電、車用電子、自動控制應用等場 合,讓此裝置不再是手機、平板,而是與生活連結的智慧型裝置,如圖七。

圖七 Arduino ADK Rev3 產品圖

資料來源:Arduino ADK,《GoHappy 最大百貨零售購物網》, http://www.gohappy.com.tw/ec2/product?mid=1&sid=593&cid=333779&pid=5375890&k w=arduino%20&pi=0,2017年4月30日

(七)Arduino Yun(雲)

是一款結合標準 Arduino ATmega 以及 Linux 核心的開發板,不需外接其他擴充板 (Shield),就可透過自身的 WiFi 和乙太網路,連結到雲端執行各項管控任務,如圖八。

圖八 Arduino Yun 產品圖

資料來源:Arduino ADK,《GoHappy 最大百貨零售購物網》,http://www.gohappy.com.tw/ec2/product?mid=1&sid=593&cid=333779&pid=5374505&kw=arduino%20&pi=0,2017 年 4 月 30 日。

三、Arduino 之開發環境

Arduino 的開發環境所使用的程式為 Arduino IDE(Integrated Development Environment)整合式開發環境,使用者可在 IDE 介面中撰寫程式碼,程式會編譯成微處理器識別語言,再從 USB 介面傳輸程式碼,使該板子產生我們所要求的動作。

(一)開發程式下載

使用者可以在官網(http://arduino.cc/en/Main/Software)上, ³下載 Arduino IDE。目前筆者所使用的為 arduino-1.6.10-windows, 此軟體為開源軟體, 免費開放下載及更新, 並支援不同的作業系統, 誠如 Arduino 的精神, 讓使用者能夠輕輕鬆鬆的將自己的想法創造出來。(如圖九)

圖九 Arduino 開發程式

資料來源:作者繪製。

³同註1。

(二)開發程式介面介紹

1.編輯區

在編輯區撰寫程式碼,支援剪下、複製、貼上、尋找和取代操作,目前編輯區 不支援中文輸入,但可從其他編輯工具中(如記事本)複製,再貼到編輯區。

2.提示區

顯示儲存、編譯、上傳等進度情況,也會顯示出錯資訊,詳細的錯誤訊息和其 他資訊,會顯示在黑色區域內。提示區下部則顯示的是目前電路板和序列埠資訊,顯 示接在電腦上的Arduino電路板型號和使用序列埠號。

3.標題列

開啟軟體時,軟體會自動為程式檔案命名,並顯示在標題列中。如 (sketch apr14a|Arduino1.6.10)其中分隔號前為檔案名稱,後即為軟體版本。

(三)程式撰寫範例介紹

Arduino IDE 源自於 Processing 程式語言以及 Wiring 計劃的整合開發環境。4它是 被設計給不熟悉程式設計的人,且包含了一個擁有語法突顯、括號匹配、自動縮排和 一鍵編譯,並將執行檔燒寫入硬體中的編輯器,其中所使用與 C 語言和 C++相仿的程 式語言,對於懂C語言的人,是很容易就上手的介面。

圖十為 LED 閃爍的程式碼,在宣告區(Void Setup)中,告訴 Arduino 剛開機時的狀 態及腳位功能,是輸出或是接收,在範例中 PinMode(13,OUTPUT),就是表示第 13 隻 腳位為輸出功能,而此符號//代表註解,Arduino不會去執行。

檔案 編輯 草稿碼 工具 說明 sketch_apr23a § void setup() { 腳位功能宣告區 // put your setup code here, to run once: pinMode(13, OUTPUT); 程式運算週團區 // put your main code here, to run repeatedly digitalWrite(13, HIGH); delay(1000); digitalWrite(13, LOW); delay(1000):

圖十 Arduino 程式語言

資料來源:作者繪製。

⁴同註1。

在運算區(Void Loop)中,代表程式會一直循環地執行,在 DigitalWrite(13, HIGH) 的程式功能,是位在第 13 隻腳位輸出 5V 電壓,Delay(1000)為延遲 1000 毫秒後在執行下一行,因為 Arduino 上的硬體已經有個 LED 接上 Pin 13 ,所以不用任何額外的硬體線路,就可以看到內建的 LED 燈有明暗的動作。這樣的撰寫方式對於不會撰寫程式的人來說,是很容易入門的。

四、Arduino 周邊咸應裝置介紹

Arduino 為一片電子電路版,用他來控制掌控周遭的感應裝置的狀況,如同一位排長,分派任務給排內的弟兄,並且掌握弟兄執行任務的進度。所以,使用者依照自己所設計的專案,除了購買一片 Arduino,也須尋找適合的周邊感應模組,才能夠發揮 Arduino 的功力。下列將介紹常見的感應模組。

(一)繼電器模組

在使用Arduino做互動項目時,很多大電流或高電壓的設備通常無法直接進行控制, 此時可以使用繼電器的方案解決,最高可以接250V/10A的交流設備或24V/10A的直流 設備,能夠用來控制電燈、電機等。本研究是使用表一項次三的繼電器,來控制門禁 開關,常見模組如表一。

項目	圖片	功能	項次	圖片	功能
1	OF CONTROL	1路 繼電器	4		8 路 繼電器
2	The state of the s	2路 繼電器	5		16 路 繼電器
3 W) 45 XE	· 李兴區 聚聚 乙去 医	4路 繼電器			lood html - 20

表一 Arduino 繼電器模組

資料來源:莆洋國際電子有限公司,http://www.pu-yang.com.tw/download.html, 2017年4月30日。

(二)傳感器模組

在使用Arduino設計偵測或是傳遞的各種專案時,那就需要依照專案的功能,去搭配各種不同的感測模組,其種類有數百種之多,從感光、聲波、震動、磁力、水位、氣體、觸控等,並以常見到的列舉如表二。

表一	Arduino	咸測傳咸器模組

項目	圖片	次二 Aidumo lo 功能	項次	圖片	功能
1		遊戲搖桿	10	EL STATE	光照 感測器
2	E DE LE	震動傳感器	11		超音波 感測器
3		溫溼度 傳感器	12		聲音檢測 感測器
4		水位傳感器	13		光敏 傳感器
5		酒精濃度 傳感器	14		霍爾磁力 傳感器
6		煙霧氣體 感測器	15		土壤濕度 傳感器
7		人體紅外線 感測器	16		火焰 傳感器
8	9 10 10 10 10 10 10 10 10 10 10 10 10 10	氣壓 感測器	17		紅外線障蔽 傳感器
9		觸摸開關 感測器	18		尋跡 傳感器

資料來源:莆洋國際電子有限公司,http://www.pu-yang.com.tw/download.html, 2017 年4月30日。

(三)無線及網路模組

為何智能聯網裝置在這個時代這麼火紅,其中一個很重要因素,就是每天伴隨人 們的網路系統。各國企業無不以此為發展重點,如智能保全、智能刷、智能衣、智能 球棒、智能鏡、無人車、郭台銘的無人機械工廠,甚至到近期有電視媒體介紹美國總 統川普的美墨長城,有某一公司在推薦自己的無人智能圍牆產品,而這些產品功不可 沒的就是連網的設備。本次研究以表三項次二之W5100網路模組,做為連網所使用的 設備,而常見的連網模組如表三。

表三	Arduino	無線及網路模組
1X	Aluumo	**************************************

項目	T T T T T	7 Huum			-44.1
均日	圖片	功能	項次	圖片	功能
1		ENC28J60 網路模組	五		WiFi ESP8266 無線網路模組
2	C. C. TA	W5100 網路模組	六		GroveNFC Tag 近場通訊模組
3		無線接收發射傳輸模組	t		HC-05 串口藍牙模組
4	已貨完	低功耗無線 數據傳輸模 組內附天線	八	A Mar	XBee ZB S2C low power ZigBee module

資料來源:莆洋國際電子有限公司,http://www.pu-yang.com.tw/ download.html,2017 年4月30日。

(四)電源模組

電源是電子裝置重要的一環,Arduino也很貼心的,提供了各式的供電方式,有太 陽能、水力發電、USB座供電、變壓器、鋰電池充電模組、POE網路線供電等各種方 式,配合各種創作的專案所需,使Arduino發揮最佳的功能,常見代表性產品如表四。

表四 Arduino 電源相關模組

項目	圖片	功能	項目	圖片	功能
1		太陽能充電 5V/1A 輸出	5		3.6V 微型 水輪發電機
2		3W5.5V 單晶 矽太陽能板	6	330	DC-DC 降壓模組 輸出 5V/5A
3		12V 多路輸出 電壓模組	7		保險絲座 帶燈顯示 10A
4	2 0000 MH	18650 鋰電池 充電板	8	Doo,	三段可調電壓式 POE 分離器

資料來源:莆洋國際電子有限公司,http://www.pu-yang.com.tw/download.html,2017 年4月30日。

探討建置系統時國軍網路資訊相關規定

Arduino 為資訊設備,若要在營區建置,就要探討規定是否能與時俱進,才能持

續培養我中心資訊人才。

一、國軍資訊資產管理作業規定探討

陸軍司令部 104 年 1 月 26 日頒布之資產規定增修版,⁵律定我陸軍所有單位在採購或使用資訊設備時,應有之規範與做法,以確保我國軍資訊安全。現就與 Arduino 有關的規定探討如下。

(一)資訊資產攜出(入)作法探討

未簽奉編階少將以上主官(管)或獨立營區主官核定,嚴禁將本規定適用範圍所列資訊資產攜出(入)營區,均應填具「資訊資產攜出入營區三聯單」,逕送通資部門查核資料內容及品項數量,經保防部門及保密督導官查核,並於進出時主動出示所貼標籤及接受必要之檢查。因此,要將資訊設備攜入營區,是需要經過各層級及主官(管)同意,才算符合規範,而 Arduino 則沒列在此範圍之內。

(二)輸出入裝置管制作法

未專案簽奉核准使用之各式無線傳輸硬體元件(包含藍芽、紅外線、IEEE 802.11x 系列等)須移除或停用輸出(入)裝置、各式連接埠及電腦機殼接縫處須黏貼易碎標籤; 易碎標籤破損後,須經單位通資部門鑑定安全無虞並記錄備查後,始得申請補發。

具讀卡機功能之列表機,禁止使用記憶卡儲存、讀取資料,並於記憶卡插入口貼上易碎管制標籤。

依此規定可以了解,若 Arduino 有 USB 及記憶卡之功能,需由通資部門貼上易碎標籤,也須蓋上主官(管)章。

二、國軍軟體發展管理作業規定探討

Arduino IDE 為開源性軟體,免費公開給大眾下載使用。且需攜入營區方能便於架設,現就依陸軍司令部 105 年 4 月 15 日頒布軟體開發規定⁶有關之管制項目探討如下。

(一)發展軟體以取得智慧財產權為優先考量

國軍計畫發展之軟體,預算許可前提下,以取得智慧財產權為優先考量,並由各軟體發展單位管理原始程式碼與相關授權資料。國軍自力發展或取得智慧財產權之軟體,也限於國軍內部運用。

Arduino 開發程式公司也規範若有商業利用行為,須保留此公司的宣告圖示。因此,經權責機關核定後,營區即可使用,不受版權影響。

(二)國軍軟體維護原則

國軍各式資訊系統軟體相關原始碼由原發展單位負責管理,並同步完成原始碼檢

⁵〈資產規定 V 7.0 增修版〉《軍事法規》,陸軍司令部通資處,http://www.cc.amymil.tw/index_doc_isd.asp,民國 104 年 1 月 26 日。

⁶〈國軍軟體發展管理作業規定〉《軍事法規》,陸軍司令部通資處,http://www.cc.amymil.tw/index_doc_isd.asp, 民國 105 年 4 月 15 日。

測、漏洞偵測及修補,以確保軟體安全,所以運用此產品所設計出的原始碼,須由發展人員管理以便進行修補,並同步進行掃毒、漏洞偵測,以確保營區安全。

三、陸軍網站管理作業規定作業探討

本次研究採用的是網頁式控制,是故須探討若未來其他單位也想採用此模式建置管理,需注意的規定及作法,作者依陸軍司令部 98 年 8 月 28 日頒布之網站管理作業規定,⁷彙整相關作法。

(一)軍網網站管理原則

- 1.旅級(含兵科學校)以上單位,並編制少將主官(管)與資訊官,始可設置網站;單位無專屬機房或網路資安防護環境,不得設置網站。因此,若單位階層或無機房的,則須呈報上一級單位,才能建置。
- 2.單位通資業務部門應負責網站需求初審、網站內容架構與伺服器防護架構審查、網域名稱及網址分配。各單位如有運用架設網站,需先至單位的通資部門瞭解 IP 網址的申請流程。

依以上所述,在架設完網站後,須將資料呈報單位通資部門,配合完成相關措施 後,才能正式運作。

(二)網站集中管理

旅級單位網站,非業務必要性不對外公開,應採用防火牆機制,將網站調整為內部使用。此作法較符合 Arduino 裝置所架設的網站,藉由既有網站的相關安全措施,才能使 Arduino 的網頁更為簡便。

在經過一番研究探討後得知,若要完成一個物聯網專案,需經歷呈報申請、智慧財產的讓渡、網路設定申請、資安防護、弱點掃描等措施,因此有心想要設計的長官,需提前準備,才不會造成作業困擾。

建置 Arduino 控制之效益

一、Arduino 在雲端監控能源消耗案例介紹

此案例是採用 CC3000 無線 WIFI 模組的方式,連到免費的物聯網服務網站 Xively(許多創客均使用此雲端網站),並運用電源感測模組與檯燈接上,將所量測到的數值,傳遞到此網站,讓使用者可隨時監控家中電源狀況,如圖十一。

二、辦公室建置架構、程式模板及網頁架設方式

本研究以自身環境為研究標的,模擬以網頁的模式,去控制門禁開關,以測試物聯網裝置的功效,以下先從辦公室環境來探討。

⁷〈陸軍網站管理作業規定〉《軍事法規》,陸軍司令部通資處,http://www.cc.amymil.tw/index_doc_isd.asp,民 國 98 年 8 月 28 日。

圖十一 Arduino 雲端監控能源消耗架設圖

資料來源:曾吉弘,《實戰數位家庭自動化使用 Arduino》(臺北市:碁峰資訊股份有限 公司,民國104年2月),頁5.3-5.30。

(一)辦公室建置架構

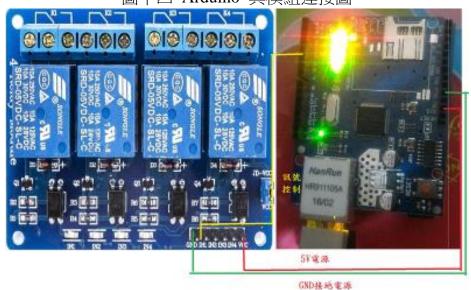
作者辦公室為約 20 人辦公室大小,辦公室有前後兩扇門,筆者距離前門 11.9 公 尺,距離後門步行 3.5 公尺,開門裝置在門的兩側,Arduino 裝置放置於隔壁實驗室中, 連接實驗室網路,作者架設規劃如圖十二。

連接網路 Arduino 線路 開開 開關 测试位置

圖十二 辦公室設備接線圖

資料來源:作者繪製。

線路架設完畢之後,接著開始架設 Arduino UNO 裝置,所採用 Arduino UNO R3 機板、4路繼電器模組、W5100網路模組,如圖十三來作為本研究之設備。


圖十三 研究設備圖

資料來源:作者繪製。

設備皆已準備完畢,筆者開始組裝設備,首先將 W5100 網路模組與 Arduino UNO 做結合,結合時要注意針腳要對準,腳位是一模一樣,若前後誤差一隻腳位,有可能 會造成模組的燒毀,接著要連接4路繼電器,運用帶針之單心線(電子材料行均有販賣), 將 W5100 板子上 5V 電源接座,及 GND 接地電源接座,連接至繼電器模組上,供給 該模組之運作電源,最後把 W5100 模組上數位腳第4隻腳位(程式設計之位置),連接 至繼電器模組 IN1 腳位上,在使用一般的手機充電器,接上 USB 線供電,即完成前半 部架設,如圖十四。

圖十四 Arduino 與模組連接圖

資料來源:作者繪製。

再從繼電器模組上第2、3腳位,架設線路至門禁開關,將線路焊接在開關上,功 能動作說明,當 IN1 接座感應從 Arduino 第 4 腳位送來 5V 電源訊號時,其第 1 路開 關動作為 1-2 接座相通,若 IN1 接座沒有電源訊號時,2-3 接座相通,架設如圖十五。

圖十五 繼電器模組接線圖

資料來源:作者繪製。

(二)門禁開關程式樣板

Arduino 也在軟體功能上提供網路模組範本,可在網路上尋找類似的專案。經研 究各式專案,修改成本次所需內容,並標註說明,如圖十六、十七。

圖十六 Arduino 網路開門宣告程式碼 1

```
sketch_apr26 §
                                              void setup()//程式閣機初始設定宣告
#include <SPI.h>
                //序列阜函式庫功能宣告
#include < Ethernet. h>//網路函式庫功能宣告
                                                pinMode(4, OUTPUT);//設定第4隻腳位為輸出
                                                digitalVrite(4, HIGH);//設定輸出第4隻為高電位
String readString = String(250);//讀取字串
                                                Serial begin (9600); // 散動序列阜傳輸率
byte mac[] = [//設定網路卡卡號
                                                Ethernet.begin(mac, ip);//数動網路功能參數
 OxDE, OxAD, OxBE, OxEF, OxFE, OxED
                                               server_begin();//殷動網路服務功能
                                               Serial print("N303 server is at ");//序列阜顯示名稱
IPAddress ip(192,168,0,201);//設定Arduino網路IP位置
                                               Serial.println(Ethernet.localIP());//連接時從序列阜顯示本機IP
EthernetServer server(80);//数動網路伺服器80阜功能
void setup()//程式閣機初始設定宣告
                                             void loop()//程式運算區
```

資料來源:作者繪製。

圖十七 Arduino 網路開門執行程式碼 2

```
void loop()//程式運算區
                                                             if(readString.indexOf("/LED=ON")>O)//如果聽到/LED=ON,則啟動下列程式
 EthernetClient client = server.available();//啟動網路服務並聆聽
                                                                digitalWrite(4, LOW);//將Arduino第4腳位變成低電壓輸出
  if (client)//假設有用戶則執行以下程式
                                                                readString="";//結束讀取
      Serial.println("New coming client");//在序列阜視窗則顯示
                                                             if (readString.indexOf("/LED=OFF")>O)//如果聽到/LED=OFF,則啟動下列程式
       while (client.connected()) //迴圈用戶端連接
                                                                digitalWrite(4,HIGH);//將Arduino第4腳位變成低電壓輸出
        if (client.available())//聆聽用戶端狀況
                                                                 delay(5000);//延遲5秒
                                                                readString="";//結束讀取
          char c = client.read();//讀取字串
          Serial print(c);//序列阜顯示讀取字串
          readString += c;//讀取字串
                                                                delay(1);//延遲
          } //結束聆聽
                                                         client.stop();//關閉用戶連線
       } //end while//結束迴圈
                                                        } // end if //結束聆聽
                                                     } //結束此段程式
```

資料來源:作者繪製。

(三)網站架設樣板

在思考要如何才能使不懂得寫網頁的人員,能更簡化的製作網頁,這樣方能有效的持續推廣下去,也搜尋了各種撰寫的方式,最後以「記事本」來撰寫,以符合部分單位並無 ASP.NET 網頁程式撰寫能力,但是安全性可能就需透過通資部門,採用 AD 認證管制及 IIS 權限設定,才能安全的建置。

新建一筆記本,將圖片內容輸入進去,把文字改成自己想要的,開關位置部分, 改成 Arduino 的 IP 位置,完成撰寫,開啟後就可立即使用,如圖十八。

三、辦公室建置後之效益評估

(一)時間效益方式評估

評估方式採碼表計時方式,模擬有人員在外敲門請求開門,計時三種開門方式: 第一種以步行採自然行走方式按下按鈕開門;第二種以網頁備便好點選按鈕方式開門; 第三種以網頁未準備好,須找尋並開啟網頁再點選按鈕方式開門,成效如表五。

動作	步行	網頁備便	網頁無備便		
位置	開門	開門	開門		
前門花費時間(秒) 距離 11.9 M	23.31	2.72	16.38		
後門花費時間(秒) 距離 3.5 M	4.03	2.59	14.13		
out of the first and the first					

表五 Arduino 開門時間計算表

資料來源:作者繪製。

由此表得知,距離越近,反而幫助越小;在距離越大的情況下,節省的時間將會越多。可有效的減少人員在外等待的時間,以及增加作業人員的辦公時間,並減少作

業中斷的干擾,有效集中思緒,做相關的技術研究。

(二)價格效益方式評估

評估方式採用奇摩拍賣網站的相關同類型的物品方式評估,經搜尋後,找到相同 類型的產品 1 項,比較後相關成效如表六。

名稱 樣品一 樣品二 物品 筆者使用的材料 網路4路遙控開關(有線) 廠牌 Arduino 特邁科技 網頁功能弱,但可以修改 網頁功能強,但無法修改 功能 後續維護 整台 模組化 圖片 價格 950 1850

表五 價格效益評估表

資料來源:作者繪製。

結論及建議

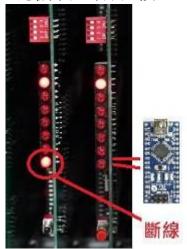
一、研究建議

(一)持續開發各項通資設施覺知環境

1. 營區交換機備援切換系統

目前本中心營區總機備援機制,採用 25PIN 切換器做切換,一台可切換 12 個 用戶,可在 KY-1000 發生故障時, 立即切換至 KY-32 之備援機制, 但仍須派人員至機 房才能操作。是故倘若運用 Arduino 系統,則能減少中斷時間,且能設計網頁及按鈕 切換,以提供遠端及近端的切換。

2. 營區交換機中繼偵測系統


各營區總機通連方式主要仍是以 T1 現路為主,若發生故障時,無法立即得知。 若使用 Arduino 系統感測卡片連線狀況,並回傳網頁上供管理者掌控,則可提高處置 時效。甚至可連結回更上級,做整體的狀況掌握,概念如圖十九。

3.各式操演時監控車輛狀況

通信部隊於各式操演時,部分部隊夜間時在營外時,會採取1人做區域性裝備 巡查哨,若輔以 Arduino 系統,採用紅外線感測方式,置於防護車輛周遭,並將感測 情形透過國軍加密式無線電網路系統,回傳到各管制單位,將可有利各級掌握。

圖十九 營區總機中繼線路連接 Arduino 示意圖

資料來源:作者繪製。

4.取代譯電報務人員

目前我通資部隊譯電及報務人員數量已逐漸降低,若運用此物聯網裝置,如 LattePanda(其系統為 Windows 10), 易於人員操作。然可撰寫報務及譯電程式, 置於 此系統內。因其設備僅需低電壓即可啟動,可置悍馬車上運用,透過國軍加密式無線 網路介接至指揮所,再透過資訊人員做遠端報務系統操作,也替補人員專業不足問題。

5.各機房庫房環控及遠端開啟

機房若要建置完整的感測環境,如地面震動、窗戶感測、水位偵測、簡訊通報、 溫濕度感測、煙霧感測等,價格皆不斐。若能改由此 Arduino 設備,則能大幅度降低 費用支出,也能有效提升機房安全。另部分庫房離承辦人有段距離,若能輔以此系統, 則可遠端開啟庫房,再透過監視系統來監控進去人員狀況,如經理人員常需要服務其 他單位,開庫房提領裝備,如能透過電腦遙控開門及監視器觀看進去人員是否提領正 確,則可減輕承辦人員負擔,提升行政效率。(如圖二十)

圖二十 庫房開關位置示意圖

資料來源:作者拍攝。

(二)持續開發單位內重要環境覺知系統

1.營區油庫鍋爐無人看管環境

營區有許多重要的設施,通常有些地方目前無人看管,如鍋爐、冷凍櫃、後門 等地方。若採用此系統,管控溫度、人員進出等,則可把握處置先機。

2.重要軍品管控

各級部隊偶發性的會發生槍機遺失及彈藥發數短少情形,若能輔以 Arduino 系 統,將重量感測裝置,裝置於槍架底部及彈藥箱下,當有重量與其他或歷史資料不同 時,則產生告警通知單位主官,始能防範於先機。

(三)持續開發以建置單位內覺知環境

現代戰爭已進入資訊化、快速化的時代,各式作戰均可透過資訊化系統,來了解 目前的戰況,快速的做應變,但若能輔以現在的物聯網 IOT,或甚至各界均在努力研 發的人工智慧(如 Siri 語音助理),對於我國軍戰力,狀況反應上,將會有更大幅提升。 因為沒有人會24小時,一直盯著螢幕看,若有狀況,誰會先知道?且現今軍士官流動 率頻繁,直能有效掌握單位、營區內的整體狀況?

(四)網頁應對內建置於單位網站上,並設置各式防護機制

物聯網裝置若建置在各重要機敏處所,因程式碼易於理解,很有可能容易遭不良 份子利用。所以,需要建置在單位內的網站上,使用各式安全機制來做防範,才能有 效安全的使用。

(五)計畫性培養參與外界訓練

在本中心周邊的大學,如南亞技術學院、健行科技大學等,均有 Arduino 應用班 可以參與,建議各單位如有需要建置時,應多鼓勵同仁參加此應用班。

(六)建議司令部建置原始程式碼分享區,以利各級建置

未來若能全面推廣,則建議司令部應建置程式碼分享區,讓操作手能快速的了解, 或只要複製貼上,修改參數就可以使用,使各單位均能有效的建置自身營區的覺知系 統。

(七)配合中心資訊班隊,將此裝置納入介紹,進而推廣到其他兵科中心

建議將此設備,納入本中心資訊班隊課程中的電腦周邊硬體介紹,以利爾後學員 生回到部隊時,遇到此裝置時,能加以運用。

(八)持續教育大門衛哨此裝置及各式物聯網裝置,應納入資訊設備管制

建議資訊部門搜整各式物聯網裝置模組,提供門禁業管單位,作為門禁安檢依據。 因大門衛兵,並非均有相關專長,若哨長安檢到此設備時,受檢者只要說明此為一般 雷路板,哨長就有可能放行,因規定裡面沒有,這對單位內影響難以評估。

二、研究結論

從本研究中得知,此裝置能減少人員開門所花費之時間及設備的成本,並能提升人員作業成效,倘若擴大運用在戰情室,更能協助戰情官掌握全般狀況,以提升單位的安全。但此研究仍有許多精進空間,如在 Arduino 接收命令時。須按下停止鈕才能夠動作,仍然是美中不足。雖然 Arduino 已簡化程式碼,但每個模組的函式庫不同,仍需花費許多時間研究測試。且在網路上,相關的有線網路專案,可參考的案件很少,所以若有開發大型或是複合式的功能,相關研發人員最好具備基本基礎(電子、網路、程式),才能使專案順利研發,進而推廣至全中心,建置自己的覺知戰情系統。

參考文獻

- 一、章奇煒,《Arduino 超入門》(旗標出版股份有限公司,民國 105 年 1 月 1 日)
- 二、孫駿榮,《Arduino 全面打造物聯網》(碁峯資訊股份有限公司,民國 104 年 10 月)
- 三、劉玉田、許勇進,《Arduino 創意入門與互動設計實戰》(上奇資訊股份有限公司, 民國 104 年 8 月)。
- 四、曾吉弘,《實戰數位家庭自動化使用 Arduino》(碁峰資訊股份有限公司,民國 104 年 2 月)。
- 五、〈Arduino 網路遠端遙控家電開關〉《網昱多媒體》, http://swf.com.tw/?p=634, 民國 106 年 3 月 1 日。
- 六、〈物聯網商品〉《台灣物聯網科技》, https://www.taiwaniot.com.tw/, 民國 106 年 3 月 1 日。
- 七、〈物聯網商品〉《德源科技》,http://twarm.com/commerce/index.php?sid=020d5 c24a5c6582a11417862a302dca0,民國 106 年 3 月 1 日。
- 八、〈Arduino 文章列表〉《葉難》,
 http://yehnan.blogspot.tw/search/label/Arduino%E6%96%87%E7%AB%A0%E5%88%9
 7%E8%A1%A8,民國 106 年 3 月 1 日。
- 九、〈Arduino 基本語法筆記〉《小狐狸事務所》,http://yhhuang1966.blogspot.tw/ 2015/09/arduino_14.html,民國 106 年 3 月 1 日。

作者簡介

楊海波士官長,陸軍通信電子學校常士班 39 期、陸軍通信電子資訊學校士高班 14 期、陸軍專科學校正規班 34 期、健行科技大學工業工程管理系 97 年班,曾任通信 士、班長、副排長、連士官督導長、中隊長、教官,現任陸軍通信電子資訊訓練中心 網作組教官。