精進「防區測地」作業能力之研究

作者: 耿國慶

提要

- 一、「防區測地」之特點在「結合戰備任務,防區獨立作業、考驗專業能力與落實測地整備」,即各作戰區(防衛部)砲兵部隊,以作戰區(防衛部)「建立測地統制」為起點,擴張至砲兵營(連)「提供測地成果」,完成防衛作戰各階段火力支援所需之測地作業,落實測地戰備整備。就 105 年度精度驗證分析,少數單位「砲兵各項設施」座標與方位嚴重錯誤,將影響射擊安全與防衛作戰火力支援成效,亟需詳實檢討,並謀求有效之精進措施。
- 二、「防區測地」成果嚴重錯誤問題,概分為「作業紀律」與「作業能力」兩個層面。前者宜由權責單位自行要求改進,後者則歸納為:衛控點資訊不足、有(無)定位定向系統狀況下運用衛控點與地線建立方式不當等問題。為能提升「防區測地」作業能力,落實測地整備,特針對問題研究精進作法,提供部隊作業參考。
- 三、「防區測地」為例行性之戰備整備工作,各作戰區(防衛部)應依據任務逐年計畫、律定進度、分區(案)作業、驗證精度,期能累積成效,建立完整、堅實之測地網路,滿足防衛作戰火力支援任務需求。建議部隊恪遵作業紀律,並參考本研究所提供精進作法,跳脫「測考」框架,激發專業創意,確實提升防區測地技術與應變能力,達成精度要求。

關鍵詞:防區測地、衛星控制點、已知點閉塞導線、定位定向系統、方位地線、 磁偏常數、初始校準點

前言

「防區測地」之特點在「結合戰備任務,防區獨立作業、考驗專業能力與落實測地整備」,即各作戰區(防衛部)砲兵部隊,於接受砲訓部作業講習後,發揮獨立作業精神,以作戰區(防衛部)「建立測地統制」為起點,擴張至砲兵營(連)「提供測地成果」,完成防衛作戰各階段火力支援所需之測地作業,落實測地戰備整備。惟基於部隊長期測考使用「固定陣地設施」,在裁判(教)官周密指導與檢查下,致獨立作業能力不足,且以駐地任務繁忙、人裝不足與安全考量等理由,影響防區測地之精度與成效。

就 105 年度精度驗證結果分析,少數單位其「砲兵各項設施」(陣地、觀測所、雷達站、氣象台、磁偏校正站、測地基準點、統制點等)之「座標徑誤差」與「方位角誤差」,竟分別高達數十公尺(容許誤差<3 公尺)與數百密位(容許誤差<1 密位),基於誤差程度已歸類為「錯誤」等級,將嚴重影響射擊安全

與火力支援成效,亟需詳實檢討,並謀求有效之改進措施。

防區測地精度問題檢討

防區測地重大錯誤問題,可概分為「作業紀律」與「作業能力」兩個層面。 就 105 年度檢查實況、數據與經驗分析,絕大部分為作業單位未遵照講習規定, 擅自將觀測組配發之「GARMIN-60CS」GPS 接收機對「砲兵各項設施」單點定 位與定向,或由軍圖上直接量取座標、標高與方位,致發生不符常態之嚴重錯 誤,實屬「作業紀律」層面,宜由權責單位自行要求改進。筆者僅針對「作業 能力」(測地專業)問題,詳實檢討並提供精進做法。

一、控制點資訊不明,偵選、申請與使用不便

「防區測地」使用國家「控制點」(control point,包括三角點、衛星控制點、精導點、水準點等)建立測地統制與檢查測地成果,已建立標準化作業程序。 自民國 101 年 3 月 30 日內政部(地政司)國土測繪中心依「內政部基本測量成果供應要點」與「內政部國土測繪中心測繪成果電子資料流通作業要領」供應「1997 座標系統之 2010 年成果」(TWD97【2010】)之「衛星控制點」(簡稱「衛控點」)共計 3,013 點(如表一),作戰區(防衛部)「測地資料中心」(Survey Information Center,SIC)與砲兵營(連)可於「國土測繪中心」網站(http://eservice.nlsc.tw)申請,「作為「防區測地」之測地統制點使用。惟就精度驗證發現,軍圖製作與測地作業單位忽略「衛控點」資訊建立,影響值選、申請與使用。

(一) 軍圖未標示控制點位,不力偵選作業

國家各項建設皆須仰賴高精度之基本控制測量系統為基礎,當前內政部衛星控制點成果更新之主要目的為提升網形精度,數量變更則在增加各機關(包括民間測量學術、縣市政府與軍方測繪單位等)測量運用之效益。²

據內政部國土測繪中心表示:當101年3月30日新的TWD97【2010】成果公告後,未來中央的測量作業就以此為準,包括中央的基本圖與千分之一以上的地形圖。³惟本軍目前使用的105年版1/25,000軍用地形圖(軍備局生產製造中心第401廠105年4月印刷),大部分圖資沿用舊版(102年),僅標繪少數TWD97【1997】成果之衛控點、水準點,至於101年公告TWD97【2010】成果之各等級衛控點更未標示,造成砲兵部隊防區測地偵選與使用衛控點之困擾。

(二)未依需要申請成果,肇生起始誤差

-

 $^{^{1}}$ 公告內政部大地基準及一九九一座標系統 2010 年成果)《內政部公告》(臺北:臺內地字第 1010137288 號,民國 101 年 3 月 30 日),頁 1 。

² 同註1,頁1。

 $^{^3}$ 〈「TWD97 大地基準及座標系統成果更新座談會」會議紀錄〉《內政部函》,(臺北:臺內地字第 1000226477 號,民國 100 年 11 月 23 日),頁 2 。

自 101 年 3 月 30 日內政部公告 TWD97【2010】衛控點成果後,原本砲訓部 98 年所分發的 TWD97【1997】成果,因歷經 10 餘年地殼變動、921 地震與莫拉克風災等影響,部分地區點位已產生明顯位移,已無法符合當前測繪之精度需求予以作廢。⁴惟 TWD97【2010】衛控點成果須由各部隊依需要向內政部國土測繪中心申請,如仍沿用 TWD97【1997】舊成果起始(檢查)防區測地,勢必產生少量系統誤差。

項次	點位等級	數量
1	衛星追蹤站	18 點
2	I 等衛星控制點(GPS 連續站)	219 點
3	I等衛星控制點	105 黑占
4	Ⅱ等衛星控制點	569 點
5	Ⅲ等衛星控制點	2,012 點

表一 內政部 101 年公告各級衛星控制點清單數量

資料來源:(公告內政部大地基準及一九九一座標系統 2010 年成果)《內政部公告》,(臺北市:臺內地字第 1010137288 號,民 101 年 3 月 30 日),頁 11。

3.013 點

二、無定位定向系統時,起始方位錯誤,傳播作業誤差

合計

內政部所公告之「衛控點」可提供精確之座標與標高,惟缺「方位基準點」 (方位統制點,P)方位角,當防區測地作業無「定位定向系統」(定位定向系 統因損壞,而無法使用)時,作業開始點之「起始方位角」成為使用衛控點之 極大困擾,基於目前「定位定向系統」妥善率偏低,「無定位定向系統」作業型 態則益形重要,測地人員宜審慎因應。通常解決方法之優先順序為:兩已知(控 制)點計算、天體觀測與使用 M2 方向盤之「磁偏常數」測定等(各種定向方式、 裝備比較,如表二)。惟防區測地作業地區經常發生兩個臨近之「衛控點」無法 通視,或天候不佳無法觀測天體,致被迫使用 M2 方向盤之「磁偏常數」測定起 始方位,而過大之起始「方位誤差」(Azimuth error, eAz)最終將傳播至同區(案) 之測地成果內。

區分 知 天 測 陀 螺 儀 體 觀 項目 數位指北針) 座 算 「經緯儀(或 M2 方向 「輕型方位陀螺儀 「經緯儀(或天文定 「M2 方向盤」 包括:管式指北針(數 盤)」 向模組-ANFM)」 (SIGAL) 包括:控制(基準) 包括:軍用簡要天文 位指北針)、測角儀、 包括:陀螺儀、輕型 裝備(作業) 點成果表、電算機(對 經緯儀、電源供應 年曆、電算機(對數 三腳架等❶ 組成 數表)等 表)等 器、三腳架等❷

表二 野戰砲兵各種定向方式(裝備)比較

-

⁴ 同註3,頁1。

精度	<±1 密位(視已知點 座標精度而定)	<±0.15 密位	>±20 密位(視電磁影響程度與磁偏校正結果而定)	<±0.4 密位			
價 格	低	低	極低	極高			
定向(作業)時間	<2 分鐘	5 分鐘(天文定向模組 為 1-2 分鐘)	2-3 分鐘	3.5 分鐘			
與其他裝備之 相 容 性	不需要	簡單	簡單	極複雜			
電力需求	不需要	一般電池	不需要 (一般電池)	特殊電源			
維修方式	不需要	簡單	簡單	複雜			
限制	受通視條件限制(當某一已知點被遮蔽時,即無法作業)	受天候限制(當天體 被遮蔽時,即無法作 業)	1. 易受電磁干擾 2.磁場不穩定 3.需經常磁偏校正	作業範圍限於南、北 緯75度之間			
附記	●「數位指北針」又稱為「電羅經」,通常定向精度為±9 密位。 ②「定位定向系統」屬陀螺儀定向,惟藉由兩點座標所計算之「方位地線」方位角遂行定向, 精度<±1 密位。						

三、有定位定向系統時,「初始校準點」精度不佳,累積系統誤差

内政部建立「衛控點」時,基於精度考量與選取基準,優先將點位設置於GPS衛星測量之理想接收環境(如表三),對點位較少設置於道路旁定位定向系統易接近之地點;大多數則位於丘陵、建築物頂或高地之林空,不利定位定向系統使用(如圖一)。當防區測地作業即使可用「定位定向系統」,惟礙於通視條件,仍無法直接使用「衛控點」初始校準或位置更新時,即放棄使用或採「假設諸元」起始作業,導致所建立之「砲兵各項設施」產生嚴重誤差。

表三 衛星控制點選取基準

項次	衛星控制點選取基準						
1	點位分布均勻。						
2	以設置於未登記土地及公有土地為原則。						
3	對空通視良好,點位 45 度仰角至少需有 4 顆衛星。						
4	地質穩固,無局部滑動之虞。						
5	點位附近可長期保持現狀,不作其他用途。						
6	遠離廣播電台、電視轉播站、雷達站、高壓電與其他電磁波源,以避免無線電波干						
Ŭ	擾衛星信號。						
7	近距離內無電磁波反射體(如金屬板、鐵絲網與平面狀反射體等),以減低「多路徑						
/	效應」。						
8	以交通便捷,易為測量、工程及其他各界應用為原則。						
9	徵得土地所有人或土地管理機關之同意。						

資料來源:〈內政部辦理一等、二等衛星控制點測量作業規範〉,《內政部地政司衛星測量中心公布欄,2000/7/6》,http://www.moidlassc.gov.tw/cp5.htm,頁1。

 $^{^5}$ 〈內政部辦理一等、二等衛星控制點測量作業規範〉,《內政部地政司衛星測量中心公布欄,2000/7/6》, http://www.moidlassc.gov.tw/cp5.htm,頁 $1\,\circ$

圖一 衛星控制點點位設置示意

資料來源: http://eservice.nlsc.gov.tw/ CaseApply/login.aspx? ReturnUrl=%2fCaseApply%2fPortal.aspx

四、有定位定向系統,地線建立不當,影響方位精度

「定位定向系統」(ULISS-30)區分為「經緯儀瞄準法」、「方位轉換鏡法」與「方位地線法」等三種方位轉換方式,⁶其中「方位地線法」以兩已知座標點,求取相對方位角,最為簡便、迅速,且精度在「初始校準」直後<0.4 密位「公算偏差」(Equal probability,EP),作業兩小時後<1 密位(EP)。⁷惟地線須超過100公尺,如兩端「路測點」(Waypoint)以「路測點座標儲存」(壓點)方式獲得,較為精確;當兩端座標獲得方式不同(如一端「放射測量」,另一端壓點)時,則可能因經緯儀「調諧校正」精度不佳,造成兩端座標差並非「常數」,致影響地線方位角精度。通常此種誤差操作者較不易發現,惟一旦發生,將影響所有方位誘導或擴張作業之精度。

精進作法

「防區測地」可謂集「砲兵測地專業」之大成,其範圍涵蓋資訊運用、作業技術與應變能力等,充分考驗權責單位之計畫、督導、協調與管制能力,期於平時建立測地整備,戰時則適時擴張作業,達成火力支援任務之目標。因此,上起軍圖測製單位,下至砲兵測地作業部隊,均應集思廣益、通力合作,適切提升防區測地精度與成效。

^{6 《}ULISS-30 定位定向系統操作手冊》(桃園: 陸總部, 民國 87 年 11 月), 頁 5-31。

⁷ 同註 6, 頁 1-12。

一、充實軍圖圖資,增進防區測地運用效益

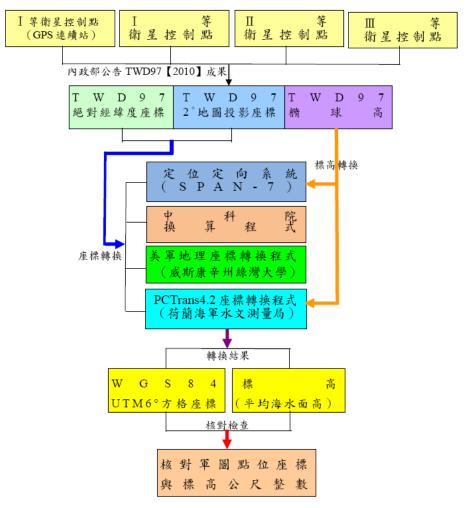
(一)補建軍圖衛控點位

現代化戰爭講求高科技與高效率,致測繪科技支援三軍作戰,益形重要。 就砲兵測地而言,地形圖不僅用於一般軍事事務,對測地支援層面更為廣泛與 重要。基此,建議軍圖製作單位(軍備局生產製造中心第401廠),詳實標繪內 政部 101 公告 TWD97【2010】成果中之各級衛控點位,並確實調繪最新圖資, 俾提升軍圖品質,充分發揮支援作戰功效。

當軍圖圖資未補建前,為能充分掌握可用衛控點數量與位置,可至內政部國土測繪中心「測繪圖資電子申購系統」(http://eservice.nlsc.gov. tw/CaseApply),線上申購(或全國各售圖站購買)101年測製完成最新版 1/25,000 經建版(TM2°分帶座標)地形圖,參考圖上各級衛控點偵選可用點位,再配合軍圖(UTM6°分帶座標)作業。當現地偵察時,為爭取時效,始可調借觀測組「GARMIN-60CS」GPS 接收機,輸入衛控點座標後,以「導航模式」現地確認。8

(二)優先使用 TWD97【2010】成果

砲兵部隊可視防區測地任務需要,至內政部國土測繪中心一「測繪圖資整合資料查詢申購入口網」申購所需之衛控點 TWD97【2010】成果資料,經適切轉換後優先運用,俾增進防區測地精度。 內政部國土測繪中心所公布之衛星控制點 TWD97【2010】成果,區分為「絕對(大地)座標」(ITRF94,1997.0,GRS80)與「地圖投影後之縱橫座標」(ITRF94,1997.0,GRS80,TM2°)兩種,標高則為「橢球高」(Ellipsoid height)。各級測地資料中心須經由砲訓部 98 年所分發之「座標轉換軟體」(轉換流程,如圖二)獲得砲兵使用之 WGS-84,UTM(6 度分帶)方格座標與標高(平均海水面高),經核對軍圖檢查無誤後,除修訂原 TWD97【1997】成果外,並適時製作「控制點(基準點)成果表」分發下級運用。


二、無定位定向系統時,採「已知點閉塞」建立衛控點方位基準

無「定位定向系統」(定位定向系統因損壞、送修而無法使用)之測地作業單位,天候狀況無法實施天體觀測,且起始衛控點無法就近通視另一衛控點時,作業開始點之「起始方位角」,可在起始衛控點使用經過磁偏校正之方向盤建立衛控點之「假設方位角」,向另一個最近的「衛控點」實施「已知點閉塞」(Close on second station)導線測量。當完成「已知點閉塞」後,再經由兩點(兩衛控點、衛控點至閉塞點)之方位計算方式修正起始方位角,並經由重行計算後之閉塞導線精度驗證修正結果。注意事項與作業要領(含範例)分述如後。

_

[®] 《GPSMAPS®60CSx 中文操作手冊》(臺北:國際航電股份有限公司,2006 年 6 月),頁 100-104。

圖二 衛星控制點座標、標高轉換流程示意

(一)注意事項

1.不可使用「迴歸閉塞」

當起始方位角精度不確定,欲藉由座標閉塞差求取起始方位角「修正值」時,絕不可使用「迴歸閉塞」(Close on starting station),否則僅可顯示測地作業之「精密度」(Precision),而無法分離方位誤差,達到修正起始方位角之目的(閉塞導線特性分析比較,如表四)。

表四 閉塞導線特性分析比較

區分		
項目	已知點閉塞	迴歸閉塞
已知點需求數	兩個(起始點、閉塞點)	一個(起始點即閉塞點)
已知(起始)點座標、 標高精度	重視	不重視(可使用假設座標、標高)
已知(起始)點方位精 度	重視	不重視(可使用假設方位角)
閉塞結果參考價值	可顯示作業「精確度」與「精密度」	當起始點使用假設諸元(座標、 標高、方位角)時,僅顯示作業 精密度

	方位合格座標 失敗	顯示距離錯誤	顯示距離錯誤	
導線誤 差類型	方位失敗座標 合格	顯示錯誤不在距離,出現在閉塞 水平角	顯示錯誤不在距離,出現在起始 或閉塞水平角	
與判斷對照	方位失敗座標 失敗	因作業時未測量閉塞水平角,故 顯示錯誤出現在「起始或各站」 水平角。如各站測角符合要求, 錯誤判定出現在「起始」方位角。	因起始方位或閉塞水平角錯誤, 不影響座標精度,故顯示錯誤出 現在起始或閉塞之外的「各站」 水平角。	
	附記	一、「精確度」(Accuracy)係指最終測量結果與「真值」(正確值) 間之差異。 二、「精密度」(Precision)係指測量者之技能與使用儀器,可影響測 量作業精密之程度。 ⁹		

2.適時實施「磁偏校正」

通常部隊移動超過40公里後,M2方向盤之「磁偏常數」(Declination constant)已不適用,亟須利用該地區設置之磁偏校正站,求取正確的磁偏常數。¹⁰如當地未設置磁偏校正站或無法及時校正時,則須運用「越區換算公式」,計算 M2 方向盤在新地區之磁偏常數因應。惟此舉無法取代正常校正程序,使用者仍須於狀況許可時,補行磁偏校正。範例如下。

(1) 狀況

他一營第一連 M2 方向盤 1 個月前曾在「牛長山」(1/50,000 旗山,圖號 9418 I)實施磁偏校正,其平均磁偏常數為 6371 密位。目前該連機動至官田(1/50,000 新化,圖號 9419 II),超過有效距離(40 公里)在無法獲得磁偏校正站之狀況下,如何將「牛長山」所得之磁偏常數換算為「官田」地區之磁偏常數?(旗山、新化地圖之偏角圖:如圖三)。

(2) 磁偏常數換算公式

原「磁偏常數」+原「方格磁角」=磁針分劃 磁針分劃-當地「方格磁角」=當地磁偏常數

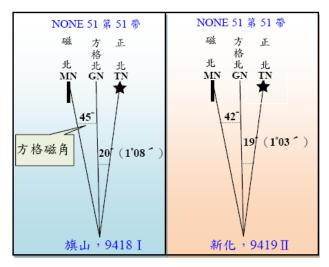
或:原「磁偏常數」+原「方格磁角」-當地「方格磁角」

=當地磁偏常數11

(3) 換算結果

6371 密位+45 密位=6416 密位(磁針分劃)

6416 密位-42 密位=6374 密位(官田地區磁偏常數)


或:6371 密位+45 密位-42 密位=6374 密位(官田地區磁偏常數)

⁹ 郭基榮,《測量學精義》(臺南:復文書局,民國79年),頁12。

^{10《}陸軍野戰砲兵測地訓練教範(第二版)》(桃園:國防部陸軍司令部,民國 99 年 11 月),頁 2-55。

[&]quot;ARTILLERY SURVEY TM6-200" . (WASHINGTON 25,D.C : HEADQUARTERS DEPARTMENT OF THE ARMY..10/1954) p42 $^\circ$

圖三 旗山、新化軍用地形圖「方位偏角圖」

資料來源:台灣省五萬分一軍用地形圖:旗山、新化(102年版)

(二)作業要領(含範例)

1.測量官(排長)在防區測地作業區域(臺南臺糖沙崙農場)所在地圖上選擇與「起始衛控點」(R300、沙崙農場Ⅲ等衛控點)相近之另一個衛控點(R299、南一高球場Ⅲ等衛控點,如圖四),向內政部「國土測繪中心」網站(http://eservice.nlsc.gov.tw)申請衛控點成果,並使用中科院(美軍地理座標、荷蘭 PCtrans4.2)轉換軟體完成 UTM6°分帶座標轉換(如表五)。因目前部隊所使用之最新 105 版軍用地形圖,仍未完整標示內政部 101 年 3 月公告之 TWD97【2010】年衛控點成果,「測地資料中心」或砲兵營測量班可參考內政部 101 年 測製完成之最新版 1/25,000「經建版」(TM2°分帶座標)地形圖,偵選可用控制點(如圖五),再配合軍圖(UTM6°分帶座標)作業。12

圖四 R299(南一高球場)Ⅲ等衛星控制點

資料來源:作者自製

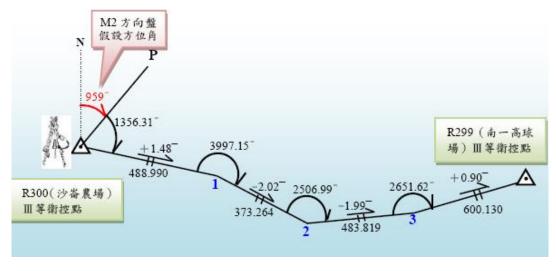
¹²耿國慶,〈衛星控制點「1997 坐標系統 2010 年成果」對砲兵測地之影響與因應之道〉《砲兵季刊》(臺南),第 168 期,陸軍砲訓部,民國 104 年 3 月 20 日,頁 88、92。

表五 R299 與 R300Ⅲ等衛星控制點成果

點	名	南一高球場		等 級	Ⅲ等衛星	控制點	1/50,000) 圖號	9418 I
標る		R299		標石種類	不銹鋼標	不銹鋼標		編號	800
檔為	客標 號	關廟區-0	06	1/25,000 圖名	關廟		1/50,000 圖名		旗山
民	TWD	經度 E	120°	17 27.60688"	緯度 N	22°54 ¹ 3	32.93988"	橢球	44.07
用	- 9 7	横座標		180369.511	縱座標		534383.652	高	44.07
軍	WGS	經度 E	120°	17 27.60688"	緯度 N	22°54 ¹ 3	32.93988"	標高	23.46
用	- 8 4	橫座標		225221.329	縱座標	25	535964.476	示回	23.40
點	位	行約 3.35	由關廟行駛台 19 甲往阿蓮方向直行,行至 53K 處右轉行南 160 線 行約 3.35 公里至 12K+750 公尺處見左側歸仁區垃圾掩埋場門口,				一,右侧	川為高地有	
概	述	一果園停 梨田與果		由右側路旁大潭高 界處。	高幹 166 右	1 電桿旁	小徑行約1	分鐘,黑	占位位於鳳
點	名	沙崙農場	i Ĵ	等 級	Ⅲ等衛星	控制點	1/50,000) 圖號	9418 I
標る	三號碼	R300		標石種類	不銹鋼標		統一	編號	009
檔為	客標 號	關廟區-0	07	1/25,000 圖名	關廟		1/50,000) 圖名	旗山
民	TWD	經度 E	120°	18 29.82695"	緯度 N	22°55 ¹	11.44115"	橢球	44.396
用	- 9 7	横座標		179047.734	縱座標		535574.146	高	44.330
軍	WGS	經度 E	120°	18 29.82695"	緯度 N	22°55 ¹ 1.44115"		標高	23.90
用	- 8 4	橫座標		223915.116	縱座標	严座標 2535574.146		休回	23.90
黑上	位	由關廟行駛台 19 甲往阿蓮方向直行,行至 46K+350 公尺處右轉往沙崙方向行							
Lun	2-45			7 線左轉直行見				尺右轉士	上路至路底
概	述	可見沙侖	i長場	,點位位於大苓	岢軒 144 <u>左</u>	14 电程5	デ 。		

圖五 防區測地(臺糖沙崙農場)衛星控制點分布狀況

資料來源:《中華民國臺灣地區兩萬五千分之一地形圖-關廟》,(內政部國土測繪中心,民國101年5月測製),經建第四版(圖號9418-INW)。


2.整置 M2 方向盤裝定「磁偏常數」歸北,測定「方位基準點」(P) 方位角兩次(須看讀至 0.5 密位),且兩次方位角相差須小於±2 密位,再將其平均後作為「假設方位角」(範例為 959 密位)。

3.撤收 M2 方向盤,改換整置測距經緯儀,按「1/3,000 精度標準閉塞導線作業要領」(如表六),並恪遵加大邊長、減少邊數,避免累積誤差等要領,完成現地作業(如圖六),於計算「假設方位角閉塞導線」成果後,分析閉塞精度(如表七)。

表六 防區測地導線測量規範表

必要條件	規範 等級區分	防 區 測 地 (1/3,000 精度)	附 記
導線閉塞	修正	需要	1.K 為距離
座標	導線全長<9公里	1/3,000	千除數。
閉 塞	導線全長>9公里	\sqrt{K}	2.N 為測站
標高	導線全長<4公里	\sqrt{K}	數。
閉 塞	導線全長>4公里	\sqrt{K}	3.方位閉塞
方 位	≦6個測站	±5 秒xN	須使用天
閉 塞	≥7個測站	±5秒×√N	體觀測、
方位角看	讀位數	1秒	陀螺儀或
實施方位	檢查測站數	25 站	已知方位
水平角	測量方式	一對回	基準等方
小 千 円	紀錄(計算)至	1秒	式檢查。
天頂(高	測量方式	正、倒鏡	
低)角	紀錄(計算)至	1秒	
距離	捲尺(比較精度)	1/5,000	
<u> </u>	測距儀	看讀至 0.001 公尺	
座標計算	位數	0.01 公尺	
標高計算	位數	0.01 公尺	

圖六 控制點使用假設方位角實施已知點閉塞導線

表七 假設方位角閉塞導線成果與閉塞精度分析


R 3 0 0 223915.116	1 224	1288.41	224320.44	2	224655.96	R 2 9 9	225234.97
沙 崙 2537173.535	站 2536	5857.68 站	2536485.79	站	2536137.21	南一	2535979.38
農場 23.90	Щ	24.61	23.87	坦	22.93	高球場	23.46
已知點閉塞差		南一高球場設方位角計算	算所得 <u>—X:225</u>		97 Y: 2535		
 7 (13.641)²+(14.904)²=20.2公尺 2 (13.641)²+(14.904)²=20.2公尺 3 (14.904)²=20.2公尺 3 (14.904)²=20.2公尺 3 (14.904)²=20.2公尺 4 (14.904)²=20.2公尺							

資料來源:表六、圖六、表七為作者自製

4.計算「控制點至控制點」正確方位角(2360.68 密位)與「控制點至閉塞點」之錯誤方位角(2349.01 密位),將正確減錯誤,即得「方位角修正值」(+11.67 密位)。

5.將「假設方位角」減(加)「方位角修正值」(959 密位+11.67 密位),得到「方位基準點」(P)正確方位角(970.67 密位)後,重新計算閉塞導線成果(如圖七)。

6.分析正確方位角計算結果(如表八),如精度超過 1/3,000,即表示「方位 基準點」方位角修正正確,即可作為防區測地使用。

圖七 修正假設方位角要領示意

表八修正方位角後之閉塞導線成果與精度驗證

R 3 0 0 223915.116	224284.79		224312.61	2	224644.14	R 2 9 3	225221.32
沙 崙 2537113.535	立 2536853.46	2 站	2536481.23	3 站	2536128.86	南一	2535964.46
農場 23.90	24.61	Щ	23.87	坦	22.93	高球場	23.46
已知點 閉塞差	R299(南一高亞 修正方位角		已知 X:22 算所得 <u>—X:22</u> =	5221	.32 Y: 2535		
 在誤差√(0.009)²+(0.016)²=0.018公尺 测距總長:488.990+373.264+483.819+600.130=1946.203公尺 分析 特度比:1/1946.203公尺÷0.018公尺=1/108,100 結論: 證明方位角修正無誤。 							

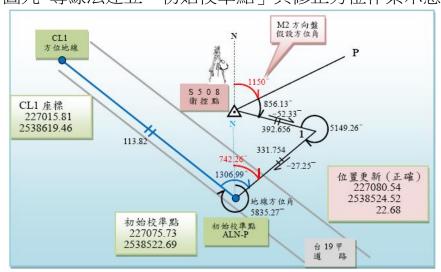
資料來源:圖七、表八為作者自製

三、有定位定向系統無法通視控制點時,採導線法建立「初始校準點」

當作業地區選定之控制點定位定向系統無法通視,測量班必須以「導線法」,在系統可到達之位置建立「初始校準點」(Alignment point, ALN-P)。如因作業條件限制,測量班僅可使用「假設方位角」(如 M2 方向盤裝定「磁偏常數」測定)作為「導線法」之方位基準時,「初始校準點」之誤差將誤導或影響定位定向系統之內建參數與防區測地成果精度。

(一) 測量官(排長) 選定 S508(點名:深坑子) Ⅱ等衛控點為定位定向系統「初始校準點(或位置更新點),建立歸仁五甲尾(255.404)至馬稠(262.376)

間地區之測地成果。惟經現地偵察發現,位於台 19 甲道路上之「初始校準點」 (ALN-P)無法直接通視 S508 II 等衛控點(如圖八),決定由測量班使用導線法 建立。


圖八 S508 Ⅱ 等衛控點無法通視「初始校準點」示意

資料來源:作者自製

- (二)測量班於 S508 Ⅱ 等衛控點整置 M2 方向盤,使用「磁偏常數」歸北,測定「方位基準點」(P)方位角兩次(須看讀至 0.5 密位),且兩次方位角相差須小於±2 密位,再將其平均後作為「假設方位角」(範例為 1150 密位)。
- (三)撤收 M2 方向盤,改換整置「測距經緯儀」,使用「非閉塞導線」由 S508 Ⅱ等衛控點測至台 19 甲道路上「初始校準點」(如圖九),並計算成果(如表九)。
- (四)定位定向系統使用測量班提供成果,於「初始校準點」上完成校準後,沿台19甲道向西北方100公尺外,設置「方位地線」(CL1);測量班則於「初始校準點」整置測距經緯儀,測取地線至導線1測站之「水平角」,並將「CL1方位角」+「CL1至導線1測站之水平角」,計算「初始校準點」至1測站之方位角(5835.27+1306.99=742.26密位)。

圖九、導線法建立「初始校準點」與修正方位作業示意

資料來源:作者自製

表九、利用修正起始方位角計算正確「初始校準點」程序

測量班由假設起始方位角所計算之初始校準點諸元								
S 5 0 8 深坑子 衛控點	226937.969 2538919.768 51.75 方位角 2006.13	227299.82 2538767.32 31.56 方位角 3955.39	誤 差 初 始 校準點	227075.73 2538522.69 22.68				
定位定統業序	於初始校準 人誤差諸元, 初始校準 在西北方 10 2 尺外道路,建 線計算方位所 測量班提供 後,實施位置	執行 の立ち の立ち が諸元	二、初始校準點 5835.27-13 三、初始校準點 3955.39-3 四、正確與假設 742.26-75	一、方位地線方位角:5835.27 密位 二、初始校準點至「1 站」正確方位角: 5835.27 +1306.99 =742.26 密位 三、初始校準點至「1 站」假設方位角: 3955.39 -3200 =755.39 密位 四、正確與假設方位角差值: 742.26 -755.39 =-13.13 密位 五、修正起始方位角後,重算初始校準點:				
	測量班修正	起始方位角	自後重新計算初始核	泛準點諸元				
S 5 0 8 深坑子 衛控點	226937.969 2538919.768 51.75 方位角 1993.00	1 站	227301.76 2538772.02 31.56 方位角 3942.26	正確初始	227080.84 2538524.52 22.68			

(五) 測量班將導線 1 測站至 ALN-P 之方位角(3955.39 密位) ±3200 換算成「反方位角」(755.39 密位)後,以「CL1 至導線 1 測站之正確方位角」減「導線 1 測站至 ALN-P 之反方位角」,計算「方位角修正量」(742.26 - 755.39 = -13.13 密位)。

(六)測量班修正「方位基準點」(P)假設方位角(1150-13.13=1136.87密位),重新計算「初始校準點」正確成果(參閱表九),提供定位定向系統「位置更新」後,即可起始測地作業。

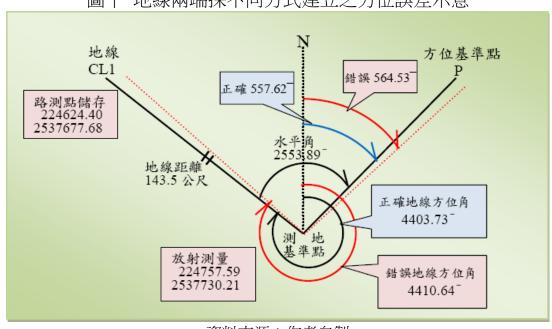
四、有定位定向系統時,採同一方式建立地線,掌握方位精度

「砲兵各項設施」均須建立「方位基準點」方位角,如「定位定向系統」 (ULISS-30)使用放射測量方式求取「測地基準點」座標,其地線一端則採「路 測點儲存」(壓點)方式建立,當定位定向系統「調諧校正」精度不佳時,致放 射所得之「測地基準點」與地線一端兩者之座標誤差並非常數(如表十),將導 致地線方位角誤差過大,影響「方位基準點」方位角精度(如圖十)。精進作法 須針對定位定向系統「調諧校正」精度與「同一方式建立地線」。

- (一)加強定位定向系統「調諧校正」訓練:要求調諧校正後「定位定向系統」(ULISS-30)CDU(控制顯示器)之「AIMING」值與地線方位角之「BEAR」值之差,不得>0.02密位,否則應重行校正一次,¹³以提升「放射測量」精度。
- (二)同一方式建立地線:地線兩端應盡可能使用「路測點儲存」(壓點)方式建立,將兩點座標誤差縮小且誤差「常數」接近,以符合方位地線在「初

-

¹³ 同註6,頁5-39。


始校準」直後<0.4 密位「公算偏差」(EP),作業兩小時後<1 密位(EP)之特性,提高「方位基準點」精度。

表十 地線兩端採不同方式建立之方位誤差分析

點 名	參 考 座標、方位	作 業	所 得 座標、方位	與 參 考	徑 誤 差
測地基準點	224755.47	放 射	224757.59	-2.12	25 八日
(GB72)	2537732.53	2.5 公尺			
地線一端	224622.91	路測點	224624.40	-1.49	1.57 公尺
(CL1-G9)	2537678.19	儲存	2537677.68	+0.51	1.57 公人
地線方位角	4403.73 密位	方位角	4410.75 密位	方位誤差	-7.02 密位
方位誤差 分 析	二、方位地約 4403.73- 三、兩點不同 (2.5 公 =0.93 四、方位地約 7 密位 五、結論:	泉誤差: -4410.64= 司徑誤差所 尺-1.57公 公尺÷0.14 泉誤差與徑 7密位 泉兩端採 7	尺,距離千除 -7.02 密位≒? 計算之方位記 次(2) ÷0.14 =6.64≒7 密位 經誤差所計算之 「同方式建立 長成地線方位角	7 密位 误差: 之方位誤差比 · 其座標差 (

資料來源:作者自製

圖十 地線兩端採不同方式建立之方位誤差示意

資料來源:作者自製

結語

「防區測地」為例行性之戰備整備工作,各作戰區(防衛部)應依據任務 逐年計畫、律定進度、分區(案)作業、驗證精度,尤當作戰計畫修訂(或防 務調整)、戰術位置地形(物)重大改變時,更應即時作業、適時更新成果,以 強化測地整備,滿足防衛作戰火力支援任務需求。

鑒於 105 年度「防區測地」精度驗證分析,少數單位由於未恪遵作業紀律或作業能力不足,致發生成果重大錯誤。建議:權責單位除應嚴格要求作業紀律外,並參考本研究所提供之各項精進作法,跳脫「測考」框架,激發專業創意,確實提升防區測地技術與加強應變能力,期藉落實「防區測地」任務訓練,達成測地成果之精度要求。

參考文獻

- 一、《GPSMAPS®60CSx 中文操作手冊》(臺北:國際航電股份有限公司,2006年6月)。
- 二、《陸軍野戰砲兵測地訓練教範(第二版)》(桃園:國防部陸軍司令部,民國99年11月)。
- 三、《ULISS-30 定位定向系統操作手冊》(桃園:國防部陸軍司令部,民國 87 年 11 月)。
- 四、〈內政部衛星追蹤站及衛星控制點測量成果說明〉〈公告內政部大地基準及一九九一坐標系統 2010 年成果〉《內政部公告》(臺北:臺內地字第 1010137288 號,民 101 年 3 月 30 日)。
- 五、〈「TWD97 大地基準及坐標系統成果更新座談會」會議紀錄〉《內政部函》(臺 北市:臺內地字第 1000226477 號,民國 100 年 11 月 23 日)。
- 六、〈內政部辦理一等、二等衛星控制點測量作業規範〉《內政部地政司衛星測量中心公布欄,2000/7/6》,http://www.moidlassc.gov.tw/cp5.htm。
- 七、郭基榮,《測量學精義》(臺南:復文書局,民國79年)。
- $\hfill \hfill \hfill$
- 九、"Marine Artillery Survey(MCWP3-1.6.15,Draft)",(United States Marine Corps,2000)。
- + "Tactics, Techniques, and Procedures for Field Artillery Survey (FM6-2)", (Headquarters, Department of the army, 23/9/1993) •
- 十一、梁乙農,(以 ULISS-30 執行「測地基準點建立作業」之研究)《砲兵季刊》 (臺南),第133期,陸軍砲訓部,民國95年6月20日。
- 十二、陳天祐、耿國慶,(TWD-97 坐標系統建構與軍圖改版後運用國家控制點實施砲兵測地之研究)《砲兵季刊》(臺南),第133期,陸軍砲訓部,民國95年6月20日。
- 十三、徐坤松、〈如何落實執行防區測地具體作為〉《砲兵季刊》(臺南),第 143

- 期,陸軍砲訓部,民國97年11月20日。
- 十四、耿國慶,〈美軍砲兵導線測量之研究〉《砲兵季刊》(臺南),第147期,陸軍砲訓部,民國98年11月20日。
- 十五、耿國慶、〈運用地圖支援砲兵測地之研究〉《砲兵季刊》(臺南),第159期, 陸軍砲訓部,民國101年11月20日。
- 十六、耿國慶,〈衛星控制點「1997 坐標系統 2010 年成果」對砲兵測地之影響與 因應之道〉《砲兵季刊》(臺南),第 168 期,陸軍砲訓部,民國 104 年 3 月 20 日。
- 十七、耿國慶,〈精進「導線測量」誤差判斷技術之研究〉《砲兵季刊》(臺南), 第 170 期,陸軍砲訓部,民國 104 年 9 月 20 日。
- 十八、耿國慶、〈地圖「跨帶」與「方位偏角圖」之研究〉《砲兵季刊》(臺南), 陸軍砲訓部,第172期,民國105年3月20日。

作者簡介

耿國慶老師,陸軍官校 66 年班,歷任排長、測量官、連、營長、主任教官,現任職於陸軍砲兵訓練指揮部目標獲得教官組。