提升砲兵連應急定位、定向技術之研究

作者: 耿國慶

提要

- 一、當砲兵連擔任獨立或分遣任務時,不僅無法獲得營部充分支援,亦缺乏營級標準之裝備與技術,因此包含「測地」在內,均須獨立作業,尤其在狀況緊急、時間急迫下,能否運用有效手段完成火砲與器材定位、定向,將嚴重影響火力支援任務之達成。
- 二、觀察現行砲兵部分(觀測、測地)教範、測考與演訓實例,砲兵連常用之應急定位、定向方法,不僅要領不詳與成效有限,運用彈性亦有待提升。主要缺失為(一)使用 GPS 時,未評估風險;(二)定位、定向方法條列雖多,惟實施要領不詳且缺乏彈性。
- 三、針對砲兵連能力範圍為前提,就美軍準則、教學經驗與實際測試,除建議 GARMIN-60CS接收機正確使用與確認點位精度要領外,並在「定位」方面, 提供圖解反交會法、圖解導線法;「定向」則提供北極星-帝星簡易定向、 北極星Ⅱ法。期能提升砲兵連應急定位與定向技術,增大運用彈性與達成 任務之能力。

關鍵詞:定位、定向、圖解反交會法、圖解導線法、北極星 - 帝星簡易定向、 北極星Ⅱ法

前言

砲兵連在正常狀況下通常納入砲兵營實施「全部測地」,俾獲得符合精度要求之測地成果。當砲兵連擔任獨立或分遣任務時,不僅無法獲得營部充分支援,亦缺乏營級標準之裝備與技術,因此包含測地在內,均須獨立作業。惟就目前砲兵連編裝而言,尚無法滿足精確之定位與定向,尤其狀況緊急、時間急迫下,如何運用現有裝備與技術執行有限精度之應急定位、定向,將嚴重影響火力支援任務之達成。

測地與應急定位、定向之區別

凡為確定與野戰砲兵有關之砲陣地、雷達站、氣象台、觀測所、目標及測地統制等各點(位置)之定位與定向諸元,所採取之測量技術、方法與作為,謂之「測地」。」由此可見「測地」之目的,在提供射擊所須經確定、符合標準之定位與定向諸元。惟應急狀況下,砲兵連無法實施標準測地程序與技術,其任務置重點於即時提供「次於標準精度」(表一)之定位與定向諸元。基此,本文

^{1 《}陸軍野戰砲兵測地訓練教範(第二版)》,(桃園:國防部陸軍司令部,民國 99 年 11 月),頁 1-1。

所研究之應急定位、定向技術,與標準「測地」範疇有所區隔,僅就砲兵連能力範圍為前提,如何提升達成應急定位、定向技術為考量。

表一	砲丘營,	連測地與砲兵連應急定位	、定向精度對照
10			

精度標準層級區分			/±: ±Z.		
		座標 標高 方信		方位角	備考
砲兵營	「有」定位定向系統	<7公尺 (徑誤差)	<±3 公尺	<±1.5 密位	1.K=距離總長之千 除數。
	「無」定位定向系統	>1/1,000	<1.2x√K•	<±2 密位	2.導線法使用 M2 方 向盤,通常 1 公里
砲兵連	正常測地	>1/500@	<±2 公尺	<±2 密位	/小時,當要求 2 公里/1 小時時,則
	應急定位、定向	>1/250	<±4 公尺	<±4 密位	屬應急定位、定 向。

資料來源:作者自製

當前缺失檢討

就砲兵部分(觀測、測地)教範與測考、演訓觀察,當前砲兵連常用之應 急定位、定向方法,不僅要領不詳與成效有限(表二),運用彈性亦有待提升, 缺失檢討分述如下。

一、使用 GPS 時,未評估風險

砲兵觀測人員自配發 GARMIN-GPSMAP® 60CSx 接收機(簡稱 GARMIN-60 CS)後,經常用於觀通組長(前進觀測官)觀測所定位、連(排)長偵察陣地與應急射擊使用。惟 GARMIN-60CS 屬「單點即時定位」接收機(圖一),就學理而言,影響 GPS 單點即時定位精度之原因甚多,包括:衛星星曆誤差、電離層延遲、對流層延遲、時錶與星曆誤差、多路徑效應誤差(Multipath effect)等,²基於受測部隊累積長期進訓經驗,不僅場地熟悉、相關資料建立完整與「逐次抵抗」階段並未實施陣地變換等原因,致使用者通常忽視 GARMIN-60CS 接收機之限制因素,亦未確實評估實際誤差值,或透過「其他手段」檢驗定位結果之精度範圍,致存在潛在風險。GARMIN-60CS 潛在風險(限制因素)分述如後。

(一) 缺乏自主性、易受干擾與精度有限

- 1.「GARMIN-60CS操作手冊」注意事項內容,已鄭重提醒使用者,GPS由美國國防部發展與管理,並負責該系統的正常運作及定位精度控制,基於美國本身之政策考量或國防安全,美國有權在不預先通知或公告之狀況下,影響整個系統的功能或定位「精度」(Accuracy)。使用者必須特別注意:「外在干擾」……不適合做為「精密測量」等。3
 - 2.参考「GARMIN-60CS 操作手冊」基本規格表 定位精準度:無 SA(Selective

² 洪本善,〈差分 GPS 定位原理概述〉《測量技術通報第 98 期》(臺中市:測量技術通報出版委員會,民國 85 年 6 月),百 98-99。

³ 《GPSMAPS®60CSx 中文操作手冊》(臺北市:國際航電股份有限公司,2006 年 6 月),頁 3。

Availability,選擇性使用)干擾下,單機定位<10 公尺(95% Typical)。⁴「國際 航電公司」(GARNIN)為求慎重,特別在基本規格表下方,再次加註「注意」:基於美國本身之政策考量或國防安全,美國有權在不預先通知或公告之狀況下,影響整個系統的功能或定位「精度」(Accuracy),則本機定位精確度將有可能降至 100 公尺以上。⁵

表二 當前砲兵連常用之應急定位、定向方法分析

定位	名	稱	地圖量取	極 座 標 法 (反交會法)	G P S 單點 即 時 定 位	導 線 法	交 會 法	
	主要 使用 裝備		軍用地形圖座標梯尺	軍用地形圖 雷觀機 座標梯尺、扇形 尺(方眼紙)	GARMIN-60CS 接收機	M2 方向盤 捲尺 電算機	M2 方向盤 捲尺 電算機(對數表)	
方法	7.5	特 點	作業簡單、迅速	作業簡單	作業簡單、迅速		作業簡單	
	分析	弱點	1.地圖與現地對 照不易。 2.精度有限。	1.已知點不易獲 得。 2.精度有限。	1.缺乏自主性。 2.衛星信號易受 干擾。 3.精度無法掌握	1.已知點不易獲 得。 2.速度較慢(每小 時約1公里)。	1.已知點不易獲 得。 2.精度有限。	
	技 名 和		磁針測取	兩已知點座標計 算	1.表內軍用地形圖為 1/25,000 比例尺。 2.依據《陸軍野戰砲兵觀測訓練教範(第二版)》06005			
	主要「電使用」「電機構」「単		M2 方向盤 雷觀機(指北針) 軍用地形圖 座標梯尺、插針 扇形尺(方眼紙)	軍用地形圖 扇形尺(方眼紙) 方位角距離計算 表 電算機、對數表				
	分	特 點	作業簡單	作業簡單、迅速	條觀察,其所述「極座標法」實為測量學規範是 點反交會法」。			
	析弱點		1.磁場變化大·且 易受干擾。 2.精度有限。	1.已知點不易獲 得。 2.點位標示困難				

資料來源:作者自製

圖一 砲兵觀測人員配發之 GARMIN-60CS 接收機

資料來源:《GPSMAPS®60CSx 中文操作手冊》(臺北市:國際航電股份有限公司,2006年6月)。

⁴ 同註3,頁12。

⁵ 同註3,頁13。

- (二)定向精度不足且易受干擾:GARMIN-60CS 接收機具備「電子羅盤」(Electronic ompass)之感測器,其精度一般為±2度(約36密位),高緯度則為±5度(約90密位);解析度均為1度(約18密位)。"就性能而言,不僅定向精度不足,且易受外部電磁場干擾,須經常校正,方能維持「基本規格表」所述之準確度(如圖二)。"惟基於安全理由,砲兵不得使用 GARMIN-60CS 接收機之「電子羅盤」定向,亦不得使用定位所得之兩點座標定向。原因是 GPS 定位所得之點位座標,存在若干(並非常數)誤差,如以兩點座標方式計算地線方位,將產生不正確之結果。依據美國砲校射擊組測地小組 2003 年之研究報告,證實使用「精確輕型 GPS 接收機」(AN/PSN-11 Precision Lightweight GPS Receiver,PLGR)決定之方位甚難達到穩定狀態,其誤差範圍通常在 0.7 至 50 密位之間(圖 三)。8
- (三)大誤差出現機率無法預料:就國內學術研究觀察,GPS 取消「選擇使用性」(Selective Availability,SA 效應)後,單點定位通常精度可優於 10 公尺,惟就衛星追蹤站實際觀測資料計算得知,即使設置於對空通視良好,遠離其他電磁波且近距離內無反射體之衛星追蹤站(如陽明山、北港、墾丁、太麻里、鳳林等五處),。其單點定位誤差仍出現超過 30 公尺或甚至 115 公尺之大誤差。10 如使用於接收條件較差(有掩、隱蔽或干擾環境)之觀測所、砲陣地等,其誤差將更為可觀。

二、方法條列雖多,惟實用性不足

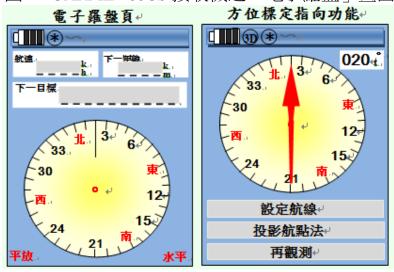
觀察砲兵部分(觀測、測地)教範,均條列多種可用之定位與定向方法(表三),惟砲兵連常用、實用且適用者,就定位而言,僅有地圖量取、極座標法(反交會法)、GARMIN-60CS 接收機單點定位、導線法與前方交會法等五種;定向則 M2 方向盤(雷觀機)磁針測取與兩已知點(地圖或已知點)座標計算等兩種。基此,應致力條列方法之實用性與增加運用彈性,以符實需。

- (一)條列方法雖多,惟要領不詳:就就目前「陸軍野戰砲兵觀測訓練教範(第二版)」而言,「觀測所位置決定」即條列六種方法,¹¹ 惟條列方法雖多,作業要領則不夠詳盡,致影響實用性。
 - (二)適用方法有限,缺乏彈性:目前砲兵部分教範所條列之定位、定向

7 同註3,頁56、59。

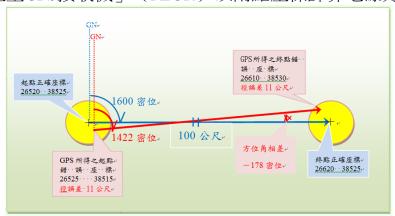
⁶ 同註3,頁13。

^{* &}quot;AN/PSN-11 Precision Lightweight GPS Receiver(PLGR)Used for Artillery Positioning — White Paper ATSF-GC", (Fort Sill,OK: US Army Artillery School, 2/2003), P1 •


⁹〈內政部衛星追蹤站及衛星控制點測量成果說明〉,〈公告內政部大地基準及一九九一坐標系統 2010 年成果〉, 《內政部公告》(臺北市:臺內地字第 1010137288 號,民 101 年 3 月 30 日),頁 3。

[□] 陳文豐,〈全球定位系統之單點定位〉《測量學術發表會專輯》第30輯(臺中市:民國91年9月),頁158。

[&]quot;《陸軍野戰砲兵觀測訓練教範(第二版)》(桃園:國防部陸軍司令部,民國100年1月),頁6-7。


方法,就效能與彈性而言,實無法滿足特殊狀況下之應急任務需求,亟需檢討增列,俾提供使用者更大的選擇空間。

圖二 GARMIN-60CS 接收機之「電子羅盤」畫面

資料來源:作者自製

圖三 「精確輕型GPS接收機」(PLGR)以兩點座標計算地線方位之誤差示意

資料來源:作者自製

表三 「砲兵觀測、測地訓練教範(第二版)」條列定位方法對照

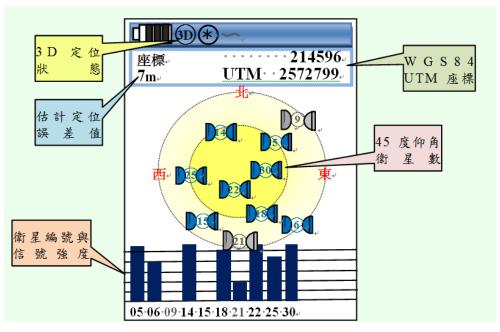
區分	條列定位方法								
砲兵觀 測訓練	目視觀察法	器材測量法	極座標法	反交會法	三點反交會法	GPS 單點 即時定位			
教範	概略決定	精確決定	概略決定	概略決定	概略決定	概略決定			
砲兵測 地訓練 教範	定位定向系統	導線法	前方交會法	三角測量	三邊測量	反交會法			
	1.精確決定 2.連級無能力	精確決定	概略決定	1.精確決定 2.連級無能力	1.精確決定 2.連級無能力	1.概略決定 2.連級無能力			
附記	一、觀測部分參考:《陸軍野戰砲兵觀測訓練教範(第二版)》(桃園:國防部陸軍司令部,民國 100 年 1 月),第六章。 二、測地部分參考:《陸軍野戰砲兵測地訓練教範(第二版)》(桃園:國防部陸軍司令部,民國 99 年 11 月),第四章。								

資料來源:作者自製

精進作為

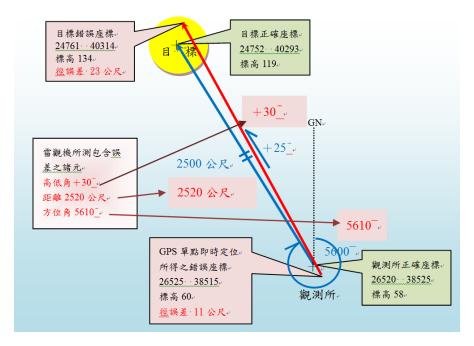
為確保砲兵連應急定位、定向作業之結果,雖低於標準測地程序,惟不致 造成危安風險,且面臨特殊狀況時,可擁有更大作業技術之選擇彈性,提供下 列精進作為俾供參考。

一、正確使用 GARMIN-60CS 接收機,確認點位精度


- (一)選擇接收環境:為確保 GARMIN-60CS 接收機可獲得精度較佳之定位結果,使用者須先行選擇符合 GPS 系統之接收環境。如因戰術(測考)限制無法符合接收條件,使用者須注意定位誤差可能造成之風險。理想之 GPS 系統接收環境條件,分述如下:1.對空通視良好,45 度仰角至少需有 4 顆衛星;2.遠離廣播電台、電視轉播站、雷達站、高壓電與其他電磁波源,以避免無線電波干擾衛星信號;3.近距離內無電磁波反射體(如金屬板、鐵絲網與平面狀反射體等),以減低「多路徑效應」。12
- (二)確認為正確「定位狀態」: GARMIN-60CS 接收機「開機」畫面自動切換至「衛星狀態頁」。在畫面上方「資訊欄」會顯示「搜尋衛星」,約45秒後即完成第1次定位動作,此時螢幕最上一行「狀態列」先顯示「2D」,即表示本機已在定位狀態;若接收環境許可,在幾秒鐘後,將顯示「3D」,此時所顯示之座標資料(如圖四),始符合使用需求。¹³
- (三)參考「估計誤差值」:GARMIN-60CS接收機「衛星狀態頁」,可顯示每次定位之「估計誤差值」,提供使用者參考。當「狀態列」顯示「2D」時,GARMIN-60CS接收機僅在「2D」空間定位狀態,「估計誤差值」較大,約待10秒鐘後,將視天空開闊程度條件,進入「3D」定位,「估計誤差值」亦將降低,此時定位資料較為精確,「使用者可參考此誤差值「估計」定位誤差範圍。惟「估計誤差值」係依據接收衛星數、信號強度與幾何分布等參數估算,除非與參考點(衛星控制點、測地統制點、基準點等)精確座標比對,否則仍有諸多因素影響「估計誤差值」之正確性,使用者須謹慎為之。如使用者由GARMIN-60CS接收機定位之觀測所,再使用雷觀機以「極座標法」(方位角、距離、高低角)計算目標位置,基於誤差傳播、累積等特性,其所得之目標位置之誤差將更為可觀(如圖五)。

 $^{^{12}}$ 〈內政部辦理一等、二等衛星控制點測量作業規範〉,《內政部地政司衛星測量中心公布欄,2000/7/6》, http://www.moidlassc.gov.tw/cp5.htm,頁 $1 \circ$

¹³ 同註 2, 頁 25。


¹⁴ 同註 2, 頁 31。

圖四 GARMIN-60CS 接收機已完成 3D 之「衛星狀態」畫面

資料來源:作者自製

圖五 觀測所以 GPS 定位,再使用雷觀機(極座標法)計算目標位置之誤差傳播、累積示意

資料來源:作者自製

(四)地圖與現地對照檢查:經過前述三項程序後,使用者須將GARMIN-60CS接收機定位結果,使用座標梯尺、插針定點於 1/25,000 軍圖上,對照檢查點位與現地吻合程度,始可確認點位精度實際狀況,且評估定位結果可否接受。目前 1/25,000 軍圖平面精度標準為 20 公尺(均方根,MSPE),可滿足「地圖與現地對照」檢查需求(如表四)。

表四 1/25,000 軍用地形圖平面精度標準對照

區 分	平	面	精	度	標	準	備	考
美國國家地圖精度標準(NMAS)	12.5 2	尺(圓形	/精度,C	CMAS)				
美國攝影測量及遙感探測協會	第一約	及:6.25 公	尺(座標	差異值:I	RMSEx,RM	ISEy)		
(ASPRS)	第二級	及:12.5 公	尺(座標	差異值:I	RMSEx,RM	ISEy)		
中華民國國防部	20 公儿	尺(均方材	艮,MSPE	Ξ)				

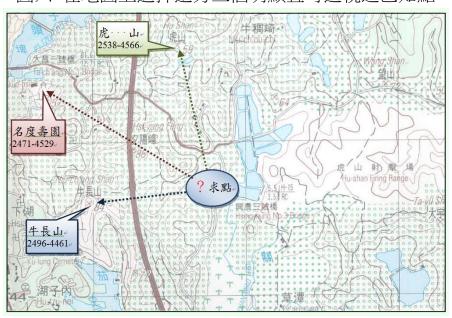
資料來源:郭基賢、林譽方著,《地圖精度評估之研究-以 GPS 實測法評估地圖平面精度》, (臺北市,測量技術通報第 101 期,民國 88 年 6 月),頁 73。

二、增列有效之應急定位、定向技術,增大運用彈性:檢討當前可用之應急定位、定向方法有限,致影響任務遂行,特參考美軍準則、教學經驗與實際測試,就定位方面,提供圖解反交會法、圖解導線法;定向則提供北極星-帝星簡易定向、北極星II法。期能提升砲兵連應急定位與定向技術,增大運用彈性與達成任務之能力。惟基於論文章節內容均衡考量,將增列之應急定位與定向技術,納入後續段落分別討論。

應急定位技術

當地區未建立完整之測地統制時,不僅測地無法利用適當之「已知點」(測地統制點、測地基準點)起始或檢查,觀測所、陣地亦無法測報位置,造成諸多困擾。目前砲兵連常用的應急定位方法包括:地圖量取、雷觀機一點反交會與 GARMIN-60CS 接收機單點定位等三種,不僅受限於精度、器材條件,亦缺乏選擇彈性,甚難滿足未來作戰需求。特提供圖解反交會法與圖解導線法,俾增進測地人員定位能力與選擇彈性。

一、圖解反交會法

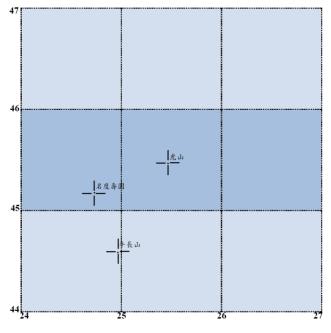

係利用若干「已知點」決定「未知點」(求點)座標之快速方法,使用器材包括:地圖、M2 方向盤(雷觀機)、目標方眼紙、方格紙與作圖器材,均符合砲兵連編制範圍。通常實施「圖解反交會法」時,須將 M2 方向盤(雷觀機)整置於「選擇點」或「觀測所」上,俾獲得求點所需座標後,迅速完成射擊所需之陣地(前地)測地成果。「圖解反交會法」為求定位結果精度可靠,作業方式細分為「無、有方位統制」兩種,分述如後。

(一)無方位統制時

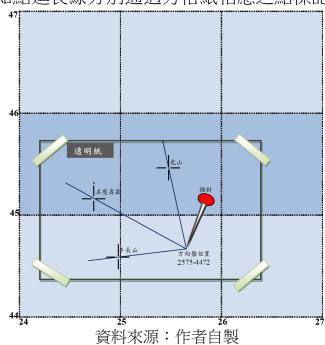
- 1.在地圖上選擇遠方三個明顯且可通視之已知點,通常選擇獨立涼亭、高塔、廟宇或地標等為宜(如圖六)。
- 2.方向盤依據「累積測角」方式實施水平角測量,要求看讀至±0.5 密位,圖解時再進位(四捨五入)為密位整數。
- 3.檢查三個水平角總和,應符合 6400 密位≦±1.5 密位,以確定三個水平角 均達±0.5 密位要求,並完成分劃閉塞檢查(如圖七)。

- 4.使用座標梯尺於地圖上量取三個已知點座標(八位數座標),標繪至 1/25,000 方格紙上(如圖八)。
- 5.插插針在透明紙中心部分,使用目標方眼紙(或扇形尺)依據各已知點水 平角分別劃出三條延長線,檢查無誤後註記之。
- 6.將透明紙覆蓋於方格紙上,使其三條延長線分別通過相應之已知點,此時透明紙之插針處,即為求點位置(如圖九)。
 - 7.使用座標梯尺量取插針處座標後,依需要繼續測至陣地其他各點。

圖六 在地圖上選擇遠方三個明顯且可通視之已知點

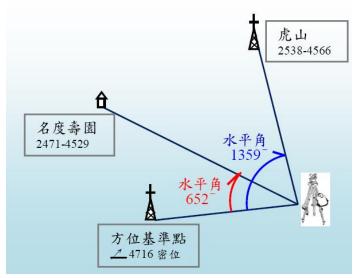

資料來源:作者自製

圖七 由求點測取三個已知點間之水平角與閉塞分劃

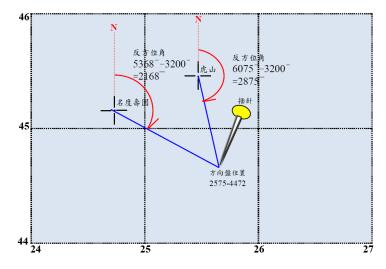

資料來源:作者自製

圖八 於方格紙上標繪三個已知點之點標記

資料來源:作者自製


圖九 將各已知點延長線分別通過方格紙相應之點標記上,其交叉點

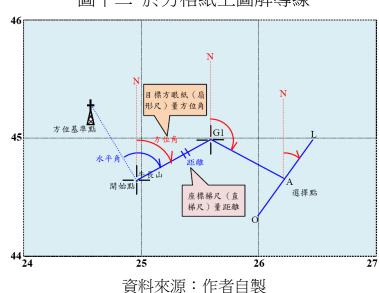
- (二)有方位統制時:當「未知點」(求點)有已知方位基準,惟無座標資 料時,即使僅能通視兩個已知點,亦能實施「反交會法」,其要領僅少部分與「無 方位統制時」不同。作業要領分述如下。
 - 1.方向盤於「求點」以"0"標定方位基準點,按累積測角要領,分別測取 兩已知點之水平角(如圖十)。要求看讀至±0.5 密位,圖解時再進位(四捨 五人)為密位整數。
 - 2.將「方位基準點方位角」加「水平角」,分別計算兩已知點方位角。


- 3.將「兩已知點方位角」±3200 密位 ,換算為反方位角。
- 4.使用座標梯尺、插針按地圖上已知點座標,定點於方格紙上。
- 5.由方格紙兩已知點為起點,使用目標方眼紙(或扇形尺)劃反方位角延長線,兩線之交點即為即為求點位置(如圖十一)。
 - 6.使用座標梯尺量取插針處座標。

圖十 方向盤標定方位基準點,分別測取兩已知點之水平角

資料來源:作者自製

圖十一 兩已知點反方位角之延長線交點,即為即為求點位置



資料來源:作者自製

二、圖解導線法

係運用角度與距離,將「已知點」逐站擴張至另一個「未知點」(求點), 以決定觀測所、陣地位置之技術。此技術與「角導線法」類似,惟須測量各點 之水平角外,尚須增加各站之距離測量。亦即由已知點之方位角與座標起始, 利用 M2 方向盤實施導線法現地作業,可不經計算程序直接依據所測知各站水平 角、距離,再利用射擊指揮所作圖器材,逐站圖解於方格紙或地圖上,以決定 未知點(求點)之座標。作業要領如下:

- (一) M2 方向盤整置於已知點,以"0"標定方位基準點,按累積測角要領,測取方位基準點至前測站之水平角,要求看讀至±0.5 密位,圖解時再進位(四捨五入)為密位整數。將「方位基準點方位角」加「水平角」計算成「前測站方位角」,並利用捲尺或其他測距方式,測取距離。
- (二)於方格紙或地圖上定出已知點位置,再用目標方眼紙(或扇形尺) 與座標梯尺(或直梯尺),依據兩測站間方位角、距離,標繪導線邊。
- (三)繼續導線法現地作業,同時(或現地作業完成後)於圖上連續標繪 導線邊,直至所需決定之點位。如連陣地測地,則至陣地中心、選擇點與方向 基線一端(如圖十二)。

圖十二 於方格紙上圖解導線

應急定向技術

「方位」為影響射擊精度與安全之首要因素,砲兵連即使處於應急狀況下,定向結果仍須力求正確。目前砲兵連定向通常使用 M2 方向盤裝定「磁偏常數」直接測定,或利用兩已知點座標計算。惟「磁偏常數」可能因部隊移動超過 40 公里後未及時重行校正或接近影響磁針之物體而失效,以及兩已知點不易獲得等原因,無法執行定向,則可改採「北極星 - 帝星簡易定向法」、「北極星 II 法」等兩種技術。基於前述兩種方法屬「天文觀測」(Astronomy observation)範疇,除須具備基礎天文知識外,關鍵因素則在「通視」(Line of sight),否則仰望夜空,即使滿天星斗,仍一籌莫展。當 M2 方向盤可觀測天體(北極星、帝星或 43H 仙王星)後,即可執行定向。15

一、北極星 - 帝星簡易定向法

-

¹⁵ Mr.Scott McClellan, ""GET A GRID" Excellence in Precision Targeting" <u>Fires</u> 2013 March-April (Fires Seminar 2013),p27.

「北極星 - 帝星簡易定向」仍使用 M2 方向盤,惟不受磁針各種限制,通常 誤差小於±2 密位,可簡易、快速建立方位統制。16特殊作業要求為測手須熟悉在 「小熊星座」(Ursa minor)辨識「北極星」(Polaris)與「帝星」(Kochab)之要 領(如圖十三),俾確保定向順利執行。

(一)「北極星」與「帝星」辨識要領

1.北極星:北極星與帝星為小熊星座最亮的兩顆星,而北極星位於「北天極」 (Celestial north pole,即「正北」)附近,每一恆星日以1度半徑「逆時針」繞北 天極旋轉一周,故又稱之為「北方星」。北極星為小熊星座勺柄上最後一顆星, 其高度等於當地之緯度,17且緯度越高,高度越大。本島北極星高度約為天頂角 76 度(高低角約+24 度),因高度有限,靠城市附近「光害」嚴重地區觀測困難, 然作戰(演訓)期程涵蓋夜間,且作戰地區多遠離光害,有利於「天觀測」作 業。要尋找北極星,官先找到「大熊星座」(Ursa major,即「北斗七星」),為一 明亮匙形排列,斗杓底端兩星連線五倍距離處,即北極星位置;另位於「大熊 星座」相對方向,呈W形排列的「仙后星座」(Cassiopeia),W形中央與「大熊 星座」斗柄第三星之連線恰經過北極星。18

2.帝星:帝星位於「小熊星座」勺底,與北極星亮度相同,為第二顆需要觀 測之星體,位於北緯 20 度以北地區,可視帝星為「環極星」(Circumpolar)。19

圖十三 「北極星」與「帝星」關係位置 9月 8月 \Rightarrow 10月 小熊星座 仙王星座 12 仙后星座 北天極 3月

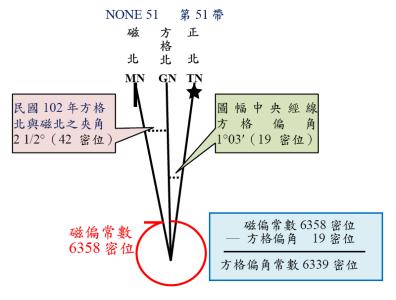
使用說明:

面對北方,將圖上當月標示朝 北,並置於前方,則每日 2200 時星座排列之位置,如圖所 示。如須顯示 2200 前北極星 與帝星位置,則順時針旋轉, 顯示較晚位置時,則逆時針旋 轉。星座旋轉 1/4 圓,所需時 間約為6小時。

資料來源:作者自製

^{16 &}quot;FIELD ARTILLERY BATTERY (FM6-50)," (Washington, DC: HEADQUARTERS DEPARTMENT OF THE ARMY,11/1990),P5-3 °

¹⁷厲保羅譯著,《天文學》(臺南:復漢出版社,民國 76 年 1 月再刷),頁 3-6。

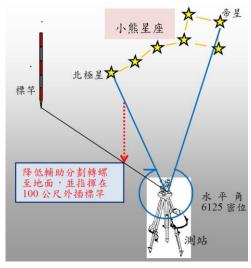

^{№《}國軍軍語辭典-92年修訂本》,(臺北市:國防部頒行,民國 93年3月),頁 5-25。

[&]quot;Marine Artillery Survey (MCWP3-1.6.15, Draft)", (United States Marine Corps, 2000), p9-14.

(二)作業要領

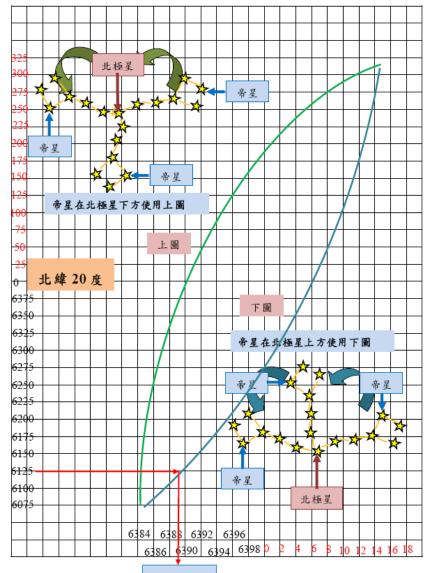
- 1.測手於 M2 方向盤上部裝定「方格偏角常數」(磁偏常數±方格偏角),並「精確歸北」(如圖十四)後,分劃 0-3200 即指向正北。
- 2.由地圖查取當地緯度後,乘以 18 換算為概略密位(如:臺南關廟北緯 23 度×18=414 密位),並裝定於 M2 方向盤「高低分劃」上,此時 M2 方向盤望遠鏡視軸即概略指向「北極星」。
 - 3.於 M2 方向盤望遠鏡中確認「北極星」,並尋找「帝星」。
- 4.將方向分劃歸零,順時針測取「帝星」至「北極星」之水平角(如:6125 密位),並紀錄之(如圖十五)。
- 5.降低 M2 方向盤高低輔助分劃轉螺,使望遠鏡接近地平面,再指揮標竿手裝置標竿燈,沿望遠鏡十字標線在 100 公尺外插標竿。
- 6.依據測站所在之緯度,查最接近之「北極星-帝星用表」(如表四)將水平角(6125 密位)對應左側,再按帝星在北極星上(或下)使用相反之下(上)曲線圖方式(如圖十六),向下查得正北方位角(6189 密位)。
- 7.於當地地圖上右下角偏角圖查「方格偏角」(參閱圖十四:方格偏角為 19 密位),按正北在方格北「東(右)加西(左)減」要領,將正北方位角修正成「方格方位角」。²⁰如:正北方位角(6189 密位)+19 密位=方格方位角 008 密位。

圖十四 「方格偏角常數」計算示意


關廟 , 9418 I 地磁計算模式為 NGK 之 WMM2010

資料來源: 1/25,000 關廟(圖號 9418 I NW)地形圖

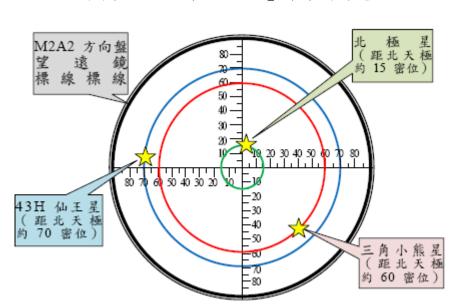
59


^{『《}陸軍野戰砲兵測地訓練教範(第二版)》,(桃園:國防部陸軍司令部,民國 99 年 11 月),頁 5-30、5-31。

圖十五 測取「帝星」至「北極星」水平角與地平面插標竿示意

資料來源:作者自製

圖十六 查取「北極星-帝星用表」(北緯20度)示意



6389 密位

資料來源:作者自製

二、北極星Ⅱ法

「北極星II法」為簡單、迅速之應急定向方法,測手僅需熟練於北半球尋找北極星、三角小熊星與43H仙王星(Cephei)之要領,即可作業。美軍曾在M2A2方向盤望遠鏡內加裝「北極星II法」十字線(如圖十七),提供砲兵連應急定向使用,惟通報:自1996年1月起,「北極星II法」十字線已超過高精度定向之適用年限,雖仍可繼續使用,惟自1996年1月後,精度將逐年降低0.1 密位,估計定向誤差約為±2.5 密位。21如將目前「北極星II法」十字線定向精度與M2方向盤磁針未適時「磁偏校正」、未與影響磁針物體保持安全距離與磁場正常誤差等影響比較,「北極星II法」定向結果仍屬精確、可靠。

圖十七 「北極星Ⅱ法」十字線示意

資料來源:作者自製

- (一)尋找「北極星、三角小熊星與 43H 仙王星」要領:「北極星」(辨識要領參考「北極星 帝星簡易定向法」所述)與「三角小熊星」、「43H 仙王星」為野外夜空中最亮的三顆星。如以「北極星」為頂點,其與另外兩顆星所構成之角度約為 180 度,且每小時以 15 度之速度繞「北天極」逆時針旋轉。
- 1. 如將 M2 方向盤標線分劃之十字中心視為「北天極」,各星體運行軌跡與 北天極之關係如下:
 - (1) 北極星: 距北天極約 15 密位。
 - (2) 三角小熊星: 距北天極約60密位。
 - (3) 43H 仙王星: 距北天極約 70 密位。
 - 2. 「北極星Ⅱ法」各星在圓周軌道上之位置,係隨年份與觀測時間而改

[&]quot;FIELD ARTILLERY BATTERY (FM6-50) ," (Washington,DC : HEADQUARTERS DEPARTMENT OF THE ARMY,11/1990) ,P5-10 $^{\circ}$

- 變,故無須置於某一特定之位置。較適合方式為:以 M2 方向盤標線分劃十字為中心點,將各星運行軌跡依據鏡內分劃畫成的三個不同顏色環(如圖十五)。
- (二)作業要領:「北極星Ⅱ法」與「北極星-帝星簡易定向法」最大差異為「無須歸北」,致不必將「磁偏常數」換算為「方格偏差常數」,僅須於「方向分劃」(上部)裝定「方格偏角」。
- 1.在當地地圖上右下角偏角圖查「方格偏角」(參閱圖十四:方格偏角為 19 密位)。
 - 2. 測手於求點(測地統制點或選擇點)整置 M2 方向盤,並精確水平。
 - 3.動「方向輔助分劃轉螺」(上部)裝定「方格偏角」於方向分劃上。
- 4.動「高低輔助分劃轉螺」,於高低分劃裝定「北極星」高度(當地緯度×18 換算為概略密位,如:臺南關廟北緯23度×18=414密位)。
- 5.動「方向微動螺」(全部)對準「北極星」後,並確定「方格偏角常數」 裝定於方向分劃上。
- 6.動「高低輔助分劃轉螺」與「方向微動螺」,將「北極星、三角小熊星與 43H 仙王星」分別置於各自運行之軌道上。
- 7.指揮標竿手裝置標竿燈,在 M2 方向盤 100 公尺外插標竿,作為「方位基準點」或「方向基線一端」。
- 8.動「高低」與「方向」輔助分化轉螺」,順時針標定標竿底緣中央,並看 讀方位角至±0.5 密位。
- 9.重複 3-8 動作,測取第二次方位角。兩次方位角須相差在±2 密位,始可平均作為「決定方位角」,否則須重測至合格為止。

結語

「砲兵連」為最小戰術與行政之火力支援單位,當無法獲得上級支援,且面臨狀況緊急、時間急迫下,務須運用諸般應急定位、定向手段,迅速獲得次於標準精度之成果,以滿足射擊之最低需求。鑒於部隊最常使用之 GARMIN-60CS 接收機潛存風險,且相關教範所提供之應急定位、定向方法有限,砲兵連為達成火力支援任務,除應正確使用 GARMIN-60CS 定位外,並可參考本研究所提供之應急定位、定向技術,期能因應各種狀況,增大運用彈性,提升達成任務之能力。

參考文獻

- 一、《GPSMAPS®60CSx 中文操作手冊》(臺北市:國際航電股份有限公司,2006年6月)。
- 二、《國軍軍語辭典-92年修訂本》(臺北市:國防部頒行,民國 93年3月)。
- 三、《陸軍野戰砲兵測地訓練教範(第二版)》(桃園:國防部陸軍司令部,民國

- 99年11月)。
- 四、《陸軍野戰砲兵觀測訓練教範(第二版)》(桃園:國防部陸軍司令部,民國100年1月)。
- 五、洪本善,〈差分 GPS 定位原理概述〉《測量技術通報》(臺中市),第 98 期, 測量技術通報出版委員會,民國 85 年 6 月。
- 六、郭基賢、林譽方著,〈地圖精度評估之研究-以 GPS 實測法評估地圖平面精度〉《測量技術通報》(臺北市),第 101 期,民國 88 年 6 月。
- 七、厲保羅譯著,《天文學》(臺南:復漢出版社,民國76年1月再刷)。
- 八、〈內政部衛星追蹤站及衛星控制點測量成果說明〉、〈公告內政部大地基準及一九九一坐標系統 2010 年成果〉,《內政部公告》(臺北市:臺內地字第 1010137288 號,民 101 年 3 月 30 日)。
- 九、陳文豐,〈全球定位系統之單點定位〉《測量學術發表會專輯》(臺中市),, 第 30 輯,民國 91 年 9 月。
- + Mr.Scott McClellan, "GET A GRID" Excellence in Precision Targeting" Fires 2013 March-April (Fires Seminar 2013).
- +- · "FIELD ARTILLERY BATTERY (FM6-50)," (Washington,DC: HEAD QUARTERS DEPARTMENT OF THE ARMY,11/1990) •
- += ` "AN/PSN-11 Precision Lightweight GPS Receiver (PLGR) Used for Artill ery Positioning— White Paper ATSF-GC," (Fort Sill,OK: US Army Ar tillery School ', 2/2003) °
- 十三、"Marine Artillery Survey (MCWP3-1.6.15, Draft)," (United States Marine Corps, 2000)。
- 十四、耿國慶、〈析論「全球定位系統」(GPS)〉《砲兵季刊》(臺南),第 166 期, 陸軍砲訓部,民國 103 年 7-9 月。
- 十五、耿國慶、〈運用地圖支援砲兵測地之研究〉《砲兵季刊》(臺南),第 159 期,陸軍砲訓部,,民國 101 年 11 月。
- 十六、耿國慶,〈精進砲兵連測地裝備與技術之研究〉《砲兵季刊》,第 160 期, 陸軍砲訓部, 民國 102 年 1-3 月。
- 十七、耿國慶、〈地圖「跨帶」與「方位偏角圖」之研究〉《砲兵季刊》(臺南), 第 172 期,陸軍砲訓部,民國 105 年 1-3 月。

作者簡介

耿國慶老師,陸軍官校 66 年班,歷任排長、測量官、連、營長、主任教官,現任職於陸軍砲兵訓練指揮部目標獲得教官組。