

● 作者/Stefan Nitschke ● 譯者/柴惠珍 ● 審者/陳家俊

機電戰系統發展

Sharp Acceleration: UAS to offer Electronic Warfare (EW) Capabilities that Manned Aircraft Cannot Emulate

取材/2016年6月德國軍事科技月刊(Military Technology, June/2016)

價格低廉、自主化且能協同運作的無人飛機系統,在電子戰環境中能有 效扮演全方位角色,範圍從電子攻擊及干擾,乃至電子支援措施及信號 情報等。

「赫密士」(HERMES) 900型中高度長續航力無人飛機系統有著俐落的外形,可裝配信號情報酬載(由天固通信情 報定向系統及天固-G通信情報全球行動通訊系統[SKYFIX-G COMINT GSM]所組成),亦能改裝電子攻擊酬載, 如SKYJAM通信干擾系統及光譜石AES 210 V/V2型電子情報/電子支援系統。(Source: Elbit Systems)

俄羅斯媚眼3型無人機的設計,旨在定位電磁輻射源,可壓制半徑6.85 公里範圍內的無線通信。(Source: Jamestown Foundation)

界各國對於能夠隨心所欲地 獲取第一手近乎即時之情監 偵機敏資料,有著不可或缺的需求; 從戰術無人飛機乃至「中高度長續 航力無人飛機系統」(MALE UAS), 都顯示無人飛機是理想的平臺。這 是因為無人飛機可視為消耗品、在 高度威脅環境中較高的存活率、可升 級性,以及較能負擔得起(換句話說 就是其生命週期成本較低)的緣故。

電子戰平臺是其所能肩負的特別角色之一。2013年,諾格公司(Northrop Grumman)航太系統部門,將「潘朵拉」(PANDORA)電子戰系統內部的微型電子戰酬載元件,配

備在「蝙蝠」(BAT)微型無人飛機系統(部署於美陸戰隊、海軍、空軍及國土安全部)上進行測試,執行電子攻擊、電子支援及電子防護之適用性驗證。該公司人員表示,這是第一次將電子戰酬載元件配置於小型戰術無人飛機系統上。諾格公司中程戰術系統副總裁瓦多拉契斯(George Vardoulakis)指出,「『蝙蝠』微型無人飛機系統持續展現其優異能力,而這通常只有更大、更昂貴的無人飛機才辦得到。」

俄羅斯軍方打算大量部署小型戰術無人飛機系統,部分並配備電子戰酬載。東部軍區發言人於2014年宣稱,駐紮在普列莫爾斯基區(Primorsky Krai)及薩哈林州(Sakhalin Oblast)的機動部隊將配備新開發的「媚眼-2型」(LEER-2)無人飛機系統(由俄國聯合控股公司康恩無線電電子技術

公司[JSC Concern Radio-Electronic Technologies] 所研發)。他説道:「2015年底,電子戰部隊將配備新式特種『媚眼-3型』無人飛機系統。」該無人飛機設計用於定位電磁輻射源,並且可壓制半徑6.85公里範圍內、包括行動電話在內之無線通信。

過往傳統空軍部隊通常由攻擊機、偵察機,以 及從事電子情報偵蒐與海上電子偵巡等任務之 特種飛機所組成,而後者亦包括電子支援、電子 反制及信號情報等任務。

無人飛機系統在上述領域均有良好表現。在冷戰後期,即使多功能飛機在個別功能上均不如單一用途飛機來得有效率,但其受到青睞已是個不爭之趨勢。

近年來,隨著無人飛機平臺愈獲歡迎,配備複 雜電子偵蒐設備的有人及無人飛機系統,其任務

VEAPON

配比亦隨之轉變。受到「伊拉克自由作戰行動」 (Operation Iragi Freedom)有人電戰機有效削弱伊 拉克網路,並且癱瘓其防空系統之經驗啟發,採 購無人電戰機的意願顯著增加。

全球反恐戰爭亦促使C3ISR(指揮、管制、通信、 情報、監視與偵察)及早期預警裝備得以精進,無 人情蒐與電戰機得以進入軍需市場,並致使高度 微型化精確導引彈藥問世。

隱形戰爭

隨著伊斯蘭恐怖主義所衍生出之新興威脅,當 前空中電子戰型態已大幅變革。在任務支援領域 方面,透過運用新型態的電子支援,以及電子攻 擊手段,摧毀恐怖份子的指管結構與週期,有助 於大幅發展電子戰攻擊指管之反恐能力。此外, 信號情報乃由電子情報所組成,已在反恐作戰中 嶄露頭角。經過特殊設計的無人飛機系統,已被 視為是昂貴有人飛機的替代品;然而,某些顧慮 依然存在。在電子戰及情偵監任務中,無人飛機 系統需要安全的數據鏈路回傳感測器訊息,但是 數據鏈路會遭敵軍干擾。

用於信號情報及電子支援的新型複雜感測器, 日漸受到無人飛機系統操作員的關注。因電子 支援蒐集平臺為被動模式,能持續保持電子緘 默。舉例來說,「半自動地面環境」(SAGE)為數位 電子支援/電子情報系統,最初由賽萊克斯公司 (SELEX ES,現為芬梅卡尼卡公司[Finmeccanica] 的機載及航太系統部門子公司)所研發。其協助 海上巡邏隊在雷達訊號標記中,對海上目標加 以定位及鑑別。該系統於2014年6月撥交巴西海

以色列航太工業EL/K-7071型整合無人飛機通信情報 定向系統,係爲遂行戰術及中高度長續航力無人飛機系 統作戰而量身定製。圖中是與澳大利亞皇家空軍共用的 「蒼鷺1型」(HERON 1)無人飛機系統。

(Source: Australian Defence Force)

當諸如蝙蝠微型無人飛機系統等平臺,可攜帶電子攻 擊/電子支援酬載,而且難以被偵測時,代表著這是一 個極具吸引力的潛在替代方案。飛行器不需要跑道即可 飛行,而且可以使用攔截網回收,使其十分適合在船上 作業。(Source: Northrop Grumman)

薩基姆電子防衛公司(Sagem)於 2013年6月間,對其「巡航者」(PA-TROLLER)無人飛機系統進行一 系列飛行測試;其機翼下方爲通信 情報策艙裝配多重感測器之構型。 (Source: Mönch/AF)

軍,整合到席博公司(Schiebel) CAMCOPTER S-100型垂直起 降無人飛機的天線上。次年,印 尼海軍為旗下空中巴士CN-235 型巡邏機擇定使用該系統,並 且將海上巡邏任務系統予以整 合。

另一個例子是「天固」(SKY-FIX)機載通信情報定向系統, 由埃爾比特系統公司埃利斯拉 子公司(Elbit System Elisra) 於 2000年初所開發。此電子戰套 件可搜索、攔截、測量、定位、 分析、分類,以及監聽通信/雷 達射頻。若與埃利斯拉子公司 的「光譜石」(SPECTROLITE) AES-210型電子情報/電子支援 系統整合,天固系統將涵蓋所 有信號情報範圍。根據製造商 所述,該系統的地面設施負責 任務/感測器控制、任務後分 析,以及準備與分發電子作戰 序列/情報報告等。僅管可以設 計一組套件,在幾千MHz(百萬 赫)的範圍內提供最大效能;當 前需求僅需從幾KHz(千赫)到50 GHz(十億赫)的性能,具有大範 圍的信號強度及其他參數,例 如脈波寬、掃描率、旁帶特性, 以及調變等。當進行關鍵作戰 任務時,主要是將許多不同的 頻敏電路(稱為調諧器)及其相 關之前置訊號增幅器,連接到 主要訊號增幅器及顯示器或數 據庫的公共鏈路上。

理想情況下,類似天固這樣 的系統,能部署在無人飛機上 觀測外部雷達信號之特性,例 如射頻(RF)及脈衝重複頻率等, 以偵測敵方80至100公里內的 地面雷達信號。鑑於地面搜索 雷達之信號通常在大氣波導(天

氣現象)條件下,能傳到更遠的 範圍;因此更為靈敏的微波電 子支援系統,則可偵測到遠遠 超出雷達性能距離,透過地面 波導效應傳來的訊號。研究證 明,極高靈敏度的電子支援系 統,可透過對流層散射效應來 攔截350公里外的雷達信號;這 是因為射頻信號行經對流層並 遇到大氣擾動時,傳遞速率會 突然產生變化,這會導致少量 能量往前進方向產生散射,並 且在超過水平線的距離處返回 地球。以色列航太工業艾爾塔 系統公司(Elta Systems)開發之 EL/K-7071型整合式通信情報定 向系統,可整合至各式無人飛 機系統,以滿足這種需求。該系 統設計乃在因應現代複雜的通 信網路環境;藉由遠航程、長續 航力的通信情報任務,可進行 掃描、攔截、測量、定位、分析、 分類,並且監控地面、空中與海 上的通信傳輸;這些訊號參數 通常具有高速頻移、短捷及經 常改變之特性。該系統的另一 個主要目的,在於傳播即時電 子作戰序列等情資報告,並且 提供可無縫銜接情報資料庫之 戰術及戰略情報。

WEAPON

電子攻擊的需求

遠端操控之消耗性干擾機可 以手動擲放、運用火砲投送、從 飛機上拋擲、或運用於小型無 人飛機系統上。現代電子攻擊 /電子支援系統所具備之能力, 可視所遭遇的特殊威脅,以及 電子攻擊系統所需的頻寬範圍 進行調整。因此,電子干擾就成 為電子攻擊的主要形式,包含運 用干擾器向敵雷達發射干擾信 號,進而運用高密度能量信號 阻斷接收器。目前有點頻(spot) 干擾、掃頻(sweep)干擾、阻塞 (barrage)干擾等三種雜波干擾 型式,以破壞敵人通訊頻道、或 飽和敵方雷達。運用具先進電 子支援酬載的無人飛機平臺, 優點是其所部署的干擾設備, 可比裝載在船艦或陸基干擾系 統上更接近目標。此外,配備無 人飛機系統的干擾器可以對目 標達到視距(Line-of-Sight, LOS) 範圍,而陸基或船艦之干擾器 則可能會在這距離之下曝露載

點頻干擾是將其所有功率集 中在單個頻率上,若將干擾機 以全功率從一個頻率移動到另 一個頻率上,則為掃頻干擾。後 者主要優點為快速連續地干擾 多個頻段。但這類干擾的效果 可能有限,因為實際上,並非所 有頻率都會同時受到影響。相 對的,阻塞干擾是透過單一干 擾器,同時以多個頻率進行干 擾;其優點是可以同時阻塞多 個頻率,但缺點是干擾器需要 在不同頻率間分散其功率,效 果可能受限。

有人電戰機的前途似乎頗為 黯淡,而無人飛機將成為電子 戰的明日之星。價格低廉、自主 化且能協同運作的無人飛機系 統將愈來愈受矚目,因為這些 平臺能執行一些最「單調、惡 劣、危險及不可能」的任務。無

人飛機載電子戰系統顯然相當 滴合。

然而,某些在現代戰爭環境 中倡議電子戰的人,無視敵人可 能運用低可視度科技反制電子 戰工作的想法。當處在戰鬥關鍵 階段,以及異於常態的戰鬥環 境中,意欲使用特殊電子戰技術 時,敵軍可能會以極低可視度外 形或極為隱蔽的天線配置,在極 高威脅的電子環境中存活。這將 會如格言所述,「最有效獲致成 功的方法仍尚未被發現」。

版權聲明

Reprint from Military Technology with permission.

掃描鷹無人機具長續航力特性,運用氣動彈射發射架起飛,毋須跑道。 (Source: USN/Joseph M. Buliavac)