

裝備研改

國軍防護背心性能提升之研究—— 以液態盔甲為例

提要

潘智強、石家豪

- 一、為提高戰場生存率,人們設計防護背心力求避免遭受直接傷害,而防護背心除了應 著重於防護能力提升外,更將重量輕量化及穿著舒適度,納入研發重點。
- 二、防護背心最初由金屬材質演變為軟質纖維材質,到了現今演進為複合式防護背心, 可透過模組化的設計,以肆應戰場上單兵之防護需求。
- 三、透過液態盔甲的技術運用,將剪切增稠液體的特性導入,發展出更輕、更具防護 性、更柔軟之全套防護戰鬥服裝,藉以提升國軍單兵防護裝備。
- 四、在未來防衛作戰環境趨於城鎮化之影響下,即便機甲部隊擁有強大火力、良好防護 力與快速機動力之特性,仍難以避免遂行城鎮戰。因此,將液態盔甲導入單兵防護 裝備,以提升裝備性能,期能提高單兵戰場生存率。

關鍵詞:防護背心、液態盔甲、剪切增稠液體、城鎮戰

壹、前言

從古至今,人類自有戰爭以來,為提高戰 場生存率,設計盔甲以保護戰士驅體,避免於 武力衝突中直接遭受傷害。而人類上半身主 要軀幹,除了包含主要臟器外,亦遍佈了數條 主動脈,如遭受傷害極可能危及生命。因此, 盔甲一向是人類史上保護身體的主要工具, 亦演變成現今的防護背心。而拜現今科技所 賜,各種武器攻擊強度日益增強;相對的,現 代單兵防護背心設計之原則,除了提升人員 面對外力(槍傷、刀傷)威脅之防護能力外,更 著重於重量的減輕,甚至追求改善人員穿戴 裝備的舒適感。

目前世界上,已有部分國家投入研究,將 一種液態材料運用於防護裝備製作,除了可 減輕裝備重量外,更延伸運用於四肢、關節 等部位之防護,將為未來單兵個人防護背心 帶來革新設計之突破。上述液態材料技術之 運用發展,將使未來防護裝備朝向輕量化發 展,戰鬥人員可以穿著與一般衣物般厚度的 防護裝備遂行任務,足以抵禦戰場上各種潛 在威脅,減少致命傷害以提高生存率外,更可 提升戰鬥人員舒適感,以提升作戰效率。

本文研究之動機目的,在於藉由探討液

態盔甲1 技術運用於國軍防護背心提升之可 行性,使防護背心更加輕便與舒適且能保持 應有之防護能力,因考量研究時間與篇幅受 限,主要以防護背心導入液態盔甲技術為主 要討論範圍,期望從中獲得未來研發方向與 概念。就我國目前單兵個人裝備中,可歸納出 具有顯著防護能力之配備,包含了頭盔、護目 鏡、防護背心與護膝護肘等項目。2基於前揭 本文研究動機目的所述, 囿於受限因素下, 後 續將針對防護背心為討論主軸,並藉以提供 國軍未來單兵防護背心之發展建議,俾利對 我國未來建軍備戰方面能有所助益。

貳、防護背心發展與種類簡介

一、防護背心之定義

首先介紹「防護」之定義,依據國軍軍語 辭典(92年修訂本)第六章作戰篇所示:防護 乃「預防或減少敵襲損害所行之手段」; 3 而 戰技是「一種運用戰具與工具之技藝,並發 揮其性能及預期之效果,包括對武器、裝備 之使用與體制之運用技術」。因此,防護裝備 概略之定義歸納如后:「為預防或減少敵襲 所造成人員之傷害,據以運用保護身體之工 具,使單兵得以無虞地發揮戰技,發揮其作

Science, "How Liquid Body Armor Works," http://science.howstuffworks.com/liquid-bodyarmor.htm, Accessed 10 May 2016.

胡壽宏,〈未來步兵單兵裝備配賦之研析〉《步兵季刊》,第234期,民國98年11月,頁83。

于宙主編,《國軍準則─通用─○○ 國軍軍語辭典(92年修訂本)》,民國93年3月,頁6-57。

戰效益。」由此可知,戰鬥人員必須有良好的 防護裝備,才能無後顧之憂的與敵接戰,進 而發揮應有之戰技,發揮戰技才能遂行戰鬥 行動,並以戰鬥達成戰術作為,達成最終作 戰任務。4 防護背心的功能是為了減少人體遭 受槍彈、砲彈碎片之傷害的防護裝備,它能 分散、吸收阻止外來穿透性的傷害;5 就材料 而言,防護背心可區分為硬式、軟式和複合式 三種,現今科技發展下,科學家已研發出液態 盔甲技術,也就是常態為軟式,當遭受外力瞬 間轉變為硬式,最後將恢復為柔軟之型態, 基於前揭研究動機所述,後續將針對防護背 心為討論主軸,並藉以探討如何運用液態盔 甲技術提升國軍防護背心之性能。

二、防護背心之演進

防護背心的老祖先即是古代所謂的盔 甲,最早在周朝就已經出現,是以皮質材料 製作,用以增加護甲的防護功能;漢朝也有 鐵製的盔甲,是由皮革進化為金屬材料製 作,其防護性大大提升,惟其重量恐怕也影 響了士兵與戰馬的機動性及靈活性,而西方 的盔甲演進史也大同小異,6人們在冷兵器7 時代時,便開始取捨盔甲防護力與重量之間 的問題。

自西元1500年之後,人類開始利用火藥 燃燒產生巨大能量的原理,將其毀滅的威力 運用於戰場上;也因為熱兵器時代的開始, 發展了黑火藥、火砲、火槍、後裝膛線技術等 科技,使戰爭所產生的殺傷力,造成了前所未 有衝擊,因此單兵個人防護的重要性更加令 人重視。而現代防護背心的功能,是從古代 盔甲的基礎衍生發展而來的,期能吸收、分散 子彈彈頭的穿透力,防止砲彈破片、流彈等 對人體的傷害。

在第一次世界大戰,各國曾研製以鋼材 製作防護背心(如圖一),因當時戰場環境以 獨特的壕溝戰模式為主,單兵不需經常轉移 陣地,而金屬材質的防護背心,穿著後因重 量的影響造成行動不便,卻仍可應付戰場需 求。但是,到了第二次世界大戰,壕溝幾乎已 不復存在,取而代之的是散兵坑,士兵經常需 要轉移陣地,因此笨重的金屬防護背心,已 經無法適應二戰作戰模式,因此各國致力於 研發更輕的金屬防護背心,惟當時的防護背 心製作材質,仍未跳脫金屬的運用。8

第二次世界大戰末期,美軍開始研製非 金屬材質的防護背心,掀起創新的技術革 命,直到西元1950年,美軍於韓戰率先使用

- 曾鴻鏗,〈本軍未來戰鬥裝具配賦規劃之研析〉《步兵季刊》,第243期,民國101年2月,頁1-2。
- 同註2,頁83。 5
- 顏瑞良,〈液態裝甲導入防護裝具之研析〉《陸軍後勤季刊》,104年第2期,民國104年5月,頁22。
- 吴逸凡、揭維恆、張忠義,《國防科技概論》(臺北:全華,西元2004年),頁9。
- 詹姆斯·鄧尼根,《數位化戰士》(臺北:麥田,西元1998年5月),頁50-51。

圖一 早期的金屬防護背心9

尼龍(Nylon)¹⁰材質的合成纖維製作防護背 心,但是要讓柔軟的尼龍材質具防彈功能, 必須以多層尼龍合成製作,也因此造成不透 氣及悶熱感,間接影響穿著的舒適度。11

西元1970年開始,由美國杜邦公司研製 成功,一種具有高強度的合成纖維,稱為功 夫龍(Kevlar)。12這種高強度纖維能使防護 背心的柔軟度大幅提升,同時也改善了防護 背心的舒適性,於是美軍率先使用了功夫龍 製作防護背心,並研製了輕型與重型兩種型

號。

功夫龍防護背心其材料強度為鋼鐵(同 等質量)的五倍,而密度僅為鋼鐵約五分之 一,具有低密度、耐衝擊、抗腐蝕、抗磨損、 抗疲乏等特性,18此優異性能廣泛地受到應 用。然而,對於現代優異的輕兵器,所發射 的高速槍彈,純粹以軟質防護背心應戰,仍 難以防護。為此,進而研製出了軟、硬複合式 防護背心,稱之為「攔截者防護背心」(如圖 二),以纖維複合材料作為模組化增強面板 或插入防彈板,以提高整體防護背心防護力 至少可達ⅢA級¹⁴以上的防彈能力。

綜合上述可見,防護背心之演進,主要取 决於材料的突破與否,因為材料可以決定防 護背心的防護力、重量與舒適度之三個關鍵 性因素,而上述因素,往往也是取决士兵於戰 場能否生存之關鍵所在。在20世紀40年代以 前,其第一代防護背心既笨重且防彈能力有 限,僅以堅硬鋼板構成;第二代防護背心使用 尼龍、輕型陶瓷後,還是沒有突破傳統的防


- CT Jennifer,〈戰場上想活命 千萬別穿防彈衣?〉,中時電子報,http://photo.chinatimes. com/20151209002509-260813, 檢索日期: 西元2016年5月8日。
- 10 ACOTEX, "Nylon Introduction," http://acotex.blogspot.tw/2013/05/nylon.html, Accessed 15 May
- 11 陳柏元,〈剪切增稠液體防護纖維材料之研究〉(桃園:國防大學理工學院化學及材料工程學系碩 士論文,民國101年),頁1。
- 12 大波篤司,《軍事裝備》(新北市:楓書坊,西元2011年),頁120。
- 13 陳幼良、李佳翰、莊文彦,〈非平面陶瓷複合材料板抗彈性能之研究〉《中正嶺學報》,第44卷第1期, 民國104年6月,頁90。
- 14 美國國家司法學會NIJ防彈標準, http://www.nij.gov/, 檢索日期: 西元2016年5月24日。

Interceptor Body Armor (IBA) - Coyote Brown (USMC)

圖二 美軍「攔截者防護背心 (Interceptor Body Armor, IBA)」 (資料來源:同註9)

圖三 剪切增稠液體 (Shear Thickening Fluid, STF) 17

彈原理;但隨著材料 科技的進步,第三代 性能優異的防護背心 紛紛問世,大大提高 了防護能力,同時更 加追求輕便性與舒適 度,使防護背心性能 之重要性再度顯現 於世。15

如今最新科技研 究發現,只要以功夫 龍纖維或純纖維布 料為基礎,再添加一 種稱為剪切增稠液體 (Shear Thickening Fluid, STF) 16 (如圖 三),運用此液態奈 米材料將可以大幅 提升防護背心的強度 與抗衝擊性,未來將 不再需要多層防彈 纖維,就能夠達到一 般防護的需求,進而 減輕了防護背心的 重量並提升其柔軟

¹⁵ 鄒堡旬,〈防彈衣功能演進之探討〉《聯合後勤季刊》,第16期,民國98年2月,頁72-76。

¹⁶ Science, "How Liquid Body Armor Works," http://science.howstuffworks.com/liquid-bodyarmor.htm, Accessed 23 May 2016.

¹⁷ 美國陸軍網站, https://www.army.mil/, 檢索日期: 西元2016年5月8日。

度,甚至能讓防彈纖維應用不再侷限於防護 背心或頭盔等主要防護裝備,更能擴展到四 肢、關節或其他重要部位防護,且至少能達 到ⅢA級以上的防彈能力。

上述防彈等級是根據美國國家司法學會 (National Institute of Justice, NIJ)所規範制 定,NIJ防彈標準0101.04主要在測試防護背心 阻擋槍彈的性能要求,透過各種槍彈測試, 區分I、IIA、II、IIIA、III及IV六種防護等級,考 量現代槍彈傷害皆遠高於I級,故暫不納此研 究探討。其中IIA、II、IIIA級測試,係於5公尺 距離,以9公厘手槍射擊,測試防護背心承受 子彈穿透(貫穿)之能力,以點44口徑手槍射 擊,測試防護背心承受子彈威力之凹陷程度, 對應於人體可能受傷的嚴重程度,根據NIJ防 彈標準律定之凹陷標準不可超過44公厘,因 超過44公厘以上的非貫穿性傷害,已視為損 傷人體;另III及IV兩種等級測試,係於15公尺

距離,以步槍射擊測試,同樣測試如上述承 受槍彈之穿透(貫穿)力與不可超過44公厘 之凹陷標準(如表一)。18

以下針對美國國家司法學會所律定的 0101.04防彈標準,說明不同等級的防護背心 性能之差異,其標準不僅代表能抵抗槍彈穿 透外,更強調其受力凹陷程度不可以超過44 公厘,因為超過44公厘凹陷將對人體造成嚴 重傷害。

(一)IIA級

此等級的防彈標準,代表此防護背心能 夠抵擋9公厘手槍的射擊(在射速必須小於 341公尺/秒的條件下),一般普通的手槍彈皆 在此攻擊之強度。

(二)川級

此等級的防護標準,代表此防護背心能 夠抵擋9公厘手槍的射擊(在射速必須小於 367公尺/秒的條件下),這種等級除了可以抵

文 文画画次列及字目110例并以中010101				
防護等級	子彈類型	子彈質量	參考速度(±30 ft/s)	
IIA	9mm FMJ RN	8.0g (124gr)	341 m/s (1120 ft/s)	
	.40 S&W FMJ RN	11.7g (180gr)	322 m/s (1055 ft/s)	
П	9mm FMJ RN	8.0g (124gr)	367 m/s (1205 ft/s)	
	.357 Mag JSP	10.2g (158gr)	436 m/s (1430 ft/s)	
IIIA	9mm FMJ RN	8.0g (124gr)	436 m/s (1430 ft/s)	
	.44 Mag JHP	15.6g (240gr)	436 m/s (1430 ft/s)	
III	7.62 mm NATO FMJ	9.6g (148gr)	838 m/s (2780 ft/s)	
IV	30 cal M2 AP	10.8g (166gr)	869 m/s (2880 ft/s)	

表一 美國國家司法學會NIJ防彈標準0101.04

資料來源:筆者參考〈美國國家司法學會 NIJ 防彈標準0101.04〉整理製作

¹⁸ 同註14。

擋射速較快的9公厘手槍彈外,還包含了破壞 力較強的麥格農 (Magnum) 手槍彈。此外,它 亦必須涵蓋IIA級的防彈能力。

(三)IIIA級

此等級的防護標準,說明此防護背心可 抵擋9公厘手槍射擊(在射速必須小於436公 尺/秒的條件下)。通常必須是9公厘口徑的 衝鋒槍或大型左輪手槍才有這種攻擊強度。 此防護等級代表著必須能抵抗絕大部分手槍 的射擊,亦必須同時擁有IIA級及II級的防護 等級。

(四) III級

此等級的防護標準,表示防護背心是設 計用來抵擋步槍射擊,可抵擋7.62公厘口徑 的來福槍子彈射擊(在射速必須小於838公 尺/秒的條件下),如同我國軍五七式步槍的 攻擊強度。此外,它必須同時擁有IIA級、II級 及IIIA級的防護等級。

(五)1V級

此等級的防護標準,表示防護背心是設 計用來抵擋步槍射擊,可抵擋7.62公厘口徑 的卡賓槍穿甲彈射擊(在射速必須小於869 公尺/秒的條件下),如同AK47步槍、M240機 槍的攻擊強度。此外,它必須能兼具IIA級、II 級、IIIA級及III級的防護等級。

三、防護背心材質簡介

(一)複合式防護背心

1.作用原理概述

複合式防護背心以美軍的「攔截者防護 背心」最具代表性,其防護等級特別高,美軍 投入多年時間與數億美元經費研製,自西元 2001年起,美軍各部隊開始陸續換裝。19而 複合式防護背心其防彈作用原理,主要區分 由外而內三個部分來說明:第一是運用最外 層防彈插板 (Small Arms Protective Insert, SAPI) 將彈頭或破片彈開; 第二是透過防護 背心本身高性能纖維材料,使彈頭變形來消 耗、減弱彈頭的動能;第三是藉由軟質防護 內層來吸收分散彈頭的衝擊能量,雖然彈頭 透過層層防護阻隔,無法造成直接的貫穿性 傷害(如圖四),但上述的衝擊能量,卻極 可能造成人體內臟的傷害,甚至造成生命威 脅,目前美國針對這種非貫穿性傷害,列為防 護背心性能考量之重要依據。20

2.優、缺點分析

(1)優點:


A. 整套攔截者防護背心可區分為:防護背 心本體、軟質防護內層、前後兩片的防 彈插板(SAPI)三種模組部分,防護背 心本體除了前、後各設計容納防彈陶瓷

¹⁹ 美國防部,〈背心組件需研改(IOTV)〉(對攔截防彈衣之彈道測試和產品質量監督報告,西元2011 年1月),頁10。

²⁰ 陳幼良、朱政崑,〈高速彈頭撞擊不同組織織物能量耗損之探討〉《中正嶺學報》,第37卷第2期,民國 97年12月,頁45-46。

Interceptor Body Armor (IBA) – Woodland (USMC - US Army)

圖四 美軍攔截者防護背心(叢林迷彩)

(資料來源:同註17)

插板的袋口插槽外, 更增設多個附加掛 點,可依不同的戰場需求加掛裝備。

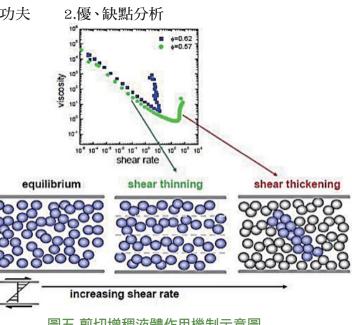
- B. 攔截者防護背心,除了傳統的頸部、胸 部及背部,還有一片護襠保護單兵的小 腹與襠部。不使用防彈陶瓷插板時,攔 截者防護背心就能達到ⅢA級的防護等 級,除可防護手槍射擊外,還可防護9 公厘口徑槍彈或砲彈碎片傷害。
- C. 攔截者防護背心本體、軟質防護內層、

前後兩片防彈插板(SAPI)三種模組全 裝備時,其防護等級最高可上升到IV 級,足夠防護7.62公厘口徑槍彈。若不 加裝護頸、護襠時,重量僅為7.4公斤, 整體加強防護等級,也減輕了重量負 荷,比傳統防護背心的重量11.4公斤減 輕了將近4公斤。21

(2)缺點:

A. 雖然攔截者防護背心前後兩片防彈插

21 Olive-drab, "Interceptor Body Armor System," http://olive-drab.com/od_soldiers_gear_body_ armor interceptor.php, Accessed 24 May 2016.


板裝備後,其防護等級可上升到Ⅳ級, 但同時也前、後各增加1.8公斤,使整體 重量增加了3.6公斤,也同時影響了單 兵在戰場上的靈活度。

- B. 防彈插板的材料老化問題,往往影響了 防護之安全性,所以當材料壽限屆期 時,必須全面汰換,而人員的操作使用 方式,也同樣影響更換的週期。
- C. 攔截者防護背心還是以功夫龍纖維為 基礎製作,因此,相對受到光線及潮濕 的環境因素影響,在保管得當的情況 下,使用最多五年必須更換,畢竟功夫 龍纖維受到上述環境因素 影響後,將會加速材料劣 化,嚴重影響防護能力。22

(二)液態盔甲導入防護背心

1.構成原理概述

美陸軍研究實驗室與特拉華 (Delaware) 州立大學研究中心 合作研究,運用新技術製作出一 種稱為剪切增稠液體(STF)的物 質,使其能夠在液態、固態之間 自由切換,這種新型液態盔甲技 術,是利用一種非牛頓流體(NonNewtonian Fluid)23的定律來製作而成。這種 性能奇特的新材料,其分子移動緩慢時,其硬 質粒子能到處游移,此外觀會形成液態;當 分子間移動加速時,硬質粒子互相碰撞形成 阻礙,使其變得更濃稠而強韌,此外觀則呈 現固態(如圖五)。因此,研究人員運用剪切 增稠液體披覆在功夫龍織物的周邊,或使其 完全滲入功夫龍纖維中,經撞擊或針刺測試 時,發現可以有更佳的防護效能,也意謂在 剪切增稠液體的作用之下,能有效降低子彈 侵入的機率。24

圖五 剪切增稠液體作用機制示意圖 (資料來源:同註11,頁5)

- 22 同註12,頁124。
- 23 General Chemistry Online, "What is a non-Newtonian fluid?" http://antoine.frostburg.edu/chem/ senese/101/liquids/faq/non-newtonian.shtml, Accessed 25 May 2016.
- 24 林宏文、宋鈺、陳幼良、胡文華、葛明德,〈剪切增稠奈米漿料應用於液體裝甲機制研究〉《中正蘋學 報》,第36卷第2期,民國96年12月,頁82。

(1)優點:

A. 可增加防護背心的防護面積:我們都能 瞭解,現役的防護背心,著實無法保護 戰鬥人員的許多關鍵部位,如頸部、手 臂、手肘、腿部及襠部等,而身處戰場 的士兵們,許多戰鬥動作皆大幅運用到 這些身體部位,在經常性的激烈運動 和伸展的動作下,更需要包覆性周延、 具有防護能力且不影響行動的防護裝 備提供防護;且如今所使用的防護背 心,柔軟度不佳,無法用來製作成可彎 曲折疊的貼身戰鬥服,而捨棄了關節與四肢的防護,因此僅能保護核心軀幹部位。以美軍於西元2007年5月設計「改良型外部戰術背心」(Improved Outer Tactical Vest, IOTV)²⁵概念為例說明(如圖六),為了強化頸部、肩部、上臂、腰際、襠部的防護,增加了多層模組化的防彈護板,可見除了防護背心所能保護的關鍵部位外,仍有許多身體部位遍佈著數條大動脈,也是人類致命的要害所在。

圖六 改良型外部戰術背心 (Improved Outer Tactical Vest, IOTV) 26

- 25 Defense Industry Daily, "IOTV: Interceptor's Incremental Improvement," http://www.defenseindustrydaily.com/iotv-interceptors-incremental-improvement-03381/, Accessed 15 May 2016.
- 26 http://www.pointblanksolutionsinc.com/Military/iotv.php, Accessed 15 May 2016.筆者參考網站圖片翻譯。

如能參考美軍改良型外部戰術背心加強防護面積的概念,並運用剪切增稠液體(STF)的材料特性,將其技術導入使防護背心升級為全身防護的液態盔甲(如圖七),運用其遭受槍彈擊中時,將瞬間硬化且能有效吸收衝擊力,分散撞擊受力面積,局部凹陷較小,與傳統防護背心性能相較之下,相對的柔軟與堅韌,也兼具了防彈能力,27將來防彈衣不再拘限於背心之構型,更可衍生出

包含袖子、褲管、 護襠之全套戰鬥 服,足以保護戰鬥 人員身體的任何 部位。

B. 防護背心輕量化,

仍可維持防護效 能:笨重的防護背 心往往導致戰鬥 人員於戰場上動 作不便,因此解決 防護背心重量的 負擔,是使用者最 直接且急需處理 的問題;相對的,

需要相當的防護

能力,就必須要有足夠的防護面積,如 此將無法避免防護背心重量的增加, 這個矛盾的問題,是目前最需要以科技 克服的關鍵因素。如果將剪切增稠液體 (STF)運用於製作液態盔甲防護背心 (約5公斤),將比美國現役的攔截者 防護背心大大減輕約三分之一的重量, 且材質輕薄,可跳脫防護背心的構型, 進而設計為戰鬥服般合身,使全身防護 面積增加,²⁸包覆更多身體重要部位,

圖七 液態盔甲 (Liquid Armor) 與傳統背心之比較 (資料來源:筆者參考註28網站圖片翻譯說明)

- 27 同註19。
- 28 Leslie Katz, "Liquid body armor could save you from a bullet," CNET, http://www.cnet.com/news/liquid-body-armor-could-save-you-from-a-bullet/, Accessed 8 May 2016.

增加整體防護效能。

C. 遭遇衝擊後,可再度恢復原貌:利用剪切增稠液體製造的液態盔甲防護背心,平時柔軟舒適,與一般戰鬥服一樣貼身;當遭到利器砍、刺,或高速彈頭、砲彈碎片衝擊後,此液態盔甲防護背心將變得堅韌無比,而且能將遭受的衝擊外力,沿織物迅速分散開來,可降低單位面積所承受的壓力。當衝擊力消失後,液態盔甲防護背心(如圖八)也重新變

軟,恢復成原來的柔軟形態。29

D. 增加穿著舒適度,戰鬥動作更敏捷:舒 適性的定義可歸納為人體因穿著衣物 而達到生理、心理等方面平衡愉悅的狀態;而舒適性也就是人類喜愛穿著衣物 的主要原因,在現今科技日新月異下, 科學家利用理論推斷、儀器測試實驗 等方式,來追求所謂的舒適度,大致可 分為溫度、感官、適身度及心理等四方 面的感受(如表二)。30 現役的防護背心

剪切增稠液體滲入功夫龍纖維織布後的射擊實驗測試

2層經處理的功夫龍織布經3槍射擊仍未穿透

4層未經處理的功夫龍織 布經射擊皆被穿透

4層經處理的功夫龍織布 經射擊皆未穿透

圖八將剪切增稠液體滲入Kevlar纖維遭子彈衝擊後的形態 (資料來源:筆者參考註17網站圖片翻譯說明)

(2)缺點:

目前剪切增稠液

- 29 王金印,〈由防彈衣演進論液態盔甲發展之研析〉《步兵季刊》,第240期,民國100年5月,頁77-95。
- 30 李貴琪、陳幼良、鍾燕玲、柯惠馨、許群翎,〈中華民國警用防彈衣之舒適性分析研究〉,行政院國家 科學委員會專題研究-個別型計畫,民國93年,頁1。

體(STF)實屬新開發之複合奈米材料,仍有 部分問題尚須克服,如在極端氣候下(如高 溫、潮濕)該材料使用之壽限、高分子材料之 老化問題、受力變化與承載負荷最大限度、其 他物理特性變化影響等因素,皆須深入實驗 探討掌握,才能將此材料做更成熟之運用。31

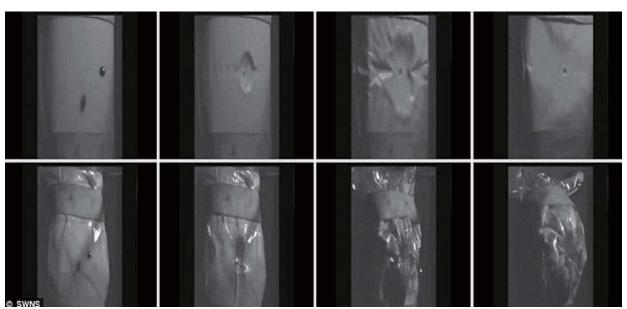
(三)各國研究概況

1. 美國:剪切增稠液體的相關研究最早開 始於西元2000年,當時美國特拉華州 立大學就開始與美國陸軍研究實驗室 一起合作研發,以液態材質製作防彈、 防刀傷護具,並申請液態盔甲專利,希 望利用相同的原理,進一步地開發液態 盔甲,使其能普遍運用。因為,傳統的 功夫龍防護背心仍存在著相當的缺點, 使暴露在外的手臂和下肢非常容易遭 受致命的傷害,所以美軍希望進一步完 成研發,使液態盔甲可以普遍取代功夫 龍相關防護裝備。32

2. 英國:在西元2010年,英國航太系統

表二 現行防護背心影響舒適性相關因素

區分	判斷因素	影響現象分析(針對防護背心)	
保溫性	與皮膚接觸的產熱及散熱	佳:若過高溫則會產生悶熱現象 差:不保暖	
外界氣溫	氣候類型與變化	晴天: 行動方便但易造成悶熱感 雨天: 行動不便且防護背心易生黴菌	
防護背心厚度	防護背心厚度測量結果	過厚: 易悶熱, 重量大 過薄: 雖然輕, 但防護性差	
防護背心重量	防護背心重量測量結果	過重:易造成行動不便與負擔	
防護背心柔軟度	防護背心柔軟度測量結果	柔軟度佳:活動方便 柔軟度差:過於堅硬而阻礙行動	
排汗性	布料透氣快乾,以利於對流與蒸發	排汗效果佳: 感覺舒適涼爽 排汗效果差: 感覺悶濕不舒服	
壓迫性	衣服的重量與布的張力	壓迫性大將造成呼吸不順,不利血液循環	
尺寸規格	尺寸大小	合身: 行動方便 不合身: 妨礙肢體活動	
被覆蓋面積	包覆面積大小	被覆大:防護性高,但阻礙活動被覆小:活動方便,防彈安全性相對減低	
防護性	防護背心材質	為防護背心最基本之性能	


資料來源:筆者參考註30整理製作

- 31 同註29。
- 32 同註15,頁72-85。

公司(BAE)使用功夫龍纖維和剪切增 稠液體製作防護背心,研究人員開發 這種稱為防彈卡士達醬(Bullet-proof Custard) 33 的材質,是一種具有剪切稠 化特性的液體,即流體黏度會隨剪切率 增加而變稠。研究人員透過測試比較, 以空氣槍分別對著未經液態盔甲技術 處理過的31層功夫龍纖維,與已導入液 態盔甲技術的10層功夫龍纖維射擊,皆 以超過300公尺/秒的射速,擊發金屬鋼 球子彈,結果顯示經液態盔甲技術處理 的防彈效果較佳(如圖九)。這款最新

- 研製的液態盔甲防護背心使用的原料 較少、重量更輕,也為單兵作戰減輕了 負擔。
- 3. 波蘭:波蘭Moratex安全研究所團隊指 出,他們所研發的剪切增稠液體(如圖 十) 運用於製作液態盔甲,實施非貫穿 傷害測試,凹陷的幅度只有1公分,可 明顯減少衝擊之傷害,且在抵擋槍彈攻 擊後,液態盔甲又可恢復原狀。34這款 液態盔甲防護背心,能抵擋450公尺/秒 射速的彈頭,相當於美國NIJ防彈標準 0101.04的ⅢA級。但波蘭發現即使將剪

圖九 英科學家研製出新款防彈卡士達醬防護背心,未來將投入使用 (資料來源:同註33)

- 33 Mail Online news, sport, celebrity, science and health stories, Ian Drury, "Bullet-proof custard: British soldiers could be wearing revolutionary new liquid body armour within two years," http:// www.dailymail.co.uk/sciencetech/article-1346877/Bullet-proof-custard-British-soldiers-wearingrevolutionary-new-liquid-body-armour-years.html, Accessed 8 May 2016.
- 34 同註28。

切增稠液體與功夫龍合成,都比多層功 夫龍纖維重量還重,如可以改進其材料 組成,而不依賴功夫龍為基礎來製作 的話,將可為液態盔甲防護背心,開創 投入實戰運用的新願景。35

圖十 波蘭科學家研發的液態盔甲材料 (資料來源:同註35)

參、我國國軍防護背心現況探討

一、現行防護背心簡介

國軍現行配發部隊使用的防護背心,計 有輕便型防護背心、多功能防護背心、戰術 I型防護背心及戰術Ⅱ型防護背心等四種樣 式。未來國軍應該依作戰任務需求,朝向具 有輕便性、舒適性、功能性、優異防彈能力、

可加強防護面積等特性,發展新式防護背 心。近日,國防部軍備局生產製造中心展示 「國軍地面部隊新式戰鬥個裝」,乃參考美 軍實戰驗證現役裝備所研發製造,其中針對 「戰鬥背心」的部分亦特別加強防彈效能。上 述,我國已配發部隊使用或近期研發展示之 防護背心,包含了部隊普遍使用於一般射擊 與衛哨勤務的輕便型防護背心;可依需求配 掛各功能袋的多功能防護背心;可依任務增 加模組化功能袋、防彈插板的戰術 I 型防護 背心;依任務屬性,配合作戰需求,增加了快 拆扣環方便落水逃生的戰術Ⅱ型防護背心;³⁶ 依美軍戰鬥個裝標準,並針對國人體型及臺 灣氣候等因素考量研發的「戰鬥個裝戰鬥背 心」,37依序如后所述。

(一)輕便型防護背心

適用於敵情威脅較低之一般衛哨警衛 勤務及部隊射擊訓練所使用,此型防護背心 (如圖十一)前方有大面積的魔鬼氈,可便於 穿戴牢固,其抗彈等級為ⅢA級38(可抵擋一 顆8克的9公厘口徑手槍彈,以射速小於436公 尺/秒的條件下)。此輕便型防護背心重量介 於2.3公斤至3.5公斤間,依筆者實際穿著經

- 35 Kelsey D. Atherton, "POLAND DEVELOPING LIQUID BODY ARMOR," POPULAR SCIENCE, http://www.popsci.com/poland-develops-bulletproof-liquid-armor, Accessed 24 April 2016.
- 36 曾鴻鏗,〈單兵戰鬥裝具之研析〉《步兵季刊》,第253期,民國103年8月,頁18-19。
- 37 李一豪,〈媒體參訪國軍戰鬥個裝-見證軍備研發成果〉,軍聞社,http://mna.gpwb.gov.tw/post. php?id=13&message=80204,檢索日期:西元2016年10月28日。
- 38 同註14。

圖十一 國軍輕便型防護背心 (資料來源:同註4,頁19)

驗,發現此防護背心之材料柔軟度仍稍嫌不 足,容易影響單兵射擊姿勢,許多戰鬥動作 也將連帶受到影響;另外,因防護背心內層 材質無法通風、排汗,容易產生悶熱感與不 適;在裝備尺寸方面,輕便型防護背心皆為統 一型號,無法解決身材差異的問題,裝備合身 度也將間接影響戰鬥人員心理。

(二)多功能防護背心

適用於各項戰(演)訓任務,除了具備輕 便型防護背心的抗彈等級為ⅢA級之外(可 抵擋一顆8克的9公厘口徑手槍彈,以射速小 於436公尺/秒的條件下),在胸前增加了6條 模組(如圖十二),合計50個掛點,可依作戰 任務需求的不同,以模組方式選擇需要配掛 的各種功能袋,如彈匣袋、手榴彈袋、無線電

圖十二 國軍多功能型防護背心 (資料來源:同註4,頁19)

機掛袋及未來戰場資訊裝備等選項。此多功 能防護背心重量介於2.3公斤至3.5公斤間,39 其整體構型除了新增上述模組功能外,其餘 基本功能皆與輕便型防護背心概同,其整體 舒適度與合身度亦偏低,穿著後亦影響作戰 人員戰鬥效能。

(三)戰術I型防護背心

本款防護背心(如圖十三)係依陸戰隊 作戰需求設計,在其前、後兩面保留內袋設 計,可視作戰需求的威脅程度,選擇加裝前、 後側抗彈板,藉此提高防護背心的防護能 力,抗彈等級可達ⅢA級(可抵擋一顆8克的9 公厘口徑手槍彈,以射速小於436公尺/秒的 條件下)。戰術 I 型防護背心重量介於3.3公斤 至4.6公斤間,區分為S、M、L、XL、XXL五種型

39 同註4,頁19。

圖十三 國軍戰術 | 型防護背心 (資料來源:同註40)

號供戰鬥人員選擇,其防護面積正面為3,000 平方公分至4,060平方公分,背面2,320平方 公分至3,420平方公分;40另外,戰術 I 型防護 背心在前方設計了左右兩個區塊的模組,合 計66個掛點,依需求可配掛各式功能袋,如 彈匣掛袋、手榴彈掛袋、無線電機袋及未來 戰場資訊裝備等,以提升作戰效能與戰場存 活率。41

(四) 戰術||型防護背心

本款防護背心(如圖十四)仍依陸戰隊 作戰需求設計,為戰術 I 型防護背心之改良 款式,因應陸戰隊的灘岸作戰需求,於肩部

圖十四 國軍戰術||型防護背心 (資料來源:同註42)

設置快拆拉環,可於落水後約3秒內迅速脫 卸,42避免陸戰隊員於特殊狀況時溺水,其 抗彈等級為ⅢA級,重量介於3.4公斤至4.4 公斤間,同樣區分五種型號(S型3.3公斤以 下;M型3.6公斤以下;L型4.0公斤以下;XL型 4.3公斤以下; XXL型4.6公斤以下) 供戰鬥人 員選擇,戰術[[型防護背心其防護而積比戰 術 I 型較少, 正面2.500平方公分至3.500平 方公分、背面2,000平方公分至2,900平方公 分,43因為快拆拉環的設計,使兩肩的寬度 比戰術」型還要窄,相對的降低部分舒適度。 在前方設計了單一區塊的模組,合計53個掛

⁴⁰ 國防部,〈戰術 I 型防護背心〉,國防部網站, https://www.mnd.gov.tw, 檢索日期: 西元2016年5月17日。

⁴¹ 同註33。

⁴² 國防部,〈戰術II型防護背心〉,國防部網站, https://www.mnd.gov.tw, 檢索日期: 西元2016年5月17日。

⁴³ 同註4,頁18-20。

點,依需求可配掛各式功能袋,如彈匣掛袋、 手榴彈掛袋、無線電機袋及未來戰場資訊裝 備等,以提升作戰效能。

(五)新式戰鬥個裝戰鬥背心

本款防護背心(如圖十五)乃「國軍地 面部隊新式戰鬥個裝」其中一項戰鬥裝具, 參考美軍實戰驗證戰鬥個裝及國際檢測標 準,針對國人體型、臺灣潮濕悶熱氣候,並考 量一般部隊及特戰部隊作戰訓練需求所設 計,在其前、後兩面保留內袋設計,可視戰場 威脅程度,選擇加裝前、後抗彈板(Ⅲ或IV 級),藉此提高防護背心的防護能力,抗彈等 級最高可達IV級(可抵擋步槍彈,在射速必 須小於869公尺/秒的條件下)。44因應本島多

圖十五 國軍新式戰鬥個裝戰鬥背心 (資料來源:同註44)

44 呂昭隆,〈蔡英文:3年內全面提升國軍個人裝備〉,中時電子報,http://www.chinatimes.com/realti menews/20160912003328-260417,檢索日期:西元2016年10月28日。

河川環境及灘岸作戰需求,於肩部設置落水 快解拉繩,可於落水後迅速脫卸,避免溺水。 前方設計了上、下兩大區塊的模組,合計32個 掛點及大面積魔鬼氈,可配掛各式功能袋, 如彈匣掛袋、手榴彈掛袋、無線電機袋等;另 外,於上模組內側預設7吋戰術平板及軍圖收 納袋,提供未來數位化戰士資訊裝備建置運 用,以提升作戰效能。45

二、現行防護背心之缺點

(一)防護能力有限

國軍現行防護背心,除了新式戰鬥個裝 戰鬥背心外(需加裝抗彈板),抗彈等級皆為 ⅢA級,僅可抵擋一顆8克的9公厘口徑手槍彈 (射速小於436公尺/秒的條件下),在現代戰 場環境下,隨時都將遭遇9公厘口徑手槍彈等 級以上的武器襲擊,且射速超過436公尺/秒 以上比比皆是,在各種武器彈頭殺傷力日益 增強的趨勢下,防護背心的抗彈級數也應相 對增加,故抗彈等級至少須維持在Ⅲ級(含) 以上,以抵抗7.62公厘口徑步槍彈(射速小於 838公尺/秒) 的威脅。46

(二)防護部位不足

由於國軍現行防護背心(包含新式戰鬥 個裝戰鬥背心) 均受限於傳統背心之構型,並 無研發其他衍生防護配件,因此僅能保護上 半身主要軀幹,無法提供全面的身體防護, 如保護頸部、肩部、腰部及襠部等重要部位, 且無法因任務威脅的程度變化,適度調整更 改個人防護部位,無法充分發揮防護背心效

(三)厚重不具彈性

目前國軍所使用的防護背心,重量最重 達4.6公斤,與美軍現役攔截者防護背心相比 較,其攔截者防護背心不加其他配件與防彈 插板,重量僅達3.8公斤,且防彈能力可達ⅢA 級,與我現行防護背心之防彈能力概同,重量 卻整整輕了約1公斤,我軍防護背心的厚重將 造成戰場上行動負擔,目前新式戰鬥個裝(包 含各項防護裝具)整體淨重為12公斤,針對 防護背心單項重量的部分仍未公開,暫不列 入比較;47另外我國現役防護背心材質不夠 柔軟且不具彈性,容易造成人員在穿戴上有 壓迫感,影響血液循環與呼吸不順,間接影 響射擊精準度。

(四)不易乾燥易生黴菌

我國現役防護背心皆無防護內層的透氣 設計,使得防護背心因排汗性不佳而潮濕, 而潮濕卻是影響功夫龍纖維防彈性能最大因 素之一,且將造成防護背心壽限提早屆期。目 前新式戰鬥個裝戰鬥背心,搭配人員穿著透

⁴⁵ 中天新聞,〈鋼鐵特訓班-重裝新防線〉, https://www.youtube.com/watch?v=EFO9FIg-7Xg, 檢索 日期:西元2016年5月8日。

⁴⁶ 同註12。

⁴⁷ 王烱華, 〈現行戰鬥個裝 國防部官員坦承:遇敵必死無疑〉,蘋果即時報, http://www.appledaily. com.tw/realtimenews/article/new/20160912/947102/,檢索日期:西元2016年10月28日。

氣戰鬥衫來改善悶熱感,但背心本體內層汗 水殘留情形仍存在;另外防護背心潮濕易生 黴菌,嚴重影響戰鬥人員的健康;故應採用 抗菌材質,強化其通風效能,使戰鬥人員在 防護背心穿著上不再有悶熱感,維持戰鬥人 員健康並兼顧舒適感,可相對提高作戰效能 與戰鬥力。

(五)功能性不足

我軍現行輕便型防護背心,無法視作戰 任務與威脅程度,組合加裝護頸、護肩及抗 彈板等配件,以增加防護能力。48目前除了輕 便型防護背心外,皆設計了模組掛點,供戰 鬥人員依作戰需求,配掛各式功能裝備。惟 我國目前新型模組化擴充項目仍有限,在同 一種基礎構型下,應可依照任務性質與職務 (指揮官與第一線戰鬥人員),採模組化選配 的方式(如指揮工具、觀測及夜視器材收容 袋、護頸、護臂、護襠等),靈活運用各項功 能性與裝備特性,協助戰場上所有人員無後 顧之憂的遂行作戰任務。

肆、我軍未來防護背心發展之 研析與建議

一、未來防衛作戰環境之分析

臺灣西半部地區已發展為城鎮林立之型 態,因為人口的分布,往往受都市生活機能較 發達及工作方便等誘因,而向都市集中生活 發展,也讓都會區核心向周邊地區發展出衛 星城鎮,49而現代環境發展的複雜程度,也直 接影響未來地面部隊作戰之困難度。以美軍 為例,伊拉克戰爭、利比亞戰爭皆於城鎮接 戰。因此,未來我軍遂行防衛作戰時,將無可 避免必須於城鎮50化的戰場環境遂行戰鬥。 城鎮戰無庸置疑已演變成未來主要的作戰型 態(如圖十六),我軍應致力於提升武器及防

圖十六 美國陸軍第一騎兵師士兵正在掃蕩位在伊 拉克費盧傑一棟廢墟房屋

(資料來源:同註17)

- 48 同註25。
- 49 國防部史政編譯室,《城鎮戰彙編Military Operation on Urban Terrain》(臺北:國防部史政編譯 室,民國97年9月),頁22。
- 50 坂本明,《圖解未來兵器》(新北市:楓書坊,西元2014年),頁43-48。

護裝備性能,期能有效提 升城鎮作戰之能力。51

二、未來防護背心運用 之需求

因防衛作戰環境轉 變,戰、甲、砲車乘員必將 面臨下車或探頭戰鬥的狀 況(如圖十七),雖然裝甲 兵與機械化步兵具有強大 火力、良好防護力與快速 機動力的特點,但機甲部 隊絕對無法避免於城鎮中 作戰。52更何況非機甲部隊 之戰鬥人員,並沒有如機

圖十七 美國陸軍機甲部隊乘員遂行城鎮戰持槍警戒 (資料來源:同註17)

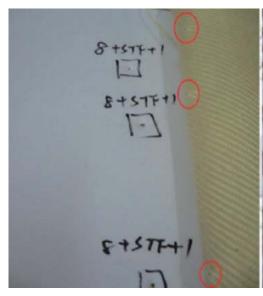
甲部隊般擁有裝甲防護力之保護,其遂行城 鎮作戰的生命危安更加險峻。綜上可知,因應 作戰環境的變化,更突顯出未來防護背心運 用需求之重要性,國軍應該致力於提升單兵 防護能力,以減少戰鬥人員傷亡,維持作戰能 力,降低戰場救護壓力及後續國家撫卹等衍 生問題。53

尤其機甲部隊乘員多屬中、高專長,要訓 練成熟手起碼要1至2年的養成,才能成為合 格的戰鬥員,這與短時間內完成臨戰訓練的 新兵是截然不同的。基此,國軍所有戰鬥人員 如皆能獲撥性能優異之防護背心,更能無後 顧之憂遂行作戰;故應發展具有充分的防護 能力、防護部位完整、輕便且具彈性、通風易 乾燥、通用功能性等條件之防護背心,以適 應未來國軍遂行防衛作戰實需。

三、我軍未來防護背心之發展建議

防護背心的運用能有效降低士兵的傷 亡,如今我國生育率逐年降低,每個人都是家 中珍貴而不可取代的重要資產,官兵投入寶

- 51 葉建成、陳鴻鈞,〈步兵部隊城鎮作戰訓練之探討〉《陸軍學術雙月刊》,第50卷第537期,民國103 年10月,頁25-27。
- 52 同註28。
- 53 邱有福,〈觀點投書:國軍現代單兵戰鬥裝備〉,風傳媒,http://www.storm.mg/article/59944,檢索 日期: 西元2016年5月26日。


貴生命參戰,更應保障其個 人防護安全。而運用剪切增 稠液體的特性,來製作液態 盔甲防護背心,將可改善防 護能力、防護部位、鈍重性、 悶熱及功能性不足等問題,⁵⁴ 最後針對我軍未來防護背心 之發展,列舉相關建議如后 所述:

(一)液態盔甲技術應廣泛發 展運用

目前我國所研發的防護 背心仍以功夫龍材質為主,

因應現今戰場環境日益嚴峻,各國皆致力於 單兵防護背心性能之提升,尤其針對防彈能 力、實用性、輕便性及舒適度等進行多方面需 求之研發,如今我現役防護背心及防彈頭盔 皆沿用美軍最基礎之防護裝備構型來產製, 且防護能力無法隨任務威脅程度進行升級調 整,實無法適應防衛作戰實需。在目前既有 液態盔甲技術的基礎上,應廣泛運用研發相 關單兵防護裝備,除了防護背心、頭盔之外, 更可以製作護目鏡、面罩、護膝護肘等護具、 透過系統性的革新與設計,提升單兵防護能 力,期能在未來防衛作戰得以保存戰力,進而 發揮戰力。

(二)提升防護等級

圖十八 以蜂巢結構產製液態盔甲 (資料來源:同註55)

目前液態盔甲防護背心的防彈等級僅可 達ⅢA級,但未來戰場所面臨的多半將是步槍 以上強度之武器威脅,也意謂著抗彈等級至 少須維持在Ⅲ級(含)以上,在我國剪切增稠 液體材質研究現有基礎下,建議可運用蜂巢 結構產製方式(如圖十八),以增加其防護效 果。55目前,最新式的戰鬥個裝戰鬥背心,加 裝抗彈板後可達Ⅲ或Ⅳ級防彈能力,如能搭 配液態盔甲的概念,對於未來防護裝備開發 運用上,將可更進一步提升防護等級,俾滿 足未來戰場作戰需求。

(三)增加防護面積

為了彌補現行防護背心防護面積不足的 部分,建議可將此液態盔甲之技術,延伸運用

- 54 張晉福,〈複合材料在防護裝甲的應用〉《新新季刊》,第42卷第2期,民國103年4月,頁85-86。
- 55 同註6,頁39。

圖十九 我軍剪切增稠液體 (STF) 運用 (資料來源:同註45)

至單兵個人戰鬥護具之發展,目前軍備局生 產製造中心展示「國軍地面部隊新式戰鬥個 裝」已開發出戰術護膝、護肘(如圖十九), 乃運用剪切增稠液體材質特性,來加強緩衝 及防彈能力,甚至可進一步製作具備防彈、防 刺穿功能的全套戰鬥服,提供更完整性的防 護。56

(四)朝向輕量化設計

掌握液態盔甲重量較輕的特性,必可解 決現有防護背心過於笨重之問題,以剪切增 稠液體取代現行採用功夫龍為主的製作材 質,並跳脫防護背心的構型設計,將 可同時解決現行防護背心的笨重與 防護範圍侷限於軀幹之缺點。目前新 式戰鬥個裝已運用材料科技減輕整 體裝備重量,57建議未來可搭配運用 液態盔甲技術,研發出更加輕便且易 於穿戴的防護裝備。

(五)改善穿著舒適度

可參考市面上安全帽可換洗內 襯之設計概念,融入液態盔甲較為 柔軟的特性,建立可拆式之防護背心 緩衝內襯,不但可以減低背心與身體 間的摩擦碰撞,亦可提升人員穿戴舒

適性,可幫助透氣、排汗,必要時可拆下更換 內襯清洗,避免潮濕發霉,方便裝備維持與保 養,以維持防護背心最佳效能。58

(六)以模組化提升裝備功能性

以現今美軍攔截者防護背心之概念為 例,建議應發展可通用之防護背心構型,設 計出一種基礎型式,藉由模組化衍生其他輔 助套件,加強防護功能,增加配件選項,可依 職務、任務及戰場環境威脅程度之差異,以 模組化增減最適合自己的防護裝備(如圖二 十),不僅可使生產線成本降低,更可符合我

- 56 同註45。
- 57 王烱華,〈單兵裝備3年內升級 背心可擋步槍彈〉,蘋果日報,http://www.appledaily.com.tw/ appledaily/article/supplement/20160913/37381001/, 檢索日期: 西元2016年10月28日。
- 58 彭慧婉,〈軍民通用科技,拓展應用商機,中科院協助創新研發創造合作機會〉,兩岸時報,http:// www.sinatimes.tw/?p=303217,檢索日期:西元2016年5月11日。

圖二十 美軍攔截者系統59

國未來防衛作戰實需。

伍、結論

國軍防護背心優劣程度,象徵著部隊戰 力的指標。戰鬥人員必須藉由優異性能之防 護背心,在戰場上無後顧之憂的作戰並安全 存活,才能達成上級所交付的作戰行動;相 對的,這就是國家對參戰官兵最好的照顧, 也是官兵形成向心力與凝聚力的重要因素。

59 筆者參考美國軍備論壇圖片翻譯說明, https://www.usmilitariaforum.com/,檢索日 期:西元2016年5月27日。

因此,國軍防護背心性能之提升,應納為我國 目前最應致力發展之方向及目標。以美軍為 例,因應其海外部署及多元化戰場環境之需 求,研發多項防護背心系統,透過全面性的檢 討與改良,發展出可靈活調整運用之防護背 心,我國應考量最新敵情與防衛作戰實際需 求,研發適用性較高之單兵防護背心,並引用 最新的液態盔甲技術,致力於我國未來防護 背心系統的發展,並藉由部隊實際使用測試, 回饋液態盔甲防護背心之改良細節,提供國 軍防護背心研改與發展建議, 俾利對我國未 來建軍備戰方面能有所助益。

作者簡介

潘智強少校,陸軍官校正93年班、裝 校正規班122期、陸院105年班,曾任 排長、副連長、訓練官、連長、編裝 官,現任陸軍司令部計畫處編裝官。

000000

 \mathcal{O}

作者簡介

 \bigcirc

石家豪中校,陸軍官校87年班、裝校 正規班114期、陸院99年班、中華科 技大學土木防災所碩士,曾任排長、 連長、教育參謀官、情報處情作官、 營長,現任國防大學陸軍學院聯合防 衛作戰組教官。