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Linearized Soliton Solutions of the Equal Width equation
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Abstract
This paper obtains two new solitary wave solutions of the equal width (EW) equation. This
partial differential equation with a nonlinear term coefficient is derived by the simplest equation
method with the Bernoulli equation as the simplest equation. It is shown that the proposed exact
solutions overcome the long existing problem of discontinuity and present a new phenomenon,
namely, soliton sliding.
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1. Introduction the equal width (EW) equation. There are various
kinds of solution that are already available for this

The study of the nonlinear differential equations has equation. In the following, the focus is on obtaining

been going on for the past few decades. A large linearized solutions of the EW equation. The

number of equations have been studied in this technique that will be used is the simplest equation

context. One of the major questions that arises in the method with the Bernoulli equation as the simplest

study of the differential equations is integrable. In equation [6]. The solutions will also be used to

particular, the thirst is to find soliton solutions of illustrate the soliton.

such equations. There are many newly developed

methods to solve the newly generated nonlinear 2. Mathematical analysis

equations in generalized forms [1-5]. These newly

developed methods are a real blessing in this area of ~ The dimensionless form of the EW equation is

Applied Mathematics. In this paper there is one such  given by [7]

important equation that will be studied. It is called Ut +aUUy —Uyy =0, (2.1)
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where « is a positive parameter, as an equally
valid and accurate model for the same wave
phenomena simulated by the KdV equation. It is
soliton solution is [8]

3c

u =—sech2[£(x—ct)]. (2.2)
o 2

This equation called the equal width equation is
because the solutions for solitary waves with a
permanent form and speed for a given
coefficient value of uy,, are waves with an
equal width or wavelength for all wave
amplitudes. The EW equation is a special case
of the generalized regularized
(GRLW) equation [7-10].

From equation (2.1), using the notation

long-wave

E=x-ct, (2.3)
it is possible to get
CUg + UUg — Clgze =0. (2.4)

The assumed solution for equation (2.4) is taken
to be

L .
ue)=xalvl, (2.5)

where a; are constants to be determined; Y is the
exact solution of a chosen nonlinear ordinary
differential equation, called the simplest
equation; and, L isa constant to be determined
and the power of the specified solution function
finite series, Y.

After substituting equation (2.5) into equation
(2.4) and balancing the linear term of the
derivative’s highest order with the highest order
nonlinear term, the balance equation gives
L =2. Therefore, the assumed solution can be
constructed as

(&) =ag +aY +a,Y 2. (2.6)
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Then consider the Bernoulli equation as the
simplest equation in the form

Ye=aY +bY?, (2.7)

where a,b are constants. The exact solution of
the equation (2.7) is [11]
a
a0y
where &, is an integral constant, here setting
0=0.
Substituting equations (2.6-7) into (2.4), and
equating the coefficients of the same powers of
Y to zero leads to a system of nonlinear
relationships among the parameters of the
solution and the parameters of the solved class
of equation.

% (2.8)

YO:—caO +%a§:0, (2.9)

vl —Cay + cdpay + ca1a2 =0, (2.10)

y2: —Cay + cagay + %al2 +3cayab + 4ca2a2 =0
(2.11)

y3: aaqay + 2ca1b2 +10cayab=0, (2.12)

Y4:§§a§—k60azb2:=0. (2.13)

Solving equations (2.9-13) yields the following
4 cases.

Casel.

a=lb=qa,ay=0a =-12c,a, =-12ca, (214)
Case2.

a=-1b=qa,ay=0,a =12c,a, =-12ca, (215)
Case3.

a=lb=-a,ay=0,a =12c,ay =-12c«,(2.16)
Cased.
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a=-1b=-a,a3=0a =-12c,a, =-12ca

(2.17)
They, therefore, could be derived to new

solutions of equation (2.1) as

U = (;iifig(x__;t;z , (218)
Up = % , (2.19)
Uz = (el_z(iit()sz)z | (2.20)
s 12ce(*—¢V 221)

- (e(x—ct) +a)2 '

3. Numerical results and discussions

A soliton can be defined as a solution to a nonlinear
that exhibits the
following three properties [1]: (i) the solution should
(i) the
solution is localized, which means that the solution

partial differential equation

demonstrate a permanent form wave;

either decays exponentially to zero, or converges to
a constant at infinity; and, (iii) the soliton interacts
with other solitons preserving its character.

Therefore, after numerical calculation using the
software MATLAB, equations (2.20-21) are soliton
solutions, and equations (2.18-19) are travelling
wave solutions. In addition, for the solution
continuity, equations (2.18-21) are reducible to
linear solutions as the nonlinear term «a in
equation (2.1) approaches zero. Due to the feature of
linearity, we observe the soliton solution sliding,
which was termed the soliton-sliding phenomenon,

as shown in Figure 1.
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Fig. 1. Influence of the nonlinear term coefficient
a.[c=2,t=1; (a) equation (2.2), (b) equation
221); —a=2; i a=1;
—.—.a=02]

4, Conclusions

In this paper, the linearized soliton solutions of the
EW equation are obtained. Although, the steep slope
in the solution (2.2) is maintained at the same
location, under the same physical conditions, the
new exact solution will not become infinite as «
approaches zero. Moreover, the location of the steep
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slope in the new exact solution slides, which was
the The
simplest equation method is used to carry out the

termed soliton-sliding  phenomenon.

soliton solutions of this equation. The linearized
soliton solutions are elaborated. The reason the new
soliton solution slides is entirely due to the influence
of linearity. Extensions of the simplest equation

method to study integrable nonlinear partial

differential equations without linearized solutions
are expected in future works.
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