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Abstract

The firing precision of artillery is influenced by the controllable and uncontrollable factors, and it
will impact the war effectiveness. The fire-control data of artillery are corrected according to the
range tables in various environment conditions to obtain better firing precision. The fabrication of
traditional man-made method for range tables costs huge amount of ammunition and time, and the
modern range tables are based on the precise mathematical ballistic model. In this paper, the
algorithm of neural network and orthogonal array method is utilized to build the artillery ballistic
model to predict the artillery range. The neural network is capable of building the artillery ballistic
model without the complex mathematical model and the utilization of orthogonal array can reduce
the requirement for firing data. The proposed method is compared with the traditional regression
analysis method and the neural network without using the orthogonal array. The result shows that the
proposed method has the better prediction precision and the mean absolute percentage error can
approach to 1.422%. This paper concentrates on the utilization of neural network and orthogonal
array to build the complex artillery ballistic model and offers a usable method for the application of
fire-control data of artillery.
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Nomenclature

v, Bias

Av, Bias correction

T, Target output of neural network

F, Error function

Fause Cost function

i Number of input layer neuron

j Number of hidden layer neuron

k Number of output layer neuron

N Total number of neurons

Q Total number of samples

w; Weight

Aw; Weight correction

X, Input value of input layer neuron

Yy Output value from output layer neuron
Y Output value from hidden layer neuron
£ Learning rate

1. INTRODUCTION

“Precision” and “accuracy” are the major
factors to evaluate the artillery firepower and
they are also the key points to influence war
effectiveness. The army changes the projectile
trajectory falling point of artillery according to
the range tables. For external ballistic problems,
the factors to affect the projectile trajectory are
very complicated. For the controllable factors,
such as the projectile weight, ammunition
quantity, cannonball shape and so on, are set in
the fabrication process. The projectile after
leaving the muzzle will be affected by the
uncontrollable factors such as initial velocity,
air temperature, air pressure, relative humidity,
wind velocity, wind direction, coriolis force
and so on. These complicated factors increase
the difficulty to build the artillery ballistic
mathematical model.  Traditionally, the
man-made fabrication method to the range
tables can obtain more precise information to
set the fire-control data of artillery, but it costs
much time and money and can’t contain
various environment conditions for firing.
Therefore, the operation of man-made
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fabrication method is finite. The fabrication of
modern range tables depends on the precise
projectile motion equations and aerodynamic
property. Even though many ballistic codes are
utilized to make the artillery range tables now,
the ballistic codes still need the precise ballistic
parameters to obtain the precise range tables.
For many applications, buying the foreign
artillery and using the ammunition made by
themselves is the tendency but the ammunition
is not suitable for the range tables of original
equipment manufacturer in firing. Accordingly,
the major technique for improving the firing
precision is to build a suitable artillery ballistic
model for the application of fire-control data of
artillery.

In some papers, the firing data or the range
tables were utilized to build the artillery
ballistic prediction equation by using the
regression analysis method [1-3]. The method
needs a lot of data to obtain the precise artillery
ballistic model. Some study used the control
theory and the equation of mass center motion
to compute the resistance coefficient of ballistic
with random wind [4]. The kalman filtering
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theory combined with the mass center ballistic
model was also utilized to build the ballistic
model in estimating the trajectory falling point
[5]. The disadvantage of these proposed
methods need a precise ballistic mathematical
equation to obtain better prediction precision.

It is very difficult to build the mathematical
model to describe the complicated relation of
engineering system between input and output.
The neural network is developed gradually and
used extensively especially for the application
on prediction [6, 7]. The quantity of learning
sample will impact the training efficiency of
neural network. For this reason, some studies
combine design of experiments with neural
network to reduce the quantity of learning
sample to build effectively network model for
fitting the true system. Wang et al. suggested
that the orthogonal array experimental results
are used to train the neural network, and the
network model can be used to make prediction,
interpolation, extrapolation and optimization
[8]. The orthogonal array was also combined
with the neural network and Taguchi-genetic
algorithm to search for the global optimum of
fabrication conditions. The proposed approach
provided an effective and economical solution
for process optimization [9]. Yingpin et al. also
utilized the orthogonal array experimental
results to be the training sample and
constructed the back-propagation neural
network (BPN) to simulate the feasible domain
for seeking the optimal filter design. The
proposed approach not only reduced the
experimental runs but also obtained better
results than the common design structure [10].
The neural network was often combined with
Taguchi-design of experiment for the parameter
optimization, experiment validation, analysis of
variance and so on, and the orthogonal array
was utilized to reduce the experimental runs
[11]. The neural network does not need to build
the complicated mathematical model and the
experimental design can achieve the same
result as the full factorial design even though it
reduces the experimental runs. In this study, the
neural network and orthogonal array are used to
build an intelligent artillery ballistic model. The
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proposed orthogonal array neural network
ballistic model is compared with the model
built by the regression analysis method and
non-orthogonal array neural network. The
results show that the proposed method has
better precision of range prediction.

2. FUNDAMENTAL THEORIES
2.1 Ballistics and Range Tables

Ballistics is the science that deals with the
motion of projectiles. Modern scholars divide
the subject into interior, exterior and terminal
ballistics, which describe respectively, the
propulsion, atmosphere flight, and target
impact action of projectiles. The modern
science of exterior ballistics has evolved as
specialized branch of the dynamics of rigid
body, moving under the influence of
gravitational and aerodynamic forces. The
building of mathematical motion equations of
projectiles is to compute the trajectory of flight.
The precision and feasibility of projectile
motion equations mentioned above are
dependent on the precise aerodynamic property
and computation. Even if the most normal
motion equation of point-mass trajectory, the
cannonball shape, projectile weight, muzzle
velocity, air density, wind velocity, air
resistance, gravity in the atmosphere and so on,
are also under consideration [12].

The fire-control information of artillery is
determined by use of various range tables and
equipment. These tables contain the fire-control
information under standard conditions and data
correcting for nonstanadard conditions, and
they include the tabular range tables, graphical
range tables, and graphical site tables. The
tabular range tables are the basic source of
firing data and offer the fire-control
information in a tabular format. The data listed
are based on standard conditions. The
fabrication of traditional man-made range
tables cost huge amount of ammunition and
time, and it can’t contain the whole
environment conditions for firing. The modern
range tables are made by the development of
ballistics, aerodynamics, mathematics and
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outstanding computer science, and that can
reduce the consumption of ammunition and
time. But, the precise modern range tables are
based on the precise projectile motion
equations and aerodynamic property.

In this paper, the input information (e. g.
muzzle velocity, angle of departure and air
temperature) and output information (firing
data) are utilized to build an intelligent artillery
ballistic model quickly by use of BPN. For the
proposed method, the complicated projectile
motion equations are unnecessary and it can be
applied to generate the firing table.

2.2 Orthogonal Arrays

Orthogonal arrays were originally developed
by Professor C. R. Rao in 1947 [13]. Scheme of
orthogonal arrays means the experiment design
is geometrically balanced and statistically
independent. For any process, each level of
factors has the same number of occurrences in
the experimental matrix. The property of
orthogonal arrays is to obtain the same
effective information as the full factorial
experiment, and the experimental runs will be
reduced. It not only decreases the cost of
experiment and time but obtains the statistical
effect in less experimental runs. The type of
orthogonal arrays include two-level, three-level
and mixed-level, and they are usually shown in
La(B®). A, B and C represent individually the
number of experimental runs, level and factor.

In this paper the neural network is used to
build the artillery ballistic model to predict
precisely the range. Angle of departure, muzzle
velocity, air temperature, air pressure, wind
velocity, wind direction and relative humidity
are the main variables to influence the range of
the artillery. The wind includes following wind
and cross wind. The wind direction includes
downwind direction and upwind direction. The
downwind direction means the same direction
with the motion trajectory of projectile and the
upwind direction is on the contrary. Because
the relation between the artillery range (output)
and the variables mentioned above (input) are
very complicated, the three-level design are
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used to each variable except that the wind
direction is in two-level design. Lss(2°x3") is
the mixed-level orthogonal array adopted in
this paper.

2.3 Back-Propagation Neural Network

The artificial neural network attempts to
imitate the nervous system of organism like
human brain. It is composed of large amounts
of various neurons. The computation can be
carried out in a parallel and spread way to deal
with large amount of data like the human nerve
structure. It is difficult to explain the causation
of engineering system in a mathematical model
especially for the nonlinear system. The
correlation model between input and output can
be built by the neural network through the
observation data and the complicated
mathematical equation is unneeded. The
performance of neural network would be
improved if the training data are huge,
widespread and great diversity. It is often
utilized to substitute for the traditional
regression analysis method to treat the high
dimensional nonlinear problems [14].

BPN is the most popular neural network
algorithm and the scheme is shown in Figure 1.
BPN consists of input, hidden and output layers.
The training process of neural network is
composed of forward pass, error computation
and error back-propagation. In the forward pass,
a neuron driven by the input signal produces
the output that differs from the actual or desired
target output and leads to the error. Compute
the error function and the gradient steepest
descent method is applied to minimize the error
function. The weight and bias will be modified
by error back-propagation if the value of cost
function doesn’t satisfy the goal error. The
error signals are then back propagated through
the network from output layer to input layer as
a sequence of corrective adjustment called
weight modification. The hidden layers,
neurons, learning rate and transfer function
influence the neural network deeply such as the
training speed and convergence condition. The
amount of hidden layers, neurons, learning rate
and transfer function are modified properly in
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the training process to minimize the error.
Figure 2 is the flow chart of BPN algorithm and

the relative mathematical equations are

described as follows:
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3. FIRING DATA AND NEURAL
NETWORK BALLISTIC MODEL

In this paper, the artillery firing data come
from the range table of original equipment
manufacturer which was built by a large
number of firing tests. It is the middle-caliber
artillery and the warhead’s diameter is 40 mm.
The range table has two types: one is
anti-aircraft and the other is ground used in this
study. Table 1 shows the firing data scope for
building the neural network ballistic model and
choose 36 firing data for training the network
are arranged in Lss(2°x3") orthogonal array
(Table 2). All of the firing data used in this
paper are needed to be normalized for training

the neural network and the normalization
equation is as follows:

I -1
|, =——™ ><(DM —Dm)+Dm (8)

I,,1,: the original data and normalized data
separately; I, 1,, : the original data of
minimum and maximum separately; D,,D,, :

the minimum and maximum separately in [0,1]
domain.
The neural network ballistic model is built
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by the following steps:

Step 1: The variables (input) and the artillery
range (output) according to Lgg(2°%3")
orthogonal array are both normalized to train
the BPN.

Step 2: Select the parameters of neural network
as follows: hidden layers: 2; hidden layer
neurons: (7, 4); learning rate: 0.1; transfer
function: sigmoid function. Root mean square
error (RMSE) is used as the cost function and
the goal error is 0.004.

ig(dk(qrvk(q»z
E o

RMSE —

Step 3: Choose 36 firing data randomly to
confirm the objectivity and usefulness of
trained BPN besides the original 36 training
firing data.

Step 4: The goal error will be modified
properly according to the result to approach the
purpose of error minimum and that the BPN
range prediction will be close to the true range.
As mentioned above, the neural network
ballistic model is completed. Table 3 is the 36
firing data chosen randomly for verification.

4. RESULTS AND DISCUSSION

The performance of BP neural network
combined with the orthogonal array is
evaluated by 36 firing data chosen randomly.
Besides, the regression analysis method and the
BP neural network without using the
orthogonal array will be utilized to build the
artillery ballistic model for range prediction
and compared with the proposed model. The
regression analysis method utilizes the firing
data in orthogonal array (Table 2) to build the
artillery ballistic regression model (Model A).
Figure 3 shows the normal probability
distribution built by the residual of regression
model. The residual distribution tends to a
straight without outliers. The result proves the
error distribution is normal and the regression
model is suitable. Additionally, we choose
another 36 training data (Table 4) which are
widespread and great diversity to build the BP
neural network without using the orthogonal

(9)
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(10)

array (Model B).
The mean absolute percentage error (M,)

between the prediction and the true is the index
to evaluate the neural network ballistic model.
The closer it gets to true ballistic model, the
smaller M, is.

Q _
M,=>" d(a)-y(a) x100% /Q

= d(a)

The error comparison of range prediction for
three different methods mentioned above is
shown in Table 5. The proposed method has the
most precise range prediction, and all of errors
are less than 3% except no. 7, 10, 11 and 30.
The M, can approach to 1.422%. The next is
Model B, M,= 3.266%. The range prediction
of Model A is the worst, M,= 6.363%. Figure
4 is the range prediction error of three different
methods. The simulation results prove the
proposed method has a satisfied prediction
performance of artillery range.

5. CONCLUSION

One of main factors to decide the war result
is the firepower of artillery. The promotion of
firing precision and accuracy for the artillery is
always the research goal of national defense
industry. The fabrication of range tables of
man-made method cost huge amount of time
and ammunition. The modern range tables need
the precise projectile motion equations and
aerodynamic property. In this paper, the neural
network and orthogonal array are utilized to
build an intelligent artillery ballistic model for
range prediction in less firing data without the
complicated mathematical equations. The
simulation results proves the proposed method
has the better prediction precision of artillery
range than the traditional regression analysis
method and the non-orthogonal array BPN, and
the mean absolute percentage error can
approach to 1.422%. The research result can
offer a usable method to build the artillery
ballistic model quickly for the application of
fire-control data of artillery and reduce the
development cost of national defense industry.
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Table 1. Firing data scope for building the neural network ballistic model

Variables Minimum Maximum
Angle of departure (°) 1 30
Mugzzle velocity (m/s) 1000 1010
Air temperature (0C) 5 39
Relative humidity (%6) 50% 100%
Air pressure (mb) 1002 1019
Wind velocity (m/s) 1.7 6.3
Wind direction Downwind Upwind

Note:

1. The standard muzzle velocity is 1005(m/s) and the data range is defined by the
fabrication deviation of ammunition.

2. The range of atmosphere data is defined by Taiwan climate condition.
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Table 2. 36 firing data arranged in L3s(2°x3") orthogonal array

Variables

Following  Cross Angle of  Muzzle Relative Air Air Follo.wing Cr.oss Range

No. Wind Wind Departure  Velocity Humidity Pressure Temperature Wind Wind (m)
Velocity  Velocity

Direction Direction  (degree) (m/s) (%) (mba) (°C) (ms) (m/s)
1 Upwind Upwind 1 1000 50 1002 5 1.7 1.7 2498
2 Upwind Upwind 15 1005 75 1010 22 4 4 9334
3 Upwind  Upwind 30 1010 100 1019 39 6.3 6.3 12108
4 Upwind  Upwind 1 1000 50 1002 22 4 4 2528
5 Upwind Upwind 15 1005 75 1010 39 6.3 6.3 9677
6 Upwind Upwind 30 1010 100 1019 5 1.7 1.7 11246
7 Upwind  Upwind 1 1000 75 1019 5 4 6.3 2483
8 Upwind  Upwind 15 1005 100 1002 22 6.3 1.7 9341
9 Upwind Upwind 30 1010 50 1010 39 1.7 4 12272
10 Upwind Downwind 1 1000 100 1010 5 6.3 4 2488
11 Upwind Downwind 15 1005 50 1019 22 1.7 6.3 9322
12 Upwind Downwind 30 1010 75 1002 39 4 1.7 12298
13 Upwind Downwind 1 1005 100 1002 39 4 1.7 2592
14 Upwind Downwind 15 1010 50 1010 5 6.3 4 8959
15  Upwind Downwind 30 1000 75 1019 22 1.7 6.3 11630
16  Upwind Downwind 1 1005 100 1010 5 1.7 6.3 2513
17 Upwind Downwind 15 1010 50 1019 22 4 1.7 9303
18  Upwind Downwind 30 1000 75 1002 39 6.3 4 12119
19 Downwind Upwind 1 1005 50 1019 39 6.3 1.7 2583
20 Downwind Upwind 15 1010 75 1002 5 1.7 4 9206
21 Downwind Upwind 30 1000 100 1010 22 4 6.3 11963
22 Downwind Upwind 1 1005 75 1019 39 1.7 4 2582
23 Downwind Upwind 15 1010 100 1002 5 4 6.3 9267
24  Downwind Upwind 30 1000 50 1010 22 6.3 17 12022
25 Downwind Upwind 1 1010 75 1002 22 6.3 6.3 2582
26 Downwind Upwind 15 1000 100 1010 39 1.7 1.7 9874
27 Downwind Upwind 30 1005 50 1019 5 4 4 11432
28 Downwind Downwind 1 1010 75 1010 22 1.7 1.7 2570
29 Downwind Downwind 15 1000 100 1019 39 4 4 9875
30 Downwind Downwind 30 1005 50 1002 5 6.3 6.3 11672
31 Downwind Downwind 1 1010 100 1019 22 6.3 4 2570
32 Downwind Downwind 15 1000 50 1002 39 1.7 6.3 9844
33  Downwind Downwind 30 1005 75 1010 5 4 17 11513
34 Downwind Downwind 1 1010 50 1010 39 4 6.3 2608
35 Downwind Downwind 15 1000 75 1019 5 6.3 1.7 9141
36 Downwind Downwind 30 1005 100 1002 22 1.7 4 11977
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Table 3. 36 firing data chosen randomly for verification

Variables
Following  Cross

Following  Cross Angle of Muzzle Relative Air Air Wind Wind Range

No. Wind Wind  Departure Velocity Humidity Pressure Temperature ) ) (m)
Velocity  Velocity
Direction Direction  (degree) (m/s) (%) (mba) (°C)
(m/s) (mf/s)

1 Upwind  Upwind 2 1001 50 1002 36 3.7 6 3997
2 Upwind Downwind 25 1003 60 1019 6 5 4 10557
3 Downwind Downwind 15 1002 90 1003 18 1 3 9397
4  Upwind Downwind 10 1010 55 1009 1 1 7848
5  Upwind  Upwind 21 1005 70 1018 4 5 10040
6 Upwind Downwind 6 1000 60 1005 19 5 2 6450
7  Downwind Downwind 5 1004 70 1010 25 3 3 6126
8 Downwind Upwind 11 1009 82 1011 22 1 4 8414
9 Downwind Downwind 27 1001 50 1009 6 1 2 11079
10  Upwind  Upwind 4 1009 80 1018 26 1 35 5554
11  Upwind Downwind 3 1010 100 1004 24 2 3 4914
12 Upwind  Upwind 13 1000 74 1005 5 2 4 8642
13 Downwind Downwind 26 1003 80 1007 10 1 3 11103
14 Downwind Upwind 29 1005 95 1017 25 4 1 11931
15  Upwind Downwind 30 1004 70 1016 32 3 1 11930
16  Downwind Downwind 7 1006 90 1002 7 5 5 6887
17 Upwind  Upwind 17 1007 80 1008 15 1 3 9723
18 Downwind Downwind 14 1010 75 1010 5 4.7 4 8996
19 Downwind Downwind 20 1000 65 1005 20 2 3 10467
20  Upwind  Upwind 8 1001 60 1018 22 4 5 7245
21 Downwind Upwind 19 1002 80 1019 30 4 6 10521
22 Downwind Downwind 16 1009 90 1002 36 5 1 10224
23 Upwind  Upwind 9 1010 50 1006 37 3 2 7966
24 Upwind Downwind 12 1000 85 1002 16 3.7 6 8483
25 Downwind Upwind 22 1001 95 1010 31 6 6 11240
26 Upwind Downwind 23 1009 79 1019 17 6 2 10593
27  Upwind Downwind 10 1005 50 1010 30 1 1 8165
28 Downwind Downwind 15 1004 80 1002 39 5 3 10002
29 Downwind Downwind 10 1009 60 1005 26 2 2.4 8208
30 Downwind Upwind 5 1010 80 1009 28 3 3 6206
31 Downwind Upwind 18 1000 70 1006 31 55 2.4 10445
32 Downwind Downwind 20 1005 90 1019 36 34 3.4 10901
33  Upwind Downwind 28 1003 75 1016 28 2.5 4.2 11626
34  Upwind Downwind 30 1008 95 1015 17 34 6 11527
35  Upwind  Upwind 21 1001 88 1006 26 6 1.3 10561
36 Downwind Upwind 22 1000 86 1019 38 5.8 2 11360
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Table 4. 36 firing data chosen additionally for comparison

Variables
Following  Cross

Following  Cross Angle of Muzzle Relative Air Air Wind Wind Range
No. Wind Wind  Departure Velocity Humidity Pressure Temperature . . (m)

Direction Direction ©) (m/s) (%) (mba) (°C) Velocty - Velocity

(mf/s) (m/s)

1 Upwind Upwind 28 1002 63 1013 9 35 5.1 11067
2 Upwind Downwind 17 1001 77 1019 22 3.2 4.1 9705
3 Downwind Upwind 21 1003 51 1018 18 4.2 3.3 10589
4  Upwind Upwind 6 1000 50 1003 22 4 2.4 6501
5  Upwind Upwind 29 1005 65 1014 19 4.9 6.1 11397
6 Downwind Downwind 2 1004 89 1017 5 1.9 3.5 3860
7  Upwind Downwind 8 1001 72 1018 7 4 3.3 7036
8 Downwind Upwind 28 1005 100 1009 22 3.6 1.7 11786
9 Downwind Upwind 30 1010 50 1010 39 1.7 5.1 12414
10  Upwind Downwind 1 1002 53 1012 20 6 4 2523
11  Upwind Downwind 19 1005 74 1019 22 4.3 2.1 10092
12 Upwind  Upwind 18 1010 80 1002 21 4.1 3.7 10039
13  Downwind Downwind 9 1008 93 1003 39 3.9 2.2 8160
14 Downwind Downwind 22 1004 85 1010 5 5.3 4.1 10052
15  Upwind Downwind 1 1006 75 1016 22 1.7 6.1 2546
16  Upwind  Upwind 13 1005 74 1015 5 1.9 2.4 8538
17 Downwind Downwind 15 1010 96 1019 22 4 1.9 9524
18 Upwind Downwind 24 1006 75 1010 10 4.1 3.6 10659
19 Downwind Upwind 16 1005 69 1019 9 6.1 1.9 9480
20  Upwind Downwind 5 1007 82 1006 22 1.7 4.1 6089
21 Downwind Downwind 27 1002 99 1008 17 4 5.7 11523
22 Downwind Upwind 19 1005 75 1017 34 2.2 3.6 10606
23 Downwind Upwind 6 1006 81 1004 5 4.9 6.3 6441
24  Upwind  Upwind 3 1000 50 1011 11 6 2 4716
25 Upwind  Upwind 4 1007 75 1002 12 5.8 35 5430
26 Downwind Upwind 12 1000 95 1011 39 51 2.5 9100
27 Downwind Upwind 16 1005 63 1018 5 4.6 4.4 9364
28 Downwind Downwind 21 1009 75 1013 22 1.7 3.6 10704
29 Downwind Downwind 4 1000 83 1007 14 4 3.8 5459
30 Upwind Upwind 3 1005 65 1002 23 5.2 5.1 4858
31 Downwind Downwind 23 1007 81 1012 13 6.3 2.4 10948
32  Upwind Downwind 7 1003 64 1002 15 2.3 5.7 6875
33 Downwind Downwind 10 1008 69 1010 16 4 3.9 8047
34 Downwind Upwind 14 1006 74 1005 31 4.5 5.6 9524
35 Downwind Downwind 20 1004 71 1006 24 6.3 55 10727
36 Downwind Downwind 23 1009 60 1014 25 1.8 3.2 11093
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Table 5. Error comparison of range prediction

True Proposed Method Model A Model B
Range (m) Prediction (m) Error (%) Prediction (m) Error (%) Prediction (m) Error (%)

1 3997 4052 1.376 3474 13.092 5131 28.371
2 10557 10588 0.294 11207 6.161 10822 2.510
3 9397 9561 1.74 9433 0.380 9555 1.681
4 7848 7885 0.467 7245 7.689 7906 0.739
5 10040 10057 0.171 10605 5.626 10077 0.369
6 6450 6328 1.897 5532 14.238 6673 3.457
7 6126 5905 3.606 4972 18.832 6195 1.126
8 8414 8479 0.769 7888 6.248 8486 0.856
9 11079 10972 0.962 11599 4.698 10947 1.191
10 5554 5262 5.253 4308 22.437 5481 1.314
11 4914 4671 4,945 3873 21.177 5599 13.940
12 8642 8786 1.658 8626 0.182 8800 1.828
13 11103 11007 0.872 11548 4.007 10882 1.991
14 11931 11605 2.727 11779 1.272 11372 4.685
15 11930 11682 2.079 11851 0.662 11612 2.666
16 6887 6823 0.929 5849 15.067 7458 8.291
17 9723 9838 1.179 9893 1.748 9717 0.062
18 8996 9102 1.18 8859 1.520 9126 1.445
19 10467 10528 0.584 10890 4.044 10408 0.564
20 7245 7223 0.301 6467 10.737 7164 1.118
21 10521 10501 0.193 10639 1.118 10336 1.758
22 10224 10180 0.426 9971 2.479 9986 2.328
23 7966 7840 1.58 7223 9.327 7707 3.251
24 8483 8624 1.656 8391 1.082 8900 4,916
25 11240 11098 1.258 11477 2.112 10697 4.831
26 10593 10617 0.236 11060 4.412 10695 0.963
27 8165 8171 0.063 7515 7.962 7991 2.131
28 10002 9958 0.445 9697 3.049 9825 1.770
29 8208 8155 0.649 7506 8.549 8190 0.219
30 6206 5917 4.652 5060 18.460 6436 3.706
31 10445 10503 0.553 10579 1.279 10235 2.011
32 10901 10743 1.448 10885 0.144 10523 3.468
33 11626 11439 1.606 11820 1.668 11403 1.918
34 11527 11379 1.282 11719 1.669 11407 1.041
35 10561 10538 0.218 11107 5.168 10448 1.070
36 11360 11140 1.941 11447 0.767 10913 3.935
MAPE (%) / SD 1.422/1.328 6.363/6.405 3.266/5.008

Note: SD means standard deviation
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Fig. 2. Flow chart of BPN algorithm
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Residual versus Normal Probability
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Fig. 4 Range prediction error of three different methods
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