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Abstract 
The firing precision of artillery is influenced by the controllable and uncontrollable factors, and it 

will impact the war effectiveness. The fire-control data of artillery are corrected according to the 
range tables in various environment conditions to obtain better firing precision. The fabrication of 
traditional man-made method for range tables costs huge amount of ammunition and time, and the 
modern range tables are based on the precise mathematical ballistic model. In this paper, the 
algorithm of neural network and orthogonal array method is utilized to build the artillery ballistic 
model to predict the artillery range. The neural network is capable of building the artillery ballistic 
model without the complex mathematical model and the utilization of orthogonal array can reduce 
the requirement for firing data. The proposed method is compared with the traditional regression 
analysis method and the neural network without using the orthogonal array. The result shows that the 
proposed method has the better prediction precision and the mean absolute percentage error can 
approach to 1.422%. This paper concentrates on the utilization of neural network and orthogonal 
array to build the complex artillery ballistic model and offers a usable method for the application of 
fire-control data of artillery. 
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使用類神經網路與直交表於火砲射控數據之應用 
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摘要 
火砲射擊精準度受到可控與不可控因素的影響，且影響戰爭的效果。火砲射擊控制的參數是

依據射表在不同環境下做調整以獲得較佳的射擊精度，傳統人工化製作的射表需要耗費大量的

彈藥與時間，現代化的射表則需要依賴精確的數學彈道模型。本研究利用類神經網路理論與直

交表設計建立火砲彈道模型來預估火砲射程，類神經網路不需要複雜的數學模型便能建立火砲

彈道模型，直交表的使用則可以減少對射擊數據的需求。研究所提的方法與傳統的迴歸分析及

未使用直交表設計的類神經網路做比較，結果顯示提出的方法有較佳的預估精度且平均絕對誤

差百分比可達1.422%。本研究著重在類神經網路與直交表的使用，以建立複雜的火砲彈道模

型，並提供一個可行的方法應用在火砲射擊控制上。 
   

關鍵字: 類神經網路、直交表、彈道、火砲 
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Nomenclature 

jv   Bias 

jv∆   Bias correction 

kT   Target output of neural network 

eF   Error function 

RMSEF   Cost function 
i   Number of input layer neuron 
j  Number of hidden layer neuron 
k   Number of output layer neuron 
N  Total number of neurons 
Q  Total number of samples 

jiw   Weight 

jiw∆   Weight correction 

ix   Input value of input layer neuron 

ky   Output value from output layer neuron 

jy   Output value from hidden layer neuron 
ε   Learning rate 
 

1. INTRODUCTION 
“Precision” and “accuracy” are the major 

factors to evaluate the artillery firepower and 
they are also the key points to influence war 
effectiveness. The army changes the projectile 
trajectory falling point of artillery according to 
the range tables. For external ballistic problems, 
the factors to affect the projectile trajectory are 
very complicated. For the controllable factors, 
such as the projectile weight, ammunition 
quantity, cannonball shape and so on, are set in 
the fabrication process. The projectile after 
leaving the muzzle will be affected by the 
uncontrollable factors such as initial velocity, 
air temperature, air pressure, relative humidity, 
wind velocity, wind direction, coriolis force 
and so on. These complicated factors increase 
the difficulty to build the artillery ballistic 
mathematical model. Traditionally, the 
man-made fabrication method to the range 
tables can obtain more precise information to 
set the fire-control data of artillery, but it costs 
much time and money and can’t contain 
various environment conditions for firing. 
Therefore, the operation of man-made 

fabrication method is finite. The fabrication of 
modern range tables depends on the precise 
projectile motion equations and aerodynamic 
property. Even though many ballistic codes are 
utilized to make the artillery range tables now, 
the ballistic codes still need the precise ballistic 
parameters to obtain the precise range tables. 
For many applications, buying the foreign 
artillery and using the ammunition made by 
themselves is the tendency but the ammunition 
is not suitable for the range tables of original 
equipment manufacturer in firing. Accordingly, 
the major technique for improving the firing 
precision is to build a suitable artillery ballistic 
model for the application of fire-control data of 
artillery. 

In some papers, the firing data or the range 
tables were utilized to build the artillery 
ballistic prediction equation by using the 
regression analysis method [1-3]. The method 
needs a lot of data to obtain the precise artillery 
ballistic model. Some study used the control 
theory and the equation of mass center motion 
to compute the resistance coefficient of ballistic 
with random wind [4]. The kalman filtering 
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theory combined with the mass center ballistic 
model was also utilized to build the ballistic 
model in estimating the trajectory falling point 
[5]. The disadvantage of these proposed 
methods need a precise ballistic mathematical 
equation to obtain better prediction precision. 

It is very difficult to build the mathematical 
model to describe the complicated relation of 
engineering system between input and output. 
The neural network is developed gradually and 
used extensively especially for the application 
on prediction [6, 7]. The quantity of learning 
sample will impact the training efficiency of 
neural network. For this reason, some studies 
combine design of experiments with neural 
network to reduce the quantity of learning 
sample to build effectively network model for 
fitting the true system. Wang et al. suggested 
that the orthogonal array experimental results 
are used to train the neural network, and the 
network model can be used to make prediction, 
interpolation, extrapolation and optimization 
[8]. The orthogonal array was also combined 
with the neural network and Taguchi-genetic 
algorithm to search for the global optimum of 
fabrication conditions. The proposed approach 
provided an effective and economical solution 
for process optimization [9]. Yingpin et al. also 
utilized the orthogonal array experimental 
results to be the training sample and 
constructed the back-propagation neural 
network (BPN) to simulate the feasible domain 
for seeking the optimal filter design. The 
proposed approach not only reduced the 
experimental runs but also obtained better 
results than the common design structure [10]. 
The neural network was often combined with 
Taguchi-design of experiment for the parameter 
optimization, experiment validation, analysis of 
variance and so on, and the orthogonal array 
was utilized to reduce the experimental runs 
[11]. The neural network does not need to build 
the complicated mathematical model and the 
experimental design can achieve the same 
result as the full factorial design even though it 
reduces the experimental runs. In this study, the 
neural network and orthogonal array are used to 
build an intelligent artillery ballistic model. The 

proposed orthogonal array neural network 
ballistic model is compared with the model 
built by the regression analysis method and 
non-orthogonal array neural network. The 
results show that the proposed method has 
better precision of range prediction. 

2. FUNDAMENTAL THEORIES 
2.1 Ballistics and Range Tables 

Ballistics is the science that deals with the 
motion of projectiles. Modern scholars divide 
the subject into interior, exterior and terminal 
ballistics, which describe respectively, the 
propulsion, atmosphere flight, and target 
impact action of projectiles. The modern 
science of exterior ballistics has evolved as 
specialized branch of the dynamics of rigid 
body, moving under the influence of 
gravitational and aerodynamic forces. The 
building of mathematical motion equations of 
projectiles is to compute the trajectory of flight. 
The precision and feasibility of projectile 
motion equations mentioned above are 
dependent on the precise aerodynamic property 
and computation. Even if the most normal 
motion equation of point-mass trajectory, the 
cannonball shape, projectile weight, muzzle 
velocity, air density, wind velocity, air 
resistance, gravity in the atmosphere and so on, 
are also under consideration [12]. 

The fire-control information of artillery is 
determined by use of various range tables and 
equipment. These tables contain the fire-control 
information under standard conditions and data 
correcting for nonstanadard conditions, and 
they include the tabular range tables, graphical 
range tables, and graphical site tables. The 
tabular range tables are the basic source of 
firing data and offer the fire-control 
information in a tabular format. The data listed 
are based on standard conditions. The 
fabrication of traditional man-made range 
tables cost huge amount of ammunition and 
time, and it can’t contain the whole 
environment conditions for firing. The modern 
range tables are made by the development of 
ballistics, aerodynamics, mathematics and 
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outstanding computer science, and that can 
reduce the consumption of ammunition and 
time. But, the precise modern range tables are 
based on the precise projectile motion 
equations and aerodynamic property. 

In this paper, the input information (e. g. 
muzzle velocity, angle of departure and air 
temperature) and output information (firing 
data) are utilized to build an intelligent artillery 
ballistic model quickly by use of BPN. For the 
proposed method, the complicated projectile 
motion equations are unnecessary and it can be 
applied to generate the firing table. 

2.2 Orthogonal Arrays 
Orthogonal arrays were originally developed 

by Professor C. R. Rao in 1947 [13]. Scheme of 
orthogonal arrays means the experiment design 
is geometrically balanced and statistically 
independent. For any process, each level of 
factors has the same number of occurrences in 
the experimental matrix. The property of 
orthogonal arrays is to obtain the same 
effective information as the full factorial 
experiment, and the experimental runs will be 
reduced. It not only decreases the cost of 
experiment and time but obtains the statistical 
effect in less experimental runs. The type of 
orthogonal arrays include two-level, three-level 
and mixed-level, and they are usually shown in 
LA(BC). A, B and C represent individually the 
number of experimental runs, level and factor. 

In this paper the neural network is used to 
build the artillery ballistic model to predict 
precisely the range. Angle of departure, muzzle 
velocity, air temperature, air pressure, wind 
velocity, wind direction and relative humidity 
are the main variables to influence the range of 
the artillery. The wind includes following wind 
and cross wind. The wind direction includes 
downwind direction and upwind direction. The 
downwind direction means the same direction 
with the motion trajectory of projectile and the 
upwind direction is on the contrary. Because 
the relation between the artillery range (output) 
and the variables mentioned above (input) are 
very complicated, the three-level design are 

used to each variable except that the wind 
direction is in two-level design. L36(22×37) is 
the mixed-level orthogonal array adopted in 
this paper. 

2.3 Back-Propagation Neural Network 
The artificial neural network attempts to 

imitate the nervous system of organism like 
human brain. It is composed of large amounts 
of various neurons. The computation can be 
carried out in a parallel and spread way to deal 
with large amount of data like the human nerve 
structure. It is difficult to explain the causation 
of engineering system in a mathematical model 
especially for the nonlinear system. The 
correlation model between input and output can 
be built by the neural network through the 
observation data and the complicated 
mathematical equation is unneeded. The 
performance of neural network would be 
improved if the training data are huge, 
widespread and great diversity. It is often 
utilized to substitute for the traditional 
regression analysis method to treat the high 
dimensional nonlinear problems [14]. 

BPN is the most popular neural network 
algorithm and the scheme is shown in Figure 1. 
BPN consists of input, hidden and output layers. 
The training process of neural network is 
composed of forward pass, error computation 
and error back-propagation. In the forward pass, 
a neuron driven by the input signal produces 
the output that differs from the actual or desired 
target output and leads to the error. Compute 
the error function and the gradient steepest 
descent method is applied to minimize the error 
function. The weight and bias will be modified 
by error back-propagation if the value of cost 
function doesn’t satisfy the goal error. The 
error signals are then back propagated through 
the network from output layer to input layer as 
a sequence of corrective adjustment called 
weight modification. The hidden layers, 
neurons, learning rate and transfer function 
influence the neural network deeply such as the 
training speed and convergence condition. The 
amount of hidden layers, neurons, learning rate 
and transfer function are modified properly in 
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the training process to minimize the error. 
Figure 2 is the flow chart of BPN algorithm and 
the relative mathematical equations are 
described as follows: 
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3. FIRING DATA AND NEURAL 
NETWORK BALLISTIC MODEL 

In this paper, the artillery firing data come 
from the range table of original equipment 
manufacturer which was built by a large 
number of firing tests. It is the middle-caliber 
artillery and the warhead’s diameter is 40 mm. 
The range table has two types: one is 
anti-aircraft and the other is ground used in this 
study. Table 1 shows the firing data scope for 
building the neural network ballistic model and 
choose 36 firing data for training the network 
are arranged in L36(22×37) orthogonal array 
(Table 2). All of the firing data used in this 
paper are needed to be normalized for training 
the neural network and the normalization 
equation is as follows: 

( )1 m
2 m m

m
M

M

I II D D D
I I
−

= × − +
−

  (8) 

1 2,I I : the original data and normalized data 
separately; ,m MI I : the original data of 
minimum and maximum separately; ,m MD D : 
the minimum and maximum separately in [0,1] 
domain. 

The neural network ballistic model is built 

by the following steps: 
Step 1: The variables (input) and the artillery 
range (output) according to L36(22×37) 
orthogonal array are both normalized to train 
the BPN.  
Step 2: Select the parameters of neural network 
as follows: hidden layers: 2; hidden layer 
neurons: (7, 4); learning rate: 0.1; transfer 
function: sigmoid function. Root mean square 
error (RMSE) is used as the cost function and 
the goal error is 0.004. 
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Step 3: Choose 36 firing data randomly to 
confirm the objectivity and usefulness of 
trained BPN besides the original 36 training 
firing data.  
Step 4: The goal error will be modified 
properly according to the result to approach the 
purpose of error minimum and that the BPN 
range prediction will be close to the true range. 
As mentioned above, the neural network 
ballistic model is completed. Table 3 is the 36 
firing data chosen randomly for verification.  

4. RESULTS AND DISCUSSION 
The performance of BP neural network 

combined with the orthogonal array is 
evaluated by 36 firing data chosen randomly. 
Besides, the regression analysis method and the 
BP neural network without using the 
orthogonal array will be utilized to build the 
artillery ballistic model for range prediction 
and compared with the proposed model. The 
regression analysis method utilizes the firing 
data in orthogonal array (Table 2) to build the 
artillery ballistic regression model (Model A). 
Figure 3 shows the normal probability 
distribution built by the residual of regression 
model. The residual distribution tends to a 
straight without outliers. The result proves the 
error distribution is normal and the regression 
model is suitable. Additionally, we choose 
another 36 training data (Table 4) which are 
widespread and great diversity to build the BP 
neural network without using the orthogonal 
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array (Model B). 
The mean absolute percentage error ( eM ) 

between the prediction and the true is the index 
to evaluate the neural network ballistic model. 
The closer it gets to true ballistic model, the 
smaller eM  is. 

( ) ( )
( )1

100%
Q

e
q

d q y q
M Q

d q=

−
= ×∑   (10) 

The error comparison of range prediction for 
three different methods mentioned above is 
shown in Table 5. The proposed method has the 
most precise range prediction, and all of errors 
are less than 3% except no. 7, 10, 11 and 30. 
The eM  can approach to 1.422%. The next is 
Model B, eM = 3.266%. The range prediction 
of Model A is the worst, eM = 6.363%. Figure 
4 is the range prediction error of three different 
methods. The simulation results prove the 
proposed method has a satisfied prediction 
performance of artillery range. 

5. CONCLUSION 
One of main factors to decide the war result 

is the firepower of artillery. The promotion of 
firing precision and accuracy for the artillery is 
always the research goal of national defense 
industry. The fabrication of range tables of 
man-made method cost huge amount of time 
and ammunition. The modern range tables need 
the precise projectile motion equations and 
aerodynamic property. In this paper, the neural 
network and orthogonal array are utilized to 
build an intelligent artillery ballistic model for 
range prediction in less firing data without the 
complicated mathematical equations. The 
simulation results proves the proposed method 
has the better prediction precision of artillery 
range than the traditional regression analysis 
method and the non-orthogonal array BPN, and 
the mean absolute percentage error can 
approach to 1.422%. The research result can 
offer a usable method to build the artillery 
ballistic model quickly for the application of 
fire-control data of artillery and reduce the 
development cost of national defense industry. 
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Table 1. Firing data scope for building the neural network ballistic model 

Variables Minimum Maximum 
Angle of departure (o) 1 30 
Muzzle velocity (m/s) 1000 1010 
Air temperature (oC) 5 39 
Relative humidity (%) 50% 100% 
Air pressure (mb) 1002 1019 
Wind velocity (m/s) 1.7 6.3 
Wind direction Downwind Upwind 

Note: 
1. The standard muzzle velocity is 1005(m/s) and the data range is defined by the 

fabrication deviation of ammunition. 
2. The range of atmosphere data is defined by Taiwan climate condition. 
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Table 2. 36 firing data arranged in L36(22×37) orthogonal array 

                    

No. 

Variables 

Range     

(m) 

Following 

Wind      

Direction 

Cross 

Wind 

Direction 

Angle of 

Departure 

(degree) 

Muzzle 

Velocity 

(m/s) 

Relative 

Humidity      

(%) 

Air 

Pressure 

(mba) 

Air 

Temperature 

(oC) 

Following 

Wind 

Velocity 

(m/s) 

Cross 

Wind  

Velocity 

(m/s) 

1 Upwind Upwind 1 1000 50 1002 5 1.7 1.7 2498 
2 Upwind Upwind 15 1005 75 1010 22 4 4 9334 
3 Upwind Upwind 30 1010 100 1019 39 6.3 6.3 12108 
4 Upwind Upwind 1 1000 50 1002 22 4 4 2528 
5 Upwind Upwind 15 1005 75 1010 39 6.3 6.3 9677 
6 Upwind Upwind 30 1010 100 1019 5 1.7 1.7 11246 
7 Upwind Upwind 1 1000 75 1019 5 4 6.3 2483 
8 Upwind Upwind 15 1005 100 1002 22 6.3 1.7 9341 
9 Upwind Upwind 30 1010 50 1010 39 1.7 4 12272 
10 Upwind Downwind 1 1000 100 1010 5 6.3 4 2488 
11 Upwind Downwind 15 1005 50 1019 22 1.7 6.3 9322 
12 Upwind Downwind 30 1010 75 1002 39 4 1.7 12298 
13 Upwind Downwind 1 1005 100 1002 39 4 1.7 2592 
14 Upwind Downwind 15 1010 50 1010 5 6.3 4 8959 
15 Upwind Downwind 30 1000 75 1019 22 1.7 6.3 11630 
16 Upwind Downwind 1 1005 100 1010 5 1.7 6.3 2513 
17 Upwind Downwind 15 1010 50 1019 22 4 1.7 9303 
18 Upwind Downwind 30 1000 75 1002 39 6.3 4 12119 
19 Downwind Upwind 1 1005 50 1019 39 6.3 1.7 2583 
20 Downwind Upwind 15 1010 75 1002 5 1.7 4 9206 
21 Downwind Upwind 30 1000 100 1010 22 4 6.3 11963 
22 Downwind Upwind 1 1005 75 1019 39 1.7 4 2582 
23 Downwind Upwind 15 1010 100 1002 5 4 6.3 9267 
24 Downwind Upwind 30 1000 50 1010 22 6.3 1.7 12022 
25 Downwind Upwind 1 1010 75 1002 22 6.3 6.3 2582 
26 Downwind Upwind 15 1000 100 1010 39 1.7 1.7 9874 
27 Downwind Upwind 30 1005 50 1019 5 4 4 11432 
28 Downwind Downwind 1 1010 75 1010 22 1.7 1.7 2570 
29 Downwind Downwind 15 1000 100 1019 39 4 4 9875 
30 Downwind Downwind 30 1005 50 1002 5 6.3 6.3 11672 
31 Downwind Downwind 1 1010 100 1019 22 6.3 4 2570 
32 Downwind Downwind 15 1000 50 1002 39 1.7 6.3 9844 
33 Downwind Downwind 30 1005 75 1010 5 4 1.7 11513 
34 Downwind Downwind 1 1010 50 1010 39 4 6.3 2608 
35 Downwind Downwind 15 1000 75 1019 5 6.3 1.7 9141 
36 Downwind Downwind 30 1005 100 1002 22 1.7 4 11977 
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Table 3. 36 firing data chosen randomly for verification 

                    

No. 

Variables 

Range     

(m) 

Following 

Wind      

Direction 

Cross 

Wind 

Direction 

Angle of 

Departure 

(degree) 

Muzzle 

Velocity 

(m/s) 

Relative 

Humidity      

(%) 

Air 

Pressure 

(mba) 

Air 

Temperature 

(oC) 

Following 

Wind 

Velocity 

(m/s) 

Cross 

Wind  

Velocity 

(m/s) 

1 Upwind Upwind 2 1001 50 1002 36 3.7 6 3997 
2 Upwind Downwind 25 1003 60 1019 6 5 4 10557 
3 Downwind Downwind 15 1002 90 1003 18 1 3 9397 
4 Upwind Downwind 10 1010 55 1009 8 1 1 7848 
5 Upwind Upwind 21 1005 70 1018 5 4 5 10040 
6 Upwind Downwind 6 1000 60 1005 19 5 2 6450 
7 Downwind Downwind 5 1004 70 1010 25 3 3 6126 
8 Downwind Upwind 11 1009 82 1011 22 1 4 8414 
9 Downwind Downwind 27 1001 50 1009 6 1 2 11079 

10 Upwind Upwind 4 1009 80 1018 26 1 3.5 5554 
11 Upwind Downwind 3 1010 100 1004 24 2 3 4914 
12 Upwind Upwind 13 1000 74 1005 5 2 4 8642 
13 Downwind Downwind 26 1003 80 1007 10 1 3 11103 
14 Downwind Upwind 29 1005 95 1017 25 4 1 11931 
15 Upwind Downwind 30 1004 70 1016 32 3 1 11930 
16 Downwind Downwind 7 1006 90 1002 7 5 5 6887 
17 Upwind Upwind 17 1007 80 1008 15 1 3 9723 
18 Downwind Downwind 14 1010 75 1010 5 4.7 4 8996 
19 Downwind Downwind 20 1000 65 1005 20 2 3 10467 
20 Upwind Upwind 8 1001 60 1018 22 4 5 7245 
21 Downwind Upwind 19 1002 80 1019 30 4 6 10521 
22 Downwind Downwind 16 1009 90 1002 36 5 1 10224 
23 Upwind Upwind 9 1010 50 1006 37 3 2 7966 
24 Upwind Downwind 12 1000 85 1002 16 3.7 6 8483 
25 Downwind Upwind 22 1001 95 1010 31 6 6 11240 
26 Upwind Downwind 23 1009 79 1019 17 6 2 10593 
27 Upwind Downwind 10 1005 50 1010 30 1 1 8165 
28 Downwind Downwind 15 1004 80 1002 39 5 3 10002 
29 Downwind Downwind 10 1009 60 1005 26 2 2.4 8208 
30 Downwind Upwind 5 1010 80 1009 28 3 3 6206 
31 Downwind Upwind 18 1000 70 1006 31 5.5 2.4 10445 
32 Downwind Downwind 20 1005 90 1019 36 3.4 3.4 10901 
33 Upwind Downwind 28 1003 75 1016 28 2.5 4.2 11626 
34 Upwind Downwind 30 1008 95 1015 17 3.4 6 11527 
35 Upwind Upwind 21 1001 88 1006 26 6 1.3 10561 
36 Downwind Upwind 22 1000 86 1019 38 5.8 2 11360 
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Table 4. 36 firing data chosen additionally for comparison 

                    

No. 

Variables 

Range     

(m) 

Following 

Wind      

Direction 

Cross 

Wind 

Direction 

Angle of 

Departure 

(o) 

Muzzle 

Velocity 

(m/s) 

Relative 

Humidity      

(%) 

Air 

Pressure 

(mba) 

Air 

Temperature 

(oC) 

Following 

Wind 

Velocity 

(m/s) 

Cross 

Wind  

Velocity 

(m/s) 

1 Upwind Upwind 28 1002 63 1013 9 3.5 5.1 11067 
2 Upwind Downwind 17 1001 77 1019 22 3.2 4.1 9705 
3 Downwind Upwind 21 1003 51 1018 18 4.2 3.3 10589 
4 Upwind Upwind 6 1000 50 1003 22 4 2.4 6501 
5 Upwind Upwind 29 1005 65 1014 19 4.9 6.1 11397 
6 Downwind Downwind 2 1004 89 1017 5 1.9 3.5 3860 
7 Upwind Downwind 8 1001 72 1018 7 4 3.3 7036 
8 Downwind Upwind 28 1005 100 1009 22 3.6 1.7 11786 
9 Downwind Upwind 30 1010 50 1010 39 1.7 5.1 12414 
10 Upwind Downwind 1 1002 53 1012 20 6 4 2523 
11 Upwind Downwind 19 1005 74 1019 22 4.3 2.1 10092 
12 Upwind Upwind 18 1010 80 1002 21 4.1 3.7 10039 
13 Downwind Downwind 9 1008 93 1003 39 3.9 2.2 8160 
14 Downwind Downwind 22 1004 85 1010 5 5.3 4.1 10052 
15 Upwind Downwind 1 1006 75 1016 22 1.7 6.1 2546 
16 Upwind Upwind 13 1005 74 1015 5 1.9 2.4 8538 
17 Downwind Downwind 15 1010 96 1019 22 4 1.9 9524 
18 Upwind Downwind 24 1006 75 1010 10 4.1 3.6 10659 
19 Downwind Upwind 16 1005 69 1019 9 6.1 1.9 9480 
20 Upwind Downwind 5 1007 82 1006 22 1.7 4.1 6089 
21 Downwind Downwind 27 1002 99 1008 17 4 5.7 11523 
22 Downwind Upwind 19 1005 75 1017 34 2.2 3.6 10606 
23 Downwind Upwind 6 1006 81 1004 5 4.9 6.3 6441 
24 Upwind Upwind 3 1000 50 1011 11 6 2 4716 
25 Upwind Upwind 4 1007 75 1002 12 5.8 3.5 5430 
26 Downwind Upwind 12 1000 95 1011 39 5.1 2.5 9100 
27 Downwind Upwind 16 1005 63 1018 5 4.6 4.4 9364 
28 Downwind Downwind 21 1009 75 1013 22 1.7 3.6 10704 
29 Downwind Downwind 4 1000 83 1007 14 4 3.8 5459 
30 Upwind Upwind 3 1005 65 1002 23 5.2 5.1 4858 
31 Downwind Downwind 23 1007 81 1012 13 6.3 2.4 10948 
32 Upwind Downwind 7 1003 64 1002 15 2.3 5.7 6875 
33 Downwind Downwind 10 1008 69 1010 16 4 3.9 8047 
34 Downwind Upwind 14 1006 74 1005 31 4.5 5.6 9524 
35 Downwind Downwind 20 1004 71 1006 24 6.3 5.5 10727 
36 Downwind Downwind 23 1009 60 1014 25 1.8 3.2 11093 
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Table 5. Error comparison of range prediction 

No. 
True      

Range (m) 
Proposed Method Model A Model B 

Prediction (m) Error (%) Prediction (m) Error (%) Prediction (m) Error (%) 
1 3997 4052 1.376 3474 13.092  5131  28.371  
2 10557 10588 0.294 11207 6.161  10822  2.510  
3 9397 9561 1.74 9433 0.380  9555  1.681  
4 7848 7885 0.467 7245 7.689  7906  0.739  
5 10040 10057 0.171 10605 5.626  10077  0.369  
6 6450 6328 1.897 5532 14.238  6673  3.457  
7 6126 5905 3.606 4972 18.832  6195  1.126  
8 8414 8479 0.769 7888 6.248  8486  0.856  
9 11079 10972 0.962 11599 4.698  10947  1.191  
10 5554 5262 5.253 4308 22.437  5481  1.314  
11 4914 4671 4.945 3873 21.177  5599  13.940  
12 8642 8786 1.658 8626 0.182  8800  1.828  
13 11103 11007 0.872 11548 4.007  10882  1.991  
14 11931 11605 2.727 11779 1.272  11372  4.685  
15 11930 11682 2.079 11851 0.662  11612  2.666  
16 6887 6823 0.929 5849 15.067  7458  8.291  
17 9723 9838 1.179 9893 1.748  9717  0.062  
18 8996 9102 1.18 8859 1.520  9126  1.445  
19 10467 10528 0.584 10890 4.044  10408  0.564  
20 7245 7223 0.301 6467 10.737  7164  1.118  
21 10521 10501 0.193 10639 1.118  10336  1.758  
22 10224 10180 0.426 9971 2.479  9986  2.328  
23 7966 7840 1.58 7223 9.327  7707  3.251  
24 8483 8624 1.656 8391 1.082  8900  4.916  
25 11240 11098 1.258 11477 2.112  10697  4.831  
26 10593 10617 0.236 11060 4.412  10695  0.963  
27 8165 8171 0.063 7515 7.962  7991  2.131  
28 10002 9958 0.445 9697 3.049  9825  1.770  
29 8208 8155 0.649 7506 8.549  8190  0.219  
30 6206 5917 4.652 5060 18.460  6436  3.706  
31 10445 10503 0.553 10579 1.279  10235  2.011  
32 10901 10743 1.448 10885 0.144  10523  3.468  
33 11626 11439 1.606 11820 1.668  11403  1.918  
34 11527 11379 1.282 11719 1.669  11407  1.041  
35 10561 10538 0.218 11107 5.168  10448  1.070  
36 11360 11140 1.941 11447 0.767  10913  3.935  
MAPE (%) / SD 1.422/1.328 6.363/6.405 3.266/5.008 

Note: SD means standard deviation 
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Fig. 1. Back-propagation neural network 

 
Fig. 2. Flow chart of BPN algorithm 

70 



  航空技術學院學報  第十五卷  第一期  第 59－72 頁（民國一○ 五年） 
Journal of Air Force Institute of Technology, Vol. 15, No. 1, pp. 59-72, 2016 

 

 
Fig. 3. Normal probability distribution 
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Fig. 4 Range prediction error of three different methods 
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