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Abstract 
    The thermal radiation and magnetic effects on coupled heat and mass transfer by mixed 
convection flow about a wedge in porous media are numerically analyzed. The surface of the 
wedge is maintained at uniform wall temperature and uniform wall concentration (UWT/UWC). 
Rosseland diffusion approximation is adopted for the radiative heat flux. The transformed 
governing equations are solved by Keller box method (KBM). Comparisons with previously 
published work are performed and the results are found to be in good agreement. Numerical results 
for the dimensionless temperature profile, the dimensionless concentration profile, the local Nusselt 
number and the local Sherwood number are displayed graphically and tabularly to illustrate the 
influence of the buoyancy ratio N, the Lewis number Le, the wedge angle parameter m, the 
magnetic parameter M, the mixed convection parameter χ, the radiation-conduction parameter Rd, 
and the surface temperature parameter H. The entire regime of the mixed convection is included, 
when χ varies from 0 (pure free convection) to 1 (pure forced convection). The physical aspects of 
the problem are discussed in details. 
 
Keywords: thermal radiation and magnetic effects, heat and mass transfer, mixed convection, 
wedge, porous media 

摘  要 
    本文以一數值方法來分析：熱輻射與磁場效應對於流經飽和多孔性介質內一楔形面混合

對流之熱傳與質傳的影響。楔形面的表面維持於均勻壁溫度與均勻壁濃度之條件。輻射熱通

量係採用羅斯蘭特擴散近似法。吾人以凱勒盒子法來解轉換過的控制方程式。所得的數值計

算結果與已刊登發表的期刊論文結果作比較，結果非常吻合。所得到的數值計算結果主要以
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圖形與表格來顯示：浮力比，路易士數，楔形角度參數，磁性參數，混合對流參數，輻射－

傳導參數，與表面溫度參數，對於無因次溫度分佈、無因次濃度分佈、局部紐塞爾數和局部

希爾吾德數之影響。當混合對流參數從 0(純自然對流)變化到 1(純強制對流)時，則包括了混

合對流的整個範圍。文中的物理現象也詳加討論。 

關鍵字：熱輻射與磁場效應，熱傳與質傳，混合對流，楔形面，多孔性介質 

 

1. Introduction 
 

Coupled heat and mass transfer (or 
double-diffusion) driven by buoyancy, due to 
temperature and concentration variations in a 
saturated porous medium, has several important 
applications in geothermal and geophysical 
engineering, for example, the migration of moisture 
in fibrous insulation and the underground disposal 
of nuclear wastes. Recent book by Nield and Bejan 
[1] presents a comprehensive account of the 
available information in the field. 

In the aspect of pure heat transfer by mixed 
convection, Cheng [2] studied combined free and 
forced convection flow about inclined surfaces in 
porous media. Lai and Kulacki [3] extended the 
work of Cheng [2] to investigate the influence of 
lateral mass flux on mixed convection over inclined 
surfaces in saturated porous media. Nonsimilar 
solution for mixed convection on a wedge embedded 
in a porous medium was examined by Vargas et al. 
[4]. Kumari and Gorla [5] introduced a single 
parameter (the mixed convection parameter) for the 
entire regime of free-forced-mixed convection and 
analyzed combined convection along a 
non-isothermal wedge with variable wall 
temperature (VWT) in a porous medium. 

In the aspect of coupled heat and mass transfer 
by mixed convection, Yih [6] spread the research of 
Kumari and Gorla [5] to present coupled heat and 
mass transfer in mixed convection over a wedge 

with variable wall temperature and concentration 
(VWT/VWC) in porous media: the entire regime. 
Yih [7] examined the uniform transpiration effect 
on coupled heat and mass transfer in mixed 
convection about inclined surfaces (VWT/VWC) in 
porous media: the entire regime, which is the 
extension study of Lai and Kulacki [3]. Cheng [8] 
followed the step of Yih [6] to study Soret and 
Dufour effects on mixed convection heat and mass 
transfer from a vertical wedge in a porous medium 
with constant wall temperature and concentration 
(UWT/UWC). 

There has been renewed interest in studying 
magnetohydrodynamic (MHD) flow and heat 
transfer in porous media due to the effect of 
magnetic fields on flow control and on the 
performance of many systems using 
electrically-conducting fluids. Chamkha and Khaled 
[9] investigated the nonsimilar hydromagnetic 
simultaneous heat and mass transfer by mixed 
convection from a vertical plate embedded in a 
uniform porous medium. Cheng [10] studied an 
integral approach for hydromagnetic natural 
convection heat and mass transfer from vertical 
surfaces with power-law variation in wall 
temperature and concentration (VWT/VWC) in 
porous media. Very recently, Cheng [11] extended 
the special cases of Yih [6] and Cheng [10] to 
analyze effect of a magnetic field on mixed 
convection heat and mass transfer from a vertical 
wedge subjected to uniform wall temperature and 
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uniform wall concentration (UWT/UWC) in a 
porous medium utilizing an integral approach. 

As the difference between the surface 
temperature and the ambient temperature is large, it 
may cause the thermal radiation effect to become 
important. Hossain and Takhar [12] used the 
Rosseland diffusion approximation and maintained 
the T4 term to study radiation effect on mixed 
convection along a vertical plate with uniform wall 
temperature (UWT). Yih [13] extended the special 
case of Kumari and Gorla [5] to investigate radiation 
effect on mixed convection over an isothermal 
wedge in porous media: the entire regime. Radiation 
and blowing/suction effects on mixed convection 
over an isothermal vertical cylinder in porous media 
for the entire regime was studied by Yih [14]. 
Chamkha et al. [15] spread the work of Yih [13] to 
examine the radiation effects on mixed convection 
over an isothermal wedge embedded in a porous 
medium filled with a nanofluid. 

The objective of the present work, therefore, 
is to extend the work of Cheng [11] and Yih [13] to 
investigate numerically the magnetic and thermal 
radiation effects on coupled heat and mass transfer 
by mixed convection about a wedge subjected to 
uniform wall temperature and uniform wall 
concentration (UWT/UWC) in porous media: the 
entire regime. The governing equations have been 
solved numerically using Keller box method 
(KBM). The results are obtained for various values 
of the parameters. 
 

2. Analysis 
 

Considering the problem of combined heat and 
mass transfer by mixed convection flow over a 
wedge with half angle γ embedded in a saturated 

porous medium with an optically dense, electrically 
conducting fluid in the presence of a transverse 
magnetic field for the entire regime. The surface of 
wedge is maintained at uniform wall temperature 
and uniform wall concentration (UWT/UWC). 
Figure 1 shows the flow model and physical 
coordinate system. The origin of the coordinate 
system is placed at the leading edge of the wedge, 
where x is the coordinate along the surface of wedge 
measured from the origin and y is the coordinate 
normal to the surface, respectively [13]. The uniform 
wall temperature Tw is greater than the ambient 
temperature T∞. The flow over the wedge is assumed 
to be two-dimensional, laminar, steady and 
incompressible. Fluid properties are assumed to be 
constant except the density variations in the 
buoyancy force term. 

 

 
Fig. 1. Flow model and physical coordinate system 

 
The applied transverse magnetic field is 

assumed to be uniform and the magnetic Reynolds 
number is so small that induced magnetic field can 
be neglected. Further, the external electric field is 
assumed to be zero and the electric field due to 
polarization of charges is negligible [11]. 

Introducing the boundary layer approximation, 
the Boussinesq approximation, and Rosseland 
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diffusion approximation, the governing equations 
based on the Darcy law (It is valid under the 
condition of low velocity and small pores of porous 
medium [16]) can be written as follows [11, 13]: 
Continuity equation: 
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Concentration equation: 
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Boussinesq approximation: 
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Rosseland diffusion approximation: 
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Boundary conditions: 
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Here, u and v are the components of the Darcy 
velocity in the x and y directions, respectively; g is 
the gravitational acceleration; K is the permeability 
of the porous medium; σ and Bo are the electrical 
conductivity of the fluid and the externally 
imposed magnetic field in the y-direction; μ, p and 
ρ are the viscosity, the pressure and the density of 
the fluid, respectively; T and C are the 
volume-averaged temperature and concentration, 
respectively; α and DM are the equivalent thermal 
diffusivity and mass diffusivity, respectively; CP is 

the specific heat at constant pressure; qr is the 
radiative heat flux; βT and βC are the thermal and 
concentration expansion coefficients of the fluid, 
respectively; σo, ar, σs are the Stefan-Boltzmann 
constant, the Rosseland mean extinction coefficient, 
and the scattering coefficient, respectively. The 
term ( )[ ]sr

3
0 a3/T16 s+s  can be considered as 

the “radiative conductivity” [13]. 
The external flow is at a uniform temperature 

T∞ and uniform concentration C∞ with velocity  
mBxU =∞ , )/(m γ−πγ=       (10) 

where B is a prescribed constant and m is the 
wedge angle parameter. Specifically, the cases of m 
= 0, 1/3 and 1 correspond, respectively, to a 
uniform free stream flowing along a vertical flat 
plate, a free stream flowing over a 90∘ wedge, and a 
stagnation flow normal to a vertical wall. 

The stream function ψ  is defined by 
y/u ∂y∂= , x/v ∂ψ−∂= .      (11) 

Therefore, the continuity equation is automatically 
satisfied. 

Now paying attention to governing equations 
(2)-(3). If we do the operation of 
cross-differentiation: x/)3(y/(2) ∂∂−∂∂ , then the 

pressure terms in equations (2)-(3) can be eliminated. 
Further, with the help of the equation (6), the 
boundary layer approximation 

)uv,y/x/( <<∂∂<<∂∂ , cosγ and sinγ are of the 

same order of magnitude (the buoyancy force 
normal to the heated surface is negligible). The last 
approximation is valid for a wedge range of wedge 
angle except near γ = 0o in Figure 1(a) or near γ = 
90o in Figure 1(b) [13]. Then we can obtain 
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Integrating equation (12) once and with 
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the aid of equation (9), then we get 
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Inserting equation (4) into (7), the energy 
equation (4) becomes 
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Invoking the following dimensionless 
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where Pex and Rax are the local Peclet number and 
the modified local Rayleigh number for the flow 
through the porous medium, respectively. χ is the 
mixed convection parameter. It is noted that χ = 0 
(Pex = 0) and χ = 1 (Rax = 0) correspond to pure 
free and pure forced convection cases, respectively. 
The entire regime of mixed convection corresponds 
to the values of χ between 0 and 1.  

Substituting equation (15) into equations 

(13)-(14), (5), (8)-(9), then we can achieve 
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The boundary conditions are defined as follows: 

,1,1,0f:0 =f=θ==η     (19) 

.0,0: =φ=θ∞→η     (20) 

In the above equations, the primes denote the 
differentiation with respect to η. Besides, the 
magnetic parameter M, the buoyancy ratio N, the 
Lewis number Le, the radiation-conduction 
parameter Rd, and the surface temperature 
parameter H, are defined as followed, respectively: 
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In addition, the Darcian velocity components 
are 
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The results of practical interest in many 
applications are both the surface heat and mass 
transfer rates. The surface heat and mass transfer 

33 



航空技術學院學報  第十五卷  第一期（民國一○五年） 
 

rates are expressed in terms of the local Nusselt 
number Nux and the local Sherwood number Shx 
respectively, which are basically defined as 
followed: 
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where hx, hm,x are local convective heat transfer 
coefficient and local convective mass transfer 
coefficient, respectively; k is the equivalent 
thermal conductivity; qw and mw are the local heat 
flux and the local mass flux, respectively; and 

( )∞−= TThq wxw  (the Newton’s law of cooling) 
and ( )∞−= CChm wx,mw  (the analogy between 

the mass transfer and the heat transfer). 
    From the Fourier’s law of heat conduction, the 
Rosseland diffusion approximation and the Fick’s 
law of mass diffusion, the rate of surface heat 
transfer qw and the rate of surface mass transfer mw 
are defined as followed, respectively: 
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Inserting equations (28)-(29) into equations 
(26)-(27) and with the aid of equation (15), the 
local Nusselt number Nux and the local Sherwood 
number Shx in terms of 2

1
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xx RaPe +  are, 
respectively, obtained by 
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When χ = 1 (pure forced convection) and Rd = 
0 (in the absence of radiation), equations (16)-(18) 
can be reduced to 
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Solving the above equations (32)-(34) and the 
boundary conditions (19)-(20), by separation of 
variables, we can find 
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It may be noticed that for Rd = 0, equations 
(16)-(20) are reduced to those of Cheng [11]. For 
the case of N = 0 (pure heat transfer) and M = 0 (in 
the absence of magnetic field), equations (16)-(17), 
(19.1-2)-(20.1) are reduced to those of Yih [13] 
(The boundary value problem for φ  then becomes 

ill-posed and is of no physical significance). It is 
also observed that similar equations are obtained 
for the case of χ = 0 or χ = 1 or m = 0. 
 

3. Numerical Method 
 

The present analysis integrates the system of 
equations (16)-(20) by the implicit finite difference 
approximation together with the modified Keller 
box method of Cebeci and Bradshaw [17]. To begin 
with, the differential equations are first converted 
into a system of five first-order equations. Then 
these first-order equations are expressed in finite 
difference forms and solved along with their 
boundary conditions by an iterative scheme. This 
approach gives a better rate of convergence and 
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reduces the numerical computational times. 
Computations were carried out on a personal 

computer with the first step size Δη1 = 0.01. The 
variable grid parameter is chosen 1.01 and the 
value of η∞ = 100. The iterative procedure is 
stopped to give the final temperature and 
concentration distributions when the errors in 
computing the wθ′  and wφ′  in the next procedure 

become less than 10-5. 

 
4. Results and Discussion 
 

In order to verify the accuracy of our present 
method, we have compared our results with those 
of Yih [6, 13, 20-21], Cheng [11, 19], Bejan and 
Khair [18], and Chamkha et al. [15]. Table 1 lists 
the comparison of the values of )0,1(θ′−  for 

various values of m with M = 0, Rd = 0. Table 2 
shows the comparison of the values of )0,1(φ′−  

for various values of m and (a) Le = 0.01, (b) Le = 
1, (c) Le = 100 with M = 0, Rd = 0. Table 3 shows 
the comparison of the values of )0,(χθ′−  for 

various values of with N = 0, m = 1/3, M = 0, Rd = 
0. Tables 4 and 5 list the comparison of the values 
of )0,0(θ′−  and )0,0(φ′−  for various values of 

N and Le with m = 0, M = 0, Rd = 0, respectively. 

Table 6 depicts the comparison of the values of 
)0,(χθ′−  and )0,(χφ′−  for various values of Le 

with N = 1, m = 1/2, M = 0, Rd = 0, respectively. 
Table 7 lists the comparison of the values of 

)RaPe/(Nu 2
1

2
1

xxx +  for various values of Rd and H 
with N = 0, M = 0, χ = 0. Table 8 reveals the 
comparison of the values of )RaPe/(Nu 2

1
2

1

xxx +  
for various values of χ, Rd and m with N = 0, M = 0, 
H = 1.0001. The comparisons in all the above cases 
are almost found to be in excellent agreement, as 
shown in Tables 1-8.  

However, the results of Cheng [11] (integral 
method) in Table 3 are under-estimated for χ 
approaches to 0, while over-estimated for χ 
approaches to 1. The results of Cheng [19] (integral 
method) in Tables 4 and 5 are over-predicted for all 
values of N and Le. 
 
Table 1 Comparison of the values of )0,1(θ′−  for 

various values of m with M = 0, Rd = 0 

m 

)0,1(θ′−  

Yih 
[13] 

Chamkha et 
al. [15] 

Eq. (35) 
Present 
results 

0 0.5642 0.5642 0.5642 0.5642 

1/4 — — 0.6308 0.6308 

1/3 0.6515 0.6516 0.6515 0.6515 

1/2 — — 0.6910 0.6910 

3/4 — — 0.7463 0.7463 

1 0.7979 0.7979 0.7979 0.7979 

 
Table 2 Comparison of the values of )0,1(φ′−  for 

various values of m and (a) Le = 0.01,  
(b) Le = 1, (c) Le = 100 with M = 0, Rd = 0 

(a)  
Le = 0.01 

)0,1(φ′−  

Yih [6] Eq. (35) 
Present 
results 

m = 0 0.0564 0.0564 0.0564 

m = 1 0.0798 0.0798 0.0798 

(b)  
Le = 1 

Yih [6] Eq. (35) 
Present 
results 

m = 0 0.5642 0.5642 0.5642 

m = 1 0.7979 0.7979 0.7979 

(c)  
Le = 100 

Yih [6] Eq. (35) 
Present 
results 

m = 0 5.6418 5.6419 5.6417 

m = 1 7.9789 7.9788 7.9787 
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Table 3 Comparison of the values of )0,(χθ′−  for 

various values of with  
N = 0, m = 1/3, M = 0, Rd = 0 

 

χ 

)0,(χθ′−  

Cheng 
[11] 

Yih 
[13] 

Chamkha et 
al. [15] 

Present 
results 

0.0 0.4272 0.4437 0.4437 0.4437 

0.1 0.3910 0.4044 0.4043 0.4044 

0.2 0.3699 0.3769 0.3769 0.3769 

0.3 0.3667 0.3643 0.3643 0.3643 

0.4 0.3817 0.3686 0.3687 0.3687 

0.5 0.4131 0.3900 0.3901 0.3900 

0.6 0.4574 0.4261 0.4261 0.4261 

0.7 0.5113 0.4731 0.4732 0.4731 

0.8 0.5721 0.5278 0.5280 0.5278 

0.9 0.6378 0.5878 0.5879 0.5878 

1.0 0.7071 0.6515 0.6516 
0.6515 

(0.6515) 

Result in parenthesis is analytical solution 
by Eq. (35) 

 
Table 4 Comparison of the values of )0,0(θ′−  for 

various values of N and Le with  
m = 0, M = 0, Rd = 0 

N Le 

)0,0(θ′−  

Bejan 
and  

Khair 
[18] 

Cheng 
[19] 

Yih 
[20] 

Present 
results 

4   1 0.992 1.070 0.9923 0.9922 

  10 0.681 0.720 0.6810 0.6810 

 100 0.521 0.553 0.5209 0.5207 

1   1 0.628 0.667 0.6276 0.6275 

  10 0.521 0.557 0.5215 0.5214 

 100 0.470 0.504 0.4702 0.4700 

Table 5 Comparison of the values of )0,0(φ′−  for 

various values of N and Le with  
m = 0, M = 0, Rd = 0 

 

N Le 

)0,0(φ′−  

Bejan 
and  

Khair 
[18] 

Cheng 
[19] 

Yih [20] 
Present 
results 

4   1  0.992  1.070  0.9923  0.9922 

  10  3.290  3.570  3.2897  3.2897 

 100 10.521 11.452 10.5205 10.5203 

1   1  0.628  0.677  0.6276  0.6275 

  10  2.202  2.410  2.2021  2.2019 

 100  7.139  7.876  7.1391  7.1345 

 
 

Table 6 Comparison of the values of )0,(χθ′−  
and )0,(χφ′−  for various values of Le with  

N = 1, m = 1/2, M = 0, Rd = 0 
 

Le χ 

)0,(χθ′−  )0,(χφ′−  

Yih 
[6] 

Present 
results 

Yih 
[6] 

Present 
results 

0.01 0.0 0.7139 0.7139 0.0470 0.0470 

 0.5 0.4851 0.4851 0.0411 0.0411 

 1.0 0.6910 0.6910 0.0691 0.0691 

1 0.0 0.6276 0.6275 0.6276 0.6275 

 0.5 0.4559 0.4559 0.4559 0.4559 

 1.0 0.6910 0.6910 0.6910 0.6910 

100 0.0 0.4700 0.4700 7.1390 1.1389 

 0.5 0.4108 0.4108 4.8510 4.8477 

 1.0 0.6910 0.6910 6.9099 6.9097 
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Table 7 Comparison of the values of 

)RaPe/(Nu 2
1

2
1

xxx +  for various values of Rd and H 
with N = 0, M = 0, χ = 0 

dR  

)RaPe/(Nu 2
1

2
1

xxx +  

H = 1.1 H = 3 

Yih 
[21] 

Present 
results 

Yih 
[21] 

Present 
results 

0 0.4437 0.4437 0.4437 0.4437 

1 — 0.7220 — 2.0852 

5 — 1.3487 — 4.5758 

10 1.8549 1.8550 — 6.4553 

 
Table 8 Comparison of the values of 

)RaPe/(Nu 2
1

2
1

xxx +  for various values of  
χ, Rd and m with N = 0, M = 0, H = 1.0001 

χ Rd 
)RaPe/(Nu 2

1
2

1

xxx +  

m = 0 m = 1/3 m = 1 

0.0 0 
0.4437 

(0.4437) 
0.4437 

(0.4437) 
0.4437 

(0.4437) 

 1 0.6779 0.6779 0.6779 

 5 1.2288 1.2288 1.2288 

 10 1.6802 1.6802 1.6802 

0.5 0 
0.3603 

(0.3603) 
0.3900 

(0.3900) 
0.4261 

(0.4227) 

 1 0.5504 0.5958 0.6422 

 5 0.9977 1.0799 1.1632 

 10 1.3642 1.4766 1.6104 

1.0 0 0.5642 
(0.5642) 

0.6515 
(0.6515) 

0.7979 
(0.7979) 

 1 0.8619 0.9952 1.2189 

 5 1.5623 1.8038 2.2094 

 10 2.1361 2.4666 3.0210 

Results in parentheses are those of Yih [13] 
 

The following numerical results are 
graphically and tabularly presented for the 
buoyancy ratio N ranging from 1 to 4, the Lewis 

number Le ranging from 1 to 10, the wedge angle 
parameter m ranging from 0 to 1, the magnetic 
parameter M ranging from 0 to 2, the mixed 
convection parameter χ  ranging from 0 to 1, the 

radiation-conduction parameter Rd ranging from 0 
to 10, and the surface temperature parameter H 
ranging from 1.1 to 3. 

Figures 2 and 3 show the dimensionless 
temperature and concentration profiles for two 
values of the wedge angle parameter m (m = 0, 1) 
and the magnetic parameter M (M = 1, 2) with Rd = 
5, H = 3, N = 2, Le = 3, χ = 0.5, respectively. From 
these two figures, it is found that not only the 
dimensionless temperature profile but also the 
dimensionless concentration profile decreases 
monotonically from the surface to the ambient. On 
the one hand, for the fixed value of M, both the 
dimensionless wall temperature gradient 
[ ])0,(χθ′−  and the dimensionless wall 
concentration gradient [ ])0,(χφ′−  increase as the 

wedge angle parameter m is enhanced. That is 
owing to the fact that an increase in the wedge 
angle parameter m results in an increase in the flow 
velocity; thus decreasing the dimensionless 
temperature profile θ(χ,η) and the dimensionless 
concentration profile ),( ηχφ , and increasing the 

dimensionless wall temperature gradient and the 
dimensionless wall concentration gradient. 

On the other hand, for the fixed value of m, 
the dimensionless temperature and concentration 
profiles increase with increasing the magnetic 
parameter M. The application of a magnetic field 
results in slowing the fluid flow velocity. This fact 
can also be demonstrated from equation (16). 
Therefore, both the dimensionless wall temperature 
gradient and the dimensionless wall concentration 
gradient reduce as M increases. 
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Fig. 2. Dimensionless temperature profile for two 

values of m and M 
 

 
Fig. 3. Dimensionless concentration profile for two 

values of m and M 
 

Tables 9 and 10 show the values of 

)RaPe/(Nu 2
1

2
1

xxx +  and )RaPe/(Sh 2
1

2
1

xxx +  for 
the various values of χ, m and M with Rd = 5, H = 3, 
N = 2, Le = 3, respectively. On the one hand, for 
the fixed value of χ and M, an increase in the 
wedge angle parameter m tends to increase the 
local Nusselt number as well as the local Sherwood 
number. This is due to the fact when the wedge 

angle parameter m increases the dimensionless wall 
temperature gradient  [ ])0,(χθ′−  and the 

dimensionless wall concentration gradient 
[ ])0,(χφ′− , as shown in Figs. 2 and 3. With the 

help of equations (30)-(31), the greater the 
dimensionless wall temperature gradient and the 
dimensionless wall concentration gradient, the 
larger the local Nusselt number and the local 
Sherwood number. The phenomenon is more 
pronounced in forced-convection dominated flows 
(χ approaches to 1.0) than in free-convection 
dominated flows (χ approaches to 0.0).  

On the other hand, an increase in the magnetic 
parameter M decreases both the local Nusselt 
number and the local Sherwood number, for the 
given value of χ and m. That is because increasing 
the magnetic parameter M tends to decrease the 
dimensionless wall temperature and concentration 
gradients, as illustrated in Figs. 2 and 3. This 
behavior is more evident in the free-convection 
dominated flow (χ approaches to 0.0) than in 
forced-convection dominated flows (χ approaches 
to 1.0). 
 
Table 9 The values of )RaPe/(Nu 2

1
2

1

xxx +  for the 
various values of χ, m and M with 

Rd = 5, H = 3, N = 2, Le = 3 

χ 

)RaPe/(Nu 2
1

2
1

xxx +  

m = 0 m = 1 

M = 1 M = 2 M = 1 M = 2 

0.0 3.4156 2.1606 3.4156 2.1606 

0.2 2.9376 2.0350 3.0389 2.1843 

0.5 3.1624 2.8626 3.9131 3.7747 

0.8 4.2806 4.2459 5.9730 5.9724 

1.0 5.2780 5.2780 7.4642 7.4642 

 
 

θ

η

η

φ
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Table 10 The values of )RaPe/(Sh 2
1

2
1

xxx +  for the 
various values of χ, m and M with 

Rd = 5, H = 3, N = 2, Le = 3 

χ 

)RaPe/(Sh 2
1

2
1

xxx +  

m = 0 m = 1 

M = 1 M = 2 M = 1 M = 2 

0.0 1.0360 0.6552 1.0360 0.6552 

0.2 0.8517 0.5596 0.8613 0.5750 

0.5 0.7126 0.5886 0.8062 0.7224 

0.8 0.8089 0.7927 1.1068 1.1058 

1.0 0.9772 0.9772 1.3819 1.3819 

 
It is also found that for the same value of M, 

the values of )RaPe/(Nu 2
1

2
1

xxx +  and 
)RaPe/(Sh 2

1
2

1

xxx +  at the mixed convection 
parameter χ = 0.0 (pure free convection) in Tables 
9 and 10 are independent of the variation of the 
wedge angle parameter m. These results are also 
seen from the equations (16)-(18). For the case of χ 
= 0.0, the wedge angle parameter m is disappeared, 
equations (16)-(18) are reduced to be as follows: 

( ) ,NfM1 2 f+θ=′+        (36) 

( )[ ]{ } ,011H
3
R4f

2
1 3d =

′
+θ−θ′+θ′+θ ′′    (37) 

.0f
2
1

Le
1

=f′+f ′′           (38) 

Besides, for the fixed m, the values of 

)RaPe/(Nu 2
1

2
1

xxx +  and )RaPe/(Sh 2
1

2
1

xxx +  at χ = 
1.0 (pure forced convection) in Tables 9 and 10 are 
independent of the variation of the magnetic 
parameter M. This is because for the case of χ = 1.0, 
the effect of the magnetic parameter M is fading 
away, equations (16)-(18) are changed to be as 
follows: 

,1f =′               (39) 

( )[ ]{ } ,011H
3
R4f

2
m1 3d =

′
+θ−θ′+θ′

+
+θ ′′  (40) 

.0f
2
m1

Le
1

=f′
+

+f ′′         (41) 

Moreover, as χ varies from 0 to 1, both the 
local Nusselt number and the local Sherwood 
number decrease initially, reach a minimum at an 
intermediate value of χ and then increase gradually, 
as shown in Tables 9 and 10. The phenomena of 
minimum are also found in Yih [13-14] and 
Chamkha et al. [15]. This minimum does not imply 
a corresponding minimum value in the local 
Nusselt number and local Sherwood number. This 
is due to the nature of )RaPe/(Nu 2/1

x
2/1

xx +  and 
)RaPe/(Sh 2

1
2

1

xxx + vs. χ. For example, let us 
consider the present numerical results of 

)RaPe/(Nu 2/1
x

2/1
xx +  with m = 0, M = 1, Rd = 5, H 

= 3, N = 2, Le = 3 and χ = 0.5 in Table 9. If the 
local Peclet number is taken as Pex = 100, the 
corresponding modified local Rayleigh number can 
be found to be Rax = 100 from equation (15.1). 
Using the present numerical results of 

)RaPe/(Nu 2/1
x

2/1
xx + , the value of Nux for mixed 

convection (Pex = 100, Rax = 100) is 63.248. While, 
for pure free convection (χ = 0.0) and pure forced 
convection (χ = 1.0) the Nux values are found to be 
34.156 and 52.78, respectively. Therefore, it is 
obvious that the present result of Nux for mixed 
convection is higher than that for pure free 
convection and pure forced convection. 

Figures 4 and 5 illustrate the dimensionless 
temperature profile and the dimensionless 
concentration profile for two values of the 
radiation-conduction parameter Rd (Rd = 1, 10) and 
the surface temperature parameter H (H = 1.1, 2) 
with m = 1/3, M = 0, N = 1, Le = 1, χ = 0.5, 
respectively. When the radiation-conduction 
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parameter Rd and the surface temperature 
parameter H increase, the dimensionless 
temperature profile θ(χ,η)  becomes large, but the 
dimensionless wall temperature gradient 
[ ])0,(χθ′−  becomes small, as shown in Fig. 4. 

This is on an account the fact as the value of Rd or 
H increases, the radiation absorption in the 
boundary layer increases, causing the 
dimensionless temperature profile become large.  

 
Fig. 4. Dimensionless temperature profile for two 

values of dR  and H 

However, the dimensionless wall 
concentration gradient [ ])0,(χφ′−  enhances a little 

with increasing the radiation-conduction parameter 
Rd and the surface temperature parameter H, as 
displayed in Fig. 5. 

 
Fig. 5. Dimensionless concentration profile for two 

values of Rd and H 
 

Tables 11 and 12 illustrate the values of 

)RaPe/(Nu 2
1

2
1

xxx +  and )RaPe/(Sh 2
1

2
1

xxx +  for 
the various values of χ, Rd and H with m = 1/3, M 
= 0, N = 1, Le = 1, respectively. For the fixed value 
of χ, both the local Nusselt number and the local 
Sherwood number increase as the 
radiation-conduction parameter Rd and the surface 
temperature parameter H increase. In the pure 
mixed convection heat transfer, the local Nusselt 
number is only proportional to the dimensionless 
wall temperature gradient [ ])0,(χθ′− . For the case 

of large Rd and H (radiation effect becomes 
pronounced), although the value of [ ])0,(χθ′−  is 

low, as shown in Fig. 4, the local Nusselt number is 
still large. This is because the local Nusselt number 
is found to be more sensitive to Rd and H than 
[ ])0,(χθ′− , as revealed in Eq. (30). 

Moreover, the local Nusselt number is 
significantly increased for large values of the 
radiation-conduction parameter Rd and the surface 
temperature parameter H; i.e., the radiation effect 
becomes pronounced. However, increasing the 
radiation-conduction parameter Rd and the surface 
temperature parameter H has the tendency to 
enhance slightly the local Sherwood number, as 
compared in Tables 11 and 12.  

In addition, the present values of 

)RaPe/(Sh 2
1

2
1

xxx +  at χ = 1.0 (pure forced 
convection) in Table 12 are independent of the 
variation of the radiation-conduction parameter Rd 
and the surface temperature parameter H. This 
result could be revealed with the aid of equations 
(39) and (41).  
 
 
 
 

θ

φ
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Table 11 The values of )RaPe/(Nu 2
1

2
1

xxx +  for the 
various values of χ, Rd and H with  

m = 1/3, M = 0, N = 1, Le = 1 

χ 

)RaPe/(Nu 2
1

2
1

xxx +  

Rd = 1 Rd = 10 

H = 1.1 H = 2 H = 1.1 H = 2 

0.0 0.9414 1.5069 2.1064 4.0212 

0.2 0.7821 1.2551 1.7701 3.3739 

0.5 0.7024 1.1483 1.7051 3.2450 

0.8 0.8607 1.4248 2.1918 4.1881 

1.0 1.0518 1.7432 2.6912 5.1449 

 
Table 12 The values of )RaPe/(Sh 2

1
2

1

xxx +  for the 
various values of χ, Rd and H with  

m = 1/3, M = 0, N = 1, Le = 1 

χ 

)RaPe/(Sh 2
1

2
1

xxx +  

Rd = 1 Rd = 10 

H = 1.1 H = 2 H = 1.1 H = 2 

0.0 0.6678 0.6993 0.7040 0.7151 

0.2 0.5483 0.5729 0.5766 0.5849 

0.5 0.4595 0.4710 0.4726 0.4770 

0.8 0.5359 0.5374 0.5376 0.5383 

1.0 
0.6515 

(0.6515) 
0.6515 

(0.6515) 
0.6515 

(0.6515) 
0.6515 

(0.6515) 

Results in parentheses are analytical solution 
by Eq. (35) 

 
Figures 6 and 7 display the dimensionless 

temperature and concentration profiles for two 
values of the buoyancy ratio N (N = 1, 4) and the 
Lewis number Le (Le = 1, 10) with Rd = 1, H = 1.5, 
m = 1/2, M = 1, χ = 0.5, respectively. For a fixed 
value of Le, increasing the buoyancy ratio N 
increases the buoyancy force, accelerating the flow 
velocity, thus enhancing not only the dimensionless 
wall temperature gradient [ ])0,(χθ′−  but also the 

dimensionless wall concentration gradient 
[ ])0,(χφ′− , as illustrated in Figs. 6 and 7.  

For case of the fixed N, when the Lewis 
number Le increases from 1 to 10, the 
dimensionless wall temperature gradient decreases 
but the thermal boundary layer thickness δT 
becomes thick, as shown in Fig. 6. Whereas, the 
dimensionless wall concentration gradient 
increases yet the concentration boundary layer 
thickness δC becomes thin as the Lewis number is 
increased, as shown in Fig. 7.  

 

Fig. 6. Dimensionless temperature profile for two 
values of N and Le 

 

Fig. 7. Dimensionless concentration profile for two 
values of N and Le 

η

η

θ

φ
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Tables 13 and 14 depict the values of 

)RaPe/(Nu 2
1

2
1

xxx +  and )RaPe/(Sh 2
1

2
1

xxx +  for 
the various values of χ, N and Le with Rd = 1, H = 
1.5, m = 1/2, M = 1, respectively. Increasing the 
buoyancy ratio N tends to increase the local 
Nusselt number as well as the local Sherwood 
number. This is due to the fact when the buoyancy 
ratio N enhances both the dimensionless wall 
temperature gradient [ ])0,(χθ′−  and the 

dimensionless wall concentration gradient 
[ ])0,(χφ′− , as shown in Figs. 6 and 7. For the fixed 

Rd and H, with the aid of equations (30)-(31), the 
larger the dimensionless wall temperature gradient 
and the dimensionless wall concentration gradient, 
the greater the local Nusselt number and the local 
Sherwood number. 

In Table 13 (Table 14), we can find that the 
local Nusselt (Sherwood) number decreases 
(increases) as the Lewis number Le is increased, 
for the fixed N and χ. This is due to the fact that a 
larger Lewis number Le is associated with a thicker 
thermal boundary layer thickness δT but a thinner 
concentration boundary layer thickness δC, as 
illustrated in Figs. 6 and 7. The thicker the thermal 
boundary layer thickness, the smaller the local 
Nusselt number. The thinner the concentration 
boundary layer thickness, the greater the local 
Sherwood number. 

Furthermore, the present values of 

)RaPe/(Nu 2
1

2
1

xxx +  at χ = 1.0 (pure forced 
convection) in Table 13 are independent of the 
variations of the buoyancy ratio N and the Lewis 
number Le. This result could be revealed with the 
aid of equations (39)-(40). For the fixed Le, the 
present values of )RaPe/(Sh 2

1
2

1

xxx +  at χ = 1.0 
(pure forced convection) in Table 14 are 
independent of the variation of the buoyancy ratio 

N. This result could be expressed with the help of 
equations (39) and (41).  
 
Table 13 The values of )RaPe/(Nu 2

1
2

1

xxx +  for the 
various values of χ, N and Le with  

Rd = 1, H = 1.5, m = 1/2, M = 1 

χ 

)RaPe/(Nu 2
1

2
1

xxx +  

N = 1 N = 4 

Le = 1 Le = 10 Le = 1 Le = 10 

0.0 0.8252 0.7177 1.1718 0.8308 

0.2 0.7141 0.6349 0.9813 0.7248 

0.5 0.8016 0.7770 0.9110 0.8184 

0.8 1.1318 1.1294 1.1430 1.1337 

1.0 1.4028 1.4028 1.4028 1.4028 

 
Table 14 The values of )RaPe/(Sh 2

1
2

1

xxx +  for the 
various values of χ, N and Le with  

Rd = 1, H = 1.5, m = 1/2, M = 1 

χ 

)RaPe/(Sh 2
1

2
1

xxx +  

N = 1 N = 4 

Le = 1 Le = 10 Le = 1 Le = 10 

0.0 0.4846 1.5920 0.7295 2.3495 

0.2 0.4079 1.3363 0.5974 1.9227 

0.5 0.4112 1.3175 0.4902 1.5665 

0.8 0.5590 1.7694 0.5671 1.7952 

1.0 
0.6910 

(0.6910) 
2.1849 

(2.1851) 
0.6910 

(0.6910) 
2.1849 

(2.1851) 

Results in parentheses are analytical solution 
by Eq. (35) 

 
5. Conclusions 
 

A laminar boundary layer analysis is presented 
to study the thermal radiation with Rosseland 
diffusion approximation and the magnetic effects on 
the coupled heat and mass transfer by combined 
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natural and forced convection flow from a wedge 
with uniform wall temperature and uniform wall 
concentration (UWT/UWC) in porous media 
saturated with an optically dense, electrically 
conducting viscous fluid in the presence of a 
transverse magnetic field. The resulting governing 
equations are dimensionless and transformed into a 
non-similar form and then solved using an implicit, 
finite-difference method (Keller box method: KBM). 
A comparison is made with the available results in 
the literature, and our results are in very good 
agreement with the known results. Numerical 
solutions are obtained for different values of the 
buoyancy ratio N, the Lewis number Le, the wedge 
angle parameter m, the magnetic parameter M, the 

mixed convection parameter χ, the 
radiation-conduction parameter Rd, and the surface 
temperature parameter H in graphical and tabular 
forms. The entire regime of the mixed convection is 
included, when χ varies from 0 (pure free convection) 
to 1 (pure forced convection). The decay of the 
dimensionless temperature and concentration 
profiles has been observed in all cases.  

The significant features of the results are 
summary as follows: 
1. Not only the local Nusselt number but also the 
local Sherwood number decreases initially, reaches a 
minimum in the intermediate value of χ , and then 

increases gradually.  
2. An increase in the wedge angle parameter m 
tends to increase the local Nusselt number as well as 
the local Sherwood number, whereas an increase in 
the magnetic parameter M decreases both the local 
Nusselt number and the local Sherwood number.  
3. The local Nusselt number is significantly 
increased for large values of the 
radiation–conduction parameter Rd and the surface 

temperature parameter H; i.e., the radiation effect 
becomes pronounced. However, increasing the 
radiation–conduction parameter Rd and the surface 
temperature parameter H has the tendency to 
enhance slightly the local Sherwood number. 
4. It is also found that increasing the buoyancy 
ratio N increases not only the local Nusselt number 
but also the local Sherwood number. As the Lewis 
number Le increases, the local Nusselt (Sherwood) 
number decreases (increases).  
 

Nomenclature 
ar Rosseland mean extinction coefficient 
B  constant 
Bo externally imposed magnetic field 
C concentration 
CP specific heat at constant pressure 
DM mass diffusivity 
f dimensionless stream function 
g gravitational acceleration 
H surface temperature parameter 
hx local convective heat transfer coefficient 
hm,x local convective mass transfer coefficient 
K permeability of the porous medium 
k equivalent thermal conductivity 
Le Lewis number 
M  magnetic parameter 
m wedge angle parameter 
mw local mass flux 
N buoyancy ratio 
Nux local Nusselt number 
p pressure of fluid 
Pex local Peclet number 
qcond conductive heat flux 
qr  radiative heat flux 
qw local heat flux 
Rd radiation-conduction parameter 

43 



航空技術學院學報  第十五卷  第一期（民國一○五年） 
 

Rax modified local Rayleigh number 
Shx local Sherwood number 
T temperature 
U∞ velocity of the potential flow outside the 

boundary layer 
u Darcy velocity in the x-direction 
v Darcy velocity in the y-direction 
x streamwise coordinate 
y transverse coordinate 
 

Greek symbols 
α equivalent thermal diffusivity 
βC coefficient of concentration expansion 
βT coefficient of thermal expansion 
γ half angle of wedge 
δC concentration boundary layer thickness 
δT thermal boundary layer thickness 
η pseudo-similarity variable 
θ dimensionless temperature 
μ viscosity of fluid 
ρ density of fluid 
σ electrical conductivity of fluid 
σo Stefan-Boltzmann constant 
σs scattering coefficient 
φ  dimensionless concentration 

χ mixed convection parameter 
ψ  stream function 

 

Subscripts 
w condition at the wall 
∞ condition at infinity 
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