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Thermal Radiation and Magnetic Effects on Coupled Heat and Mass Transfer
by Mixed Convection about a Wedge in Porous Media: The Entire Regime

G HARI R R e S AT - UG R R B AT
e 3 El[}#p[ﬂ

Kuo-Ann Yih
PR

Department of Aircraft Engineering, Air Force Institute of Technology
Fdafe k> 72 Eqy RS R

Abstract

The thermal radiation and magnetic effects on coupled heat and mass transfer by mixed
convection flow about a wedge in porous media are numerically analyzed. The surface of the
wedge is maintained at uniform wall temperature and uniform wall concentration (UWT/UWC).
Rosseland diffusion approximation is adopted for the radiative heat flux. The transformed
governing equations are solved by Keller box method (KBM). Comparisons with previously
published work are performed and the results are found to be in good agreement. Numerical results
for the dimensionless temperature profile, the dimensionless concentration profile, the local Nusselt
number and the local Sherwood number are displayed graphically and tabularly to illustrate the
influence of the buoyancy ratio N, the Lewis number Le, the wedge angle parameter m, the
magnetic parameter M, the mixed convection parameter y, the radiation-conduction parameter Ry,
and the surface temperature parameter H. The entire regime of the mixed convection is included,
when y varies from 0 (pure free convection) to 1 (pure forced convection). The physical aspects of
the problem are discussed in details.

Keywords: thermal radiation and magnetic effects, heat and mass transfer, mixed convection,
wedge, porous media
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1. Introduction

heat and mass transfer

double-diffusion) driven by buoyancy, due to

Coupled (or
temperature and concentration variations in a
saturated porous medium, has several important
applications in geothermal and geophysical
engineering, for example, the migration of moisture
in fibrous insulation and the underground disposal
of nuclear wastes. Recent book by Nield and Bejan
[1] presents a comprehensive account of the
available information in the field.

In the aspect of pure heat transfer by mixed
convection, Cheng [2] studied combined free and
forced convection flow about inclined surfaces in
porous media. Lai and Kulacki [3] extended the
work of Cheng [2] to investigate the influence of
lateral mass flux on mixed convection over inclined
surfaces in saturated porous media. Nonsimilar
solution for mixed convection on a wedge embedded
in a porous medium was examined by Vargas et al.
[4]. Kumari and Gorla [5] introduced a single
parameter (the mixed convection parameter) for the
entire regime of free-forced-mixed convection and
convection

with
temperature (VWT) in a porous medium.

analyzed  combined along a

non-isothermal  wedge variable  wall
In the aspect of coupled heat and mass transfer

by mixed convection, Yih [6] spread the research of

Kumari and Gorla [5] to present coupled heat and

mass transfer in mixed convection over a wedge
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with variable wall temperature and concentration
(VWT/VWC) in porous media: the entire regime.
Yih [7] examined the uniform transpiration effect
on coupled heat and mass transfer in mixed
convection about inclined surfaces (VWT/VWC) in
porous media: the entire regime, which is the
extension study of Lai and Kulacki [3]. Cheng [8]
followed the step of Yih [6] to study Soret and
Dufour effects on mixed convection heat and mass
transfer from a vertical wedge in a porous medium
with constant wall temperature and concentration
(UWT/UWC).

There has been renewed interest in studying
(MHD) flow and heat
transfer in porous media due to the effect of

magnetohydrodynamic

magnetic fields on flow control and on the
of
electrically-conducting fluids. Chamkha and Khaled
[9]

simultaneous heat and mass transfer by mixed

performance many systems using

investigated the nonsimilar hydromagnetic
convection from a vertical plate embedded in a
uniform porous medium. Cheng [10] studied an
integral approach for hydromagnetic natural
convection heat and mass transfer from vertical
surfaces with power-law variation in wall
temperature and concentration (VWT/VWC)
porous media. Very recently, Cheng [11] extended
the special cases of Yih [6] and Cheng [10] to

analyze effect of a magnetic field on mixed

in

convection heat and mass transfer from a vertical

wedge subjected to uniform wall temperature and


http://www.springerlink.com/content/j1462845176g881q/
http://www.springerlink.com/content/j1462845176g881q/
http://www.springerlink.com/content/j1462845176g881q/
http://www.springerlink.com/content/j1462845176g881q/

ERMBRE®R FTHL HF—H $£2-46H (RE-—oRZF)
Journal of Air Force Institute of Technology, Vol. 15, No. 1, pp. 29-46, 2016

uniform wall concentration (UWT/UWC) in a

porous medium utilizing an integral approach.
As the between the

temperature and the ambient temperature is large, it

difference surface
may cause the thermal radiation effect to become
Hossain and Takhar [12] used the
Rosseland diffusion approximation and maintained

important.

the T* term to study radiation effect on mixed
convection along a vertical plate with uniform wall
temperature (UWT). Yih [13] extended the special
case of Kumari and Gorla [5] to investigate radiation
effect on mixed convection over an isothermal
wedge in porous media: the entire regime. Radiation
and blowing/suction effects on mixed convection
over an isothermal vertical cylinder in porous media
for the entire regime was studied by Yih [14].
Chamkha et al. [15] spread the work of Yih [13] to
examine the radiation effects on mixed convection
over an isothermal wedge embedded in a porous
medium filled with a nanofluid.

The objective of the present work, therefore,
is to extend the work of Cheng [11] and Yih [13] to
investigate numerically the magnetic and thermal
radiation effects on coupled heat and mass transfer
by mixed convection about a wedge subjected to
uniform wall temperature and uniform wall
concentration (UWT/UWC) in porous media: the
entire regime. The governing equations have been
solved numerically using Keller box method
(KBM). The results are obtained for various values
of the parameters.

2. Analysis

Considering the problem of combined heat and
mass transfer by mixed convection flow over a

wedge with half angle y embedded in a saturated

porous medium with an optically dense, electrically
conducting fluid in the presence of a transverse
magnetic field for the entire regime. The surface of
wedge is maintained at uniform wall temperature
concentration (UWT/UWC).
Figure 1 shows the flow model and physical

and uniform wall

coordinate system. The origin of the coordinate
system is placed at the leading edge of the wedge,
where X is the coordinate along the surface of wedge
measured from the origin and y is the coordinate
normal to the surface, respectively [13]. The uniform
wall temperature T, is greater than the ambient
temperature T... The flow over the wedge is assumed
to be
incompressible. Fluid properties are assumed to be

two-dimensional, laminar, steady and

constant except the density variations in the

buoyancy force term.

(a) (b)

Fig. 1. Flow model and physical coordinate system

The applied transverse magnetic field is
assumed to be uniform and the magnetic Reynolds
number is so small that induced magnetic field can
be neglected. Further, the external electric field is
assumed to be zero and the electric field due to
polarization of charges is negligible [11].

Introducing the boundary layer approximation,
the Boussinesq approximation, and Rosseland
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diffusion approximation, the governing equations
based on the Darcy law (It is valid under the
condition of low velocity and small pores of porous
medium [16]) can be written as follows [11, 13]:
Continuity equation:

6_u+@ =0 (1)
oX oy
Momentum (Darcy) equation:
2
u+@u ——5[6—p+pg005y] 2
H n\ ox
K ( op . j
=——| T+ pgsiny (3)
u (83/
Energy equation:
2
LIV i A S A
ox oy oyt p.Cp oy
Concentration equation:
2
u o« + v§ =Dy % (5)
OX oy oy
Boussinesq approximation:
p=p.1-B+(T-T,)-Bc(C-C.)]  (6)
Rosseland diffusion approximation:
4, OT? 160 oT
qr == £ == . T3 T~ (7)
3(ar+GS) ay 3(ar+Gs) ay
Boundary conditions:
y=0: v=0, T=T,, C=C,, 8
y=0: u=U_, T=T_, C=C_, ©)]

Here, u and v are the components of the Darcy
velocity in the x and y directions, respectively; g is
the gravitational acceleration; K is the permeability
of the porous medium; o and B, are the electrical
conductivity of the fluid and the externally
imposed magnetic field in the y-direction; p, p and
p are the viscosity, the pressure and the density of
the fluid, the

volume-averaged temperature and concentration,

respectively; T and C are

respectively; a and Dy, are the equivalent thermal
diffusivity and mass diffusivity, respectively; Cs is
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the specific heat at constant pressure; g, is the
radiative heat flux; pr and B¢ are the thermal and
concentration expansion coefficients of the fluid,
respectively; o,, a, os are the Stefan-Boltzmann
constant, the Rosseland mean extinction coefficient,
and the scattering coefficient, respectively. The
term 160,T°/[3(a, +o,)] can be considered as
the “radiative conductivity” [13].
The external flow is at a uniform temperature
T., and uniform concentration C,, with velocity
U,=Bx", m=y/l(n-y) (10)
where B is a prescribed constant and m is the
wedge angle parameter. Specifically, the cases of m

0, 1/3 and 1 correspond, respectively, to a
uniform free stream flowing along a vertical flat
plate, a free stream flowing over a 90° wedge, and a
stagnation flow normal to a vertical wall.

The stream function  is defined by

u=oy/oy, v=—0y/oX. (11)
Therefore, the continuity equation is automatically
satisfied.

Now paying attention to governing equations
2-(3). If we do the operation of
cross-differentiation: 0(2)/0y—0(3)/0x , then the
pressure terms in equations (2)-(3) can be eliminated.
Further, with the help of the equation (6), the
boundary layer approximation
(6/0x <<0dldy, v<<u), cosy and siny are of the
same order of magnitude (the buoyancy force
normal to the heated surface is negligible). The last
approximation is valid for a wedge range of wedge
angle except near y = 0° in Figure 1(a) or near y =
90° in Figure 1(b) [13]. Then we can obtain

{1QJ5_ p..9cos 1K [mi Bﬁj

ooy oy oy
(12)

Integrating equation (12) once and with
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the aid of equation (9), then we get

S s

P90 (1T )+pe(c-C, )]
p

(13)

Inserting equation (4) into (7), the energy
equation (4) becomes

oT  oT  o%T 160 a( 38Tj
U—+V—=a—+ —| T°—|
x oy o ay' 3@, +o)p.Cpoyl oy
(14)
Invoking the following  dimensionless
variables:
1/2
Ra Pe/
=14 =X =— X (15.1)
* { (Pexj ] Pe} +Ra})
n=Ypel yt=Y(pet +Rak) (152)
X X
\ v
f(rm) = = (15.3)
o Pe? 1o (Pefj2 +Ra%)
T-T
0(y,m) = = 154
(=3 —F (15.4)
c-C
)= — e 155
o0 = & (15.5)
pe, = JoX (15.6)
(04
Rax _ pwgCOSYBT(Tw _Too )KX (157)
pou

where Pe, and Ra, are the local Peclet number and
the modified local Rayleigh number for the flow
through the porous medium, respectively. y is the
mixed convection parameter. It is noted that y = 0
(Pey, = 0) and x = 1 (Rax = 0) correspond to pure
free and pure forced convection cases, respectively.
The entire regime of mixed convection corresponds
to the values of y between 0 and 1.

Substituting equation (15) into equations
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(13)-(14), (5), (8)-(9), then we can achieve
(1+M?) £ = @-2)2(0+N§)+ {1+ M?) 12,

(16)

0+ 1+2mx o'+ 42“ {e’[(H —~1)0 +1]3}

LY |
2 oy, oy,

1, 1+my_ ., m ,00 ,of
—¢"+ fo =— 1y ) F'=———¢'— |
¢ 5 (0 2x( x)( o ¢6xj

(17)

Le

(18)

The boundary conditions are defined as follows:
n=0: f=0, 0=1 o=1 (19)
n—ow: 0=0, ¢=0. (20)

In the above equations, the primes denote the
differentiation with respect to m. Besides, the
magnetic parameter M, the buoyancy ratio N, the

Le, the
and the surface

number radiation-conduction
Rq,

parameter H, are defined as followed, respectively:

Lewis

parameter temperature

2
M = /KGB0 21)
9
N = M Le=—% (22)
BT(TW _Too) DM
3
R, _ ool i Tw (23)
k(ar +GS) T,
In addition, the Darcian velocity components
are
u=U,_y’f =E(Pe}x/2 + Raf?)zf’, (24)
X
o Pel?
V. X-l{%[n my Jf
(25)

1 m of
- my @ -y) 2L
2[ my I +5 x)ax}

The results of practical interest in many
applications are both the surface heat and mass
transfer rates. The surface heat and mass transfer
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rates are expressed in terms of the local Nusselt
number Nuy and the local Sherwood number Shy

respectively, which are basically defined as

followed:
Nu, =X GuX (26)
k (T,-T,)k
h
sh —mX____ MX o
Du (Cy—C.) Dy

where hy, hnx are local convective heat transfer
coefficient and local convective mass transfer
coefficient, respectively; k is the equivalent
thermal conductivity; g., and m,, are the local heat
flux and the local mass flux, respectively; and
Qy = hX(TW —Tgo) (the Newton’s law of cooling)
and m, =h,,(C,-C,) (the analogy between
the mass transfer and the heat transfer).

From the Fourier’s law of heat conduction, the
Rosseland diffusion approximation and the Fick’s
law of mass diffusion, the rate of surface heat
transfer q,, and the rate of surface mass transfer m,,

are defined as followed, respectively:

_ 16c,T° [g}
oy ), 3 +o;) oy
1606,T°

:_{wm} (%J

m,, = —DM(%]

Inserting equations (28)-(29) into equations
(26)-(27) and with the aid of equation (15), the
local Nusselt number Nuy and the local Sherwood

oT
Ow =0cong +4r = _k(_J

y=0

y=0

(28)

(29)

y=0

number Sh, in terms of PefuRai/z are,

respectively, obtained by

Nu, 4R M),
=1+ -0'(x,0)} (30
Pe% N Rai/z ( 3 ][ (X )]- (30)
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Sh, -’
o =[Gl
Pe}x/2 + Rai/2

(31)
When y = 1 (pure forced convection) and Ry =
0 (in the absence of radiation), equations (16)-(18)

can be reduced to

fro1 (32)
o+ Mg o, (33)
g+ drmLe rZ“)"e F = 0. (34)

Solving the above equations (32)-(34) and the
boundary conditions (19)-(20), by separation of
variables, we can find

_ow0) =, 2™ _ya0) = LML (35

It may be noticed that for Ry = 0, equations
(16)-(20) are reduced to those of Cheng [11]. For
the case of N = 0 (pure heat transfer) and M = 0 (in

the absence of magnetic field), equations (16)-(17),
(19.1-2)-(20.1) are reduced to those of Yih [13]
(The boundary value problem for ¢ then becomes
ill-posed and is of no physical significance). It is
also observed that similar equations are obtained

for the case of y=0ory=1orm=0.

3. Numerical Method

The present analysis integrates the system of
equations (16)-(20) by the implicit finite difference
approximation together with the modified Keller
box method of Cebeci and Bradshaw [17]. To begin
with, the differential equations are first converted
into a system of five first-order equations. Then
these first-order equations are expressed in finite
difference forms and solved along with their
boundary conditions by an iterative scheme. This
approach gives a better rate of convergence and
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reduces the numerical computational times.
Computations were carried out on a personal
computer with the first step size An; = 0.01. The
variable grid parameter is chosen 1.01 and the
value of n, = 100. The iterative procedure is

stopped to give the final temperature and
concentration distributions when the errors in
computing the 6, and ¢, in the next procedure

become less than 107°.

4. Results and Discussion

In order to verify the accuracy of our present
method, we have compared our results with those
of Yih [6, 13, 20-21], Cheng [11, 19], Bejan and
Khair [18], and Chamkha et al. [15]. Table 1 lists
the comparison of the values of —0'(1,0) for
various values of m with M = 0, Ry= 0. Table 2
shows the comparison of the values of —¢'(1,0)
for various values of m and (a) Le = 0.01, (b) Le =
1, (c) Le =100 with M =0, R4= 0. Table 3 shows
the comparison of the values of —6'(y,0) for
various values of with N =0, m=1/3, M =0, Ry=
0. Tables 4 and 5 list the comparison of the values
of —0'(0,0) and —¢'(0,0) for various values of
N and Le withm=0,M=0,Ry=0

Table 6 depicts the comparison of the values of

, respectively.
-0'(x,0) and —¢'(x,0) for various values of Le
with N =1, m=1/2, M =0, Ry= 0, respectively.
Table 7 lists the comparison of the values of
Nu, /(Pe% + Rai/z) for various values of Ry and H
with N = 0, M = 0, y = 0. Table 8 reveals the
comparison of the values of NuX/(Pe§+Ra}f)
for various values of y, Rgand mwithN =0, M =0,
H =1.0001. The comparisons in all the above cases
are almost found to be in excellent agreement, as
shown in Tables 1-8.

However, the results of Cheng [11] (integral
method) in Table 3 are under-estimated for y
approaches to 0, while over-estimated for y
approaches to 1. The results of Cheng [19] (integral
method) in Tables 4 and 5 are over-predicted for all
values of N and Le.

Table 1 Comparison of the values of —6'(1,0) for
various values of mwith M =0, R4=0

-0'(L,0)
m Yih Chamkha et Present
Eq. (35)

[13] al. [15] results

0 | 0.5642 0.5642 0.5642 | 0.5642

1/4 — — 0.6308 | 0.6308
1/3 | 0.6515 0.6516 0.6515 | 0.6515
1/2 — — 0.6910 | 0.6910
3/4 — — 0.7463 | 0.7463
1 | 0.7979 0.7979 0.7979 | 0.7979

Table 2 Comparison of the values of —¢'(1,0) for
various values of mand (a) Le = 0.01,
(b)Le=1,(c) Le=100withM =0,Ry4=0

-¢'(1,0)
(@)
. Present
Le=0.01 Yih [6] Eqg. (35)
results
m=0 0.0564 0.0564 0.0564
m=1 0.0798 0.0798 0.0798
(b) vih [6] Eq. (35) Present
i )
Le=1 a results
m=0 0.5642 0.5642 0.5642
m=1 0.7979 0.7979 0.7979
(©) vih [6] Eq. (35) Present
i )
Le =100 a results
m=0 5.6418 5.6419 5.6417
m=1 7.9789 7.9788 7.9787

35
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Table 3 Comparison of the values of —0'(y,0) for

various values of with
N=0,m=1/3,M=0,R;=0

Table 5 Comparison of the values of —¢'(0,0) for

various values of N and Le with
m=0,M=0,R;=0

-0'(%,0) -¢'(0,0)
X Cheng Yih Chamkhaet | Present Bejan
[11] [13] al. [15] results N | Le and Cheng ih [20] Present
0.0 | 0.4272 | 0.4437 0.4437 0.4437 Khair [19] results
0.1 | 0.3910 | 0.4044 0.4043 0.4044 [18]
0.2 | 0.3699 | 0.3769 0.3769 0.3769 4 1| 0.992 1.070 | 0.9923 | 0.9922
0.3 | 0.3667 | 0.3643 0.3643 0.3643 10 | 3.290 3.570 | 3.2897 | 3.2897
0.4 | 0.3817 | 0.3686 0.3687 0.3687 100 | 10.521 | 11.452 | 10.5205 | 10.5203
0.5 | 0.4131 | 0.3900 0.3901 0.3900 1 1] 0.628 0.677 | 0.6276 | 0.6275
0.6 | 0.4574 | 0.4261 0.4261 0.4261 10 2.202 2410 | 2.2021 | 2.2019
0.7 | 05113 | 0.4731 0.4732 0.4731 100 7.139 7.876 | 7.1391 | 7.1345
0.8 | 0.5721 | 0.5278 0.5280 0.5278
0.9 | 0.6378 | 0.5878 0.5879 0.5878
0.6515 Table 6 Comparison of the values of —6'(y,0)
10| 07071 | 0.6515 0.6516 (0.6515) and —¢'(x,0) for various values of Le with
Result in parenthesis is analytical solution N=1,m=1/2,M=0,R4=0
by Eqg. (35)
-0'(x.0) —¢'(x.0)
Table 4 Comparison of the values of —6'(0,0) for Le X Yih Present Yih Present
various values of N and Le with [6] results [6] results
m=0,M=0,R;=0 0.01 [ 0.0 | 0.7139 | 0.7139 | 0.0470 | 0.0470
-0'(0,0) 0.5 | 0.4851 | 0.4851 | 0.0411 | 0.0411
Bejan 1.0 | 0.6910 | 0.6910 | 0.0691 | 0.0691
N | Le and Cheng Yih Present 1 |0.0 | 06276 | 0.6275 | 0.6276 | 0.6275
Khair [19] [20] results 0.5 | 0.4559 | 0.4559 | 0.4559 | 0.4559
[18] 1.0 | 0.6910 | 0.6910 | 0.6910 | 0.6910
4 1] 0992 1.070 | 0.9923 | 0.9922 100 | 0.0 | 0.4700 | 0.4700 | 7.1390 | 1.1389
10 | 0.681 0.720 | 0.6810 | 0.6810 0.5 | 0.4108 | 0.4108 | 4.8510 | 4.8477
100 | 0.521 0.553 | 0.5209 | 0.5207 1.0 | 0.6910 | 0.6910 | 6.9099 | 6.9097
1 1] 0.628 0.667 | 0.6276 | 0.6275
10 | 0.521 0.557 | 0.5215 | 0.5214
100 | 0.470 0.504 | 0.4702 | 0.4700

36
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Table 7 Comparison of the values of

Nu, /(Pe% + Rai/z) for various values of Ry and H
withN=0,M=0,%=0

Nu, /(Pei/2 + Rai/Z)

R, H=11 H=3

Yih Present Yih Present

[21] results [21] results
0 0.4437 0.4437 0.4437 0.4437

— 0.7220 — 2.0852
5 — 1.3487 — 4.5758
10 1.8549 1.8550 — 6.4553

Table 8 Comparison of the values of

Nu, /(Pe% + Ra?) for various values of
% Raand m with N =0, M =0, H =1.0001

- Nu, /(Pe)? +Ra?)
m=0 m=1/3 m=1

0.4437 0.4437 0.4437

001 0 (0.4437) | (0.4437) | (0.4437)
1 0.6779 0.6779 0.6779

5 1.2288 1.2288 1.2288

10 1.6802 1.6802 1.6802

05 0 0.3603 0.3900 0.4261
(0.3603) | (0.3900) | (0.4227)

1 0.5504 0.5958 0.6422

5 0.9977 1.0799 1.1632

10 1.3642 1.4766 1.6104

10 0 0.5642 0.6515 0.7979
(0.5642) | (0.6515) | (0.7979)

1 0.8619 0.9952 1.2189

5 1.5623 1.8038 2.2094

10 2.1361 2.4666 3.0210

graphically and

Results in parentheses are those of Yih [13]

The

following

numerical
tabularly presented for

esults are

the

buoyancy ratio N ranging from 1 to 4, the Lewis

number Le ranging from 1 to 10, the wedge angle
parameter m ranging from 0 to 1, the magnetic
parameter M ranging from 0 to 2, the mixed
convection parameter y ranging from 0 to 1, the
radiation-conduction parameter Ry ranging from 0
to 10, and the surface temperature parameter H
ranging from 1.1 to 3.

Figures 2 and 3 show the dimensionless
temperature and concentration profiles for two
values of the wedge angle parameter m (m = 0, 1)
and the magnetic parameter M (M =1, 2) with Ry =
5 H=3,N= 2, Le=3,y=0.5, respectively. From
these two figures, it is found that not only the
dimensionless temperature profile but also the
dimensionless concentration profile decreases
monotonically from the surface to the ambient. On
the one hand, for the fixed value of M, both the
dimensionless  wall
[-0'(.0)] the
concentration gradient [—¢'(yx,0)] increase as the

temperature  gradient

and dimensionless  wall
wedge angle parameter m is enhanced. That is
owing to the fact that an increase in the wedge
angle parameter m results in an increase in the flow
thus the
temperature profile 6(y,n) and the dimensionless
concentration profile ¢(y,n), and increasing the

velocity; decreasing dimensionless

dimensionless wall temperature gradient and the
dimensionless wall concentration gradient.

On the other hand, for the fixed value of m,
the dimensionless temperature and concentration
profiles increase with increasing the magnetic
parameter M. The application of a magnetic field
results in slowing the fluid flow velocity. This fact
can also be demonstrated from equation (16).
Therefore, both the dimensionless wall temperature
gradient and the dimensionless wall concentration
gradient reduce as M increases.



MERNBRE®HR F+EE F—H(RE-—CoHF)

Fig. 2. Dimensionless temperature profile for two
values of m and M

Fig. 3. Dimensionless concentration profile for two
values of m and M

Tables 9 and 10 show the values of
Nu, /(Pe/ +Ra)?) and Sh /(Pe?+Ra)?) for
the various values of x, mand M with Ry =5, H =3,
N = 2, Le = 3, respectively. On the one hand, for
the fixed value of y and M, an increase in the
wedge angle parameter m tends to increase the
local Nusselt number as well as the local Sherwood
number. This is due to the fact when the wedge

angle parameter m increases the dimensionless wall
[-0'(x,0)] the
dimensionless  wall  concentration  gradient
[ 9'(x,0)], as shown in Figs. 2 and 3. With the
help of equations (30)-(31),
dimensionless wall temperature gradient and the

temperature  gradient and

the greater the

dimensionless wall concentration gradient, the
larger the local Nusselt number and the local
Sherwood number. The phenomenon is more
pronounced in forced-convection dominated flows
(x approaches to 1.0) than in free-convection
dominated flows (y approaches to 0.0).

On the other hand, an increase in the magnetic
parameter M decreases both the local Nusselt
number and the local Sherwood number, for the
given value of y and m. That is because increasing
the magnetic parameter M tends to decrease the
dimensionless wall temperature and concentration
gradients, as illustrated in Figs. 2 and 3. This
behavior is more evident in the free-convection
dominated flow (yx approaches to 0.0) than in
forced-convection dominated flows (y approaches
to 1.0).

Table 9 The values of Nu, /(Pe){/2 + Rai/Z) for the
various values of v, m and M with
Ry =5,H=3,N=2,Le=3

Nu, /(Pe/? + Ra}?)

X m=20 m=1

M=1 | M=2 | M=1 | M=2
00 | 3.4156 | 2.1606 | 3.4156 | 2.1606
02 | 29376 | 2.0350 | 3.0389 | 2.1843
05 | 3.1624 | 2.8626 | 3.9131 | 3.7747
0.8 | 4.2806 | 4.2459 | 5.9730 |5.9724
1.0 | 52780 | 5.2780 | 7.4642 |7.4642
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Table 10 The values of Sh, /(Pei/2 + Ra%) for the
various values of y, m and M with
Re =5,H=3,N=2,Le=3

Sh, /(Pe/” +Ra?)

% m=0 m=1

M=1 | M=2 | M=1 | M=2
00 | 1.0360 | 0.6552 | 1.0360 | 0.6552
0.2 | 08517 | 0.5596 | 0.8613 | 0.5750
05 | 07126 | 0.5886 | 0.8062 | 0.7224
0.8 | 0.8089 | 0.7927 | 1.1068 | 1.1058
1.0 | 09772 | 09772 | 1.3819 | 1.3819

It is also found that for the same value of M,

the  values  of NuX/(Pe}X/Z+Rai/2) and
ShX/(Pe}X/?JrRai/Z) at the mixed convection

parameter x = 0.0 (pure free convection) in Tables
9 and 10 are independent of the variation of the
wedge angle parameter m. These results are also
seen from the equations (16)-(18). For the case of
= 0.0, the wedge angle parameter m is disappeared,
equations (16)-(18) are reduced to be as follows:

(1+M?) F'=0+N ¢, (36)

0" +%f6’ +%{6’[(H J1p+aF) =0, 37)
1, 1,

gt =0 (38)

Besides, for the fixed m, the values of
Nux/(Pei/?JrRai/Z) and ShX/(Pe}X/?JrRai/Z) aty =
1.0 (pure forced convection) in Tables 9 and 10 are
independent of the variation of the magnetic
parameter M. This is because for the case of x = 1.0,
the effect of the magnetic parameter M is fading
away, equations (16)-(18) are changed to be as
follows:

fr=1, (39)

39

e"+1+mfe'+%{ [H-10+1Ff =0, (40)
1 1+m
L My o, 41
Le¢+ 5 ¢ (41)

Moreover, as y varies from 0 to 1, both the
local Nusselt number and the local Sherwood
number decrease initially, reach a minimum at an
intermediate value of y and then increase gradually,
as shown in Tables 9 and 10. The phenomena of
minimum are also found in Yih [13-14] and
Chamkha et al. [15]. This minimum does not imply
a corresponding minimum value in the local
Nusselt number and local Sherwood number. This
is due to the nature of Nu, /(PeY?+RaY?) and
Sh, /(Pe% +Rai/2) vs. y. For example, let us
consider the present results of
Nu, /(Pe¥? +Ra¥?) withm=0,M=1,Rs;=5,H
=3, N=2,Le=3and x = 0.5 in Table 9. If the
local Peclet number is taken as Pe, = 100, the

numerical

corresponding modified local Rayleigh number can
be found to be Ra, = 100 from equation (15.1).
the
Nu, /(Pe¥? + Ra¥?), the value of Nu, for mixed
convection (Pe, = 100, Ra, = 100) is 63.248. While,
for pure free convection (x = 0.0) and pure forced

Using present numerical results of

convection (y = 1.0) the Nuy values are found to be
34.156 and 52.78, respectively. Therefore, it is
obvious that the present result of Nu, for mixed
convection is higher than that for pure free
convection and pure forced convection.

Figures 4 and 5 illustrate the dimensionless
the
concentration profile for two values of the

temperature  profile and dimensionless

radiation-conduction parameter Rq (Rq = 1, 10) and
the surface temperature parameter H (H = 1.1, 2)
withm=1/3, M =0, N =1, Le =1, x = 0.5,
the

respectively.  When radiation-conduction



R R BRBE

the

increase,

surface
the
temperature profile 6(y,n) becomes large, but the

parameter Ry and

parameter H

temperature
dimensionless
dimensionless  wall  temperature  gradient
[-6(x,0)] becomes small, as shown in Fig. 4.
This is on an account the fact as the value of Ry or
in the

the

H increases, the radiation absorption

boundary  layer  increases,  causing

dimensionless temperature profile become large.
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Fig. 4. Dimensionless temperature profile for two
values of R, and H

However, the

concentration gradient [—¢'(,0)] enhances a little

dimensionless wall
with increasing the radiation-conduction parameter
Ry and the surface temperature parameter H, as
displayed in Fig. 5.

1
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Fig. 5. Dimensionless concentration profile for two
values of Rgand H
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Tables 11 and 12 illustrate the values of
Nu, /(Pe +Ra?) and Sh, /(Pe+Ra)?) for
the various values of y, Ry and H with m = 1/3, M
=0, N =1, Le =1, respectively. For the fixed value
of y, both the local Nusselt number and the local
the
radiation-conduction parameter Ry and the surface

Sherwood number increase as
temperature parameter H increase. In the pure
mixed convection heat transfer, the local Nusselt
number is only proportional to the dimensionless
wall temperature gradient [-0'(x,0)]. For the case
of large Ry and H (radiation effect becomes
pronounced), although the value of [-0'(x,0)] is
low, as shown in Fig. 4, the local Nusselt number is
still large. This is because the local Nusselt number
is found to be more sensitive to Ry and H than
[-0'(x,0)], as revealed in Eq. (30).

the

significantly increased for large values of the

Moreover, local Nusselt number is
radiation-conduction parameter Ry and the surface
temperature parameter H; i.e., the radiation effect
becomes pronounced. However, increasing the
radiation-conduction parameter Ry and the surface
temperature parameter H has the tendency to
enhance slightly the local Sherwood number, as
compared in Tables 11 and 12.

the of
ShX/(Pef?+Rai/2) at x = 1.0 (pure forced
convection) in Table 12 are independent of the

In  addition, present  values

variation of the radiation-conduction parameter Ry
and the surface temperature parameter H. This
result could be revealed with the aid of equations
(39) and (41).
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Table 11 The values of Nu, /(Pef(/2 + Ra%) for the
various values of y, Ry and H with
m=1/3,M=0,N=1,Le=1

Nu, /(Pe? + Raf?)
X Re=1 Ry=10

H=11 H=2 H=11 H=2
0.0 0.9414 1.5069 2.1064 | 4.0212
0.2 0.7821 1.2551 1.7701 | 3.3739
0.5 0.7024 1.1483 1.7051 | 3.2450
0.8 0.8607 1.4248 21918 | 4.1881
1.0 1.0518 1.7432 2.6912 5.1449

Table 12 The values of Sh, /(Pei/2 + Rai/?) for the
various values of y, Ry and H with
m=13,M=0,N=1,Le=1

Sh, /(Pe/? +Ra?)
X Rg=1 Ry=10
H=11 H=2 H=11 H=2
0.0 0.6678 0.6993 0.7040 0.7151
0.2 0.5483 0.5729 0.5766 0.5849
0.5 0.4595 0.4710 0.4726 0.4770
0.8 0.5359 0.5374 0.5376 0.5383
L0 0.6515 0.6515 0.6515 0.6515
(0.6515) | (0.6515) | (0.6515) | (0.6515)
Results in parentheses are analytical solution
by Eq. (35)

Figures 6 and 7 display the dimensionless
temperature and concentration profiles for two
values of the buoyancy ratio N (N = 1, 4) and the
Lewis number Le (Le =1, 10) withRg=1, H= 1.5,
m=1/2, M = 1, y = 0.5, respectively. For a fixed
value of Le, increasing the buoyancy ratio N
increases the buoyancy force, accelerating the flow
velocity, thus enhancing not only the dimensionless
wall temperature gradient [-60'(x,0)] but also the

dimensionless  wall  concentration
[~ '(%,0)], as illustrated in Figs. 6 and 7.

For case of the fixed N, when the Lewis
to 10, the
dimensionless wall temperature gradient decreases

gradient

number Le increases from 1
but the thermal boundary layer thickness &t
becomes thick, as shown in Fig. 6. Whereas, the
dimensionless  wall  concentration  gradient
increases yet the concentration boundary layer
thickness d¢ becomes thin as the Lewis number is

increased, as shown in Fig. 7.

1
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08k m=1/2. M= 1
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Fig. 6. Dimensionless temperature profile for two
values of N and Le
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0.4F
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0_| ]

Fig. 7. Dimensionless concentration profile for two
values of N and Le
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Tables 13 and 14 depict the values of
Nu,/(Pe/ +Ra?) and Sh, /(Pe?+Ra)?) for
the various values of y, N and Le with Ry=1, H =
1.5, m = 1/2, M = 1, respectively. Increasing the
buoyancy ratio N tends to increase the local
Nusselt number as well as the local Sherwood
number. This is due to the fact when the buoyancy
ratio N enhances both the dimensionless wall
[-0'(.0)] the
dimensionless  wall  concentration  gradient
[- '(x,0)], as shown in Figs. 6 and 7. For the fixed
Ry and H, with the aid of equations (30)-(31), the
larger the dimensionless wall temperature gradient

temperature  gradient and

and the dimensionless wall concentration gradient,
the greater the local Nusselt number and the local
Sherwood number.

In Table 13 (Table 14), we can find that the
(Sherwood)
(increases) as the Lewis number Le is increased,
for the fixed N and y. This is due to the fact that a
larger Lewis number Le is associated with a thicker

local Nusselt number decreases

thermal boundary layer thickness &t but a thinner
concentration boundary layer thickness oc, as
illustrated in Figs. 6 and 7. The thicker the thermal
boundary layer thickness, the smaller the local
Nusselt number. The thinner the concentration
boundary layer thickness, the greater the local
Sherwood number.
Furthermore,  the values  of
NUX/(Peié-FRa)}(é) at x = 1.0 (pure forced

convection) in Table 13 are independent of the

present

variations of the buoyancy ratio N and the Lewis
number Le. This result could be revealed with the
aid of equations (39)-(40). For the fixed Le, the
present values of ShX/(Pe§+Rai/2) at x = 1.0
in Table 14 are
independent of the variation of the buoyancy ratio

(pure forced convection)

N. This result could be expressed with the help of
equations (39) and (41).

Table 13 The values of Nu, /(Pe? + Rai/Z) for the
various values of , N and Le with
Ri=1,H=15m=12,M=1

Nu, /(Pe/? + Ra?)

Y N=1 N=4

Le=1 Le=10 Le=1 Le=10
0.0 | 0.8252 0.7177 1.1718 0.8308
0.2 | 0.7141 0.6349 0.9813 0.7248
0.5 | 0.8016 0.7770 0.9110 0.8184
0.8 1.1318 1.1294 1.1430 1.1337
1.0 | 1.4028 1.4028 1.4028 1.4028

Table 14 The values of Sh, /(Pe/? +Ra}?) for the
various values of , N and Le with
R¢=1,H=15m=12M=1

42

Sh, /(Pe” +Ra?)
X N=1 N=4
Le=1 Le=10 Le=1 Le=10
0.0 | 0.4846 1.5920 0.7295 2.3495
0.2 | 0.4079 1.3363 0.5974 1.9227
05 | 04112 1.3175 0.4902 1.5665
0.8 | 0.5590 1.7694 0.5671 1.7952
10 0.6910 2.1849 0.6910 2.1849
(0.6910) | (2.1851) | (0.6910) | (2.1851)
Results in parentheses are analytical solution
by Eq. (35)

5. Conclusions

A laminar boundary layer analysis is presented
to study the thermal radiation with Rosseland
diffusion approximation and the magnetic effects on
the coupled heat and mass transfer by combined
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natural and forced convection flow from a wedge
with uniform wall temperature and uniform wall
(UWT/UWC)
saturated with an optically dense,

concentration in porous media
electrically
conducting viscous fluid in the presence of a
transverse magnetic field. The resulting governing
equations are dimensionless and transformed into a
non-similar form and then solved using an implicit,
finite-difference method (Keller box method: KBM).
A comparison is made with the available results in
the literature, and our results are in very good
agreement with the known results. Numerical
solutions are obtained for different values of the
buoyancy ratio N, the Lewis number Le, the wedge
angle parameter m, the magnetic parameter M, the
% the

radiation-conduction parameter Ry, and the surface

mixed convection parameter
temperature parameter H in graphical and tabular
forms. The entire regime of the mixed convection is
included, when y varies from 0 (pure free convection)
to 1 (pure forced convection). The decay of the
dimensionless temperature and concentration
profiles has been observed in all cases.

The significant features of the results are
summary as follows:
1.

local Sherwood number decreases initially, reaches a

Not only the local Nusselt number but also the

minimum in the intermediate value of y, and then

increases gradually.
2.
tends to increase the local Nusselt number as well as

An increase in the wedge angle parameter m

the local Sherwood number, whereas an increase in
the magnetic parameter M decreases both the local
Nusselt number and the local Sherwood number.

3.
increased

The local Nusselt number is significantly
the
radiation—conduction parameter Ry and the surface

for large values of

43

temperature parameter H; i.e., the radiation effect
becomes pronounced. However, increasing the
radiation—conduction parameter Ry and the surface
temperature parameter H has the tendency to
enhance slightly the local Sherwood number.

4.

ratio N increases not only the local Nusselt number

It is also found that increasing the buoyancy
but also the local Sherwood number. As the Lewis
number Le increases, the local Nusselt (Sherwood)

number decreases (increases).

Nomenclature

a, Rosseland mean extinction coefficient

B  constant

B, externally imposed magnetic field

C  concentration

Cr specific heat at constant pressure

Dy mass diffusivity

f dimensionless stream function

g gravitational acceleration

H  surface temperature parameter

h, local convective heat transfer coefficient

local convective mass transfer coefficient

K permeability of the porous medium
k  equivalent thermal conductivity
Le Lewis number

M  magnetic parameter

m  wedge angle parameter

m,, local mass flux

N  buoyancy ratio

Nu, local Nusselt number

p  pressure of fluid

Pe, local Peclet number

Oecond CONductive heat flux

gr radiative heat flux

gw local heat flux

Ry radiation-conduction parameter
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Ray
Shy

T
Uy

< X < c

modified local Rayleigh number

local Sherwood number

temperature

velocity of the potential flow outside the
boundary layer

Darcy velocity in the x-direction

Darcy velocity in the y-direction

streamwise coordinate

transverse coordinate

Greek symbols

o equivalent thermal diffusivity

Bc  coefficient of concentration expansion

Br coefficient of thermal expansion

vy  halfangle of wedge

d¢c  concentration boundary layer thickness

ot  thermal boundary layer thickness

n  pseudo-similarity variable

0  dimensionless temperature

u  viscosity of fluid

p density of fluid

o electrical conductivity of fluid

o, Stefan-Boltzmann constant

os  Scattering coefficient

¢  dimensionless concentration

¥ Mmixed convection parameter

v stream function

Subscripts

w  condition at the wall

oo condition at infinity

References

1. Nield, D. A., and Bejan, A., Convection in
Porous Media, 4" Edition, New York,
Springer-Verlag (2013).

2. Cheng, P., “Combined free and forced

44

. Chamkha, A. J.,

convection flow about inclined surfaces in
porous media,” Int. J. Heat Mass Transfer, Vol.
20, pp. 807-814 (1977).

. Lai, F. C., and Kulacki, F. A., “The influence of

lateral mass flux on mixed convection over
inclined surfaces in saturated porous media,” J.
Heat Transfer, Vol. 112, pp. 515-518 (1990).

. Vargas, J. V. C., Laursen, T. A, and Bejan, A.,

“Nonsimilar solutions for mixed convection on
a wedge embedded in a porous medium,” Int. J.
Heat Fluid Flow, Vol. 16, pp. 211-216 (1995).

. Kumari, M., and Gorla, R. S. R., “Combined

convection along a non-isothermal wedge in a
porous medium,” Heat Mass Transfer, Vol. 32,
pp. 393-398 (1997).

. Yih, K. A, “Coupled heat and mass transfer in

mixed convection over a wedge with variable
wall temperature and concentration in porous
media: the entire regime,” Int. Commun. Heat
Mass Transfer, Vol. 25, pp. 1145-1158 (1998).

. Yih, K. A., “Uniform transpiration effect on

coupled heat and mass transfer in mixed
convection about inclined surfaces in porous
media: the entire regime,” Acta Mech., Vol. 132,
pp. 229-240 (1999).

. Cheng, C. Y., “Soret and Dufour effects on mixed

convection heat and mass transfer from a vertical
wedge in a porous medium with constant wall
temperature and concentration,” Trans. Porous
Media, Vol. 94, pp. 123-132 (2012).

and Khaled, A. R. A,
“Nonsimilar hydromagnetic simultaneous heat
and mass transfer by mixed convection from a
vertical plate embedded in a uniform porous
medium,” Num. Heat Transfer, Vol. 36, pp.
327-344 (1999).

10. Cheng, C. Y. “An integral approach for


http://www.springerlink.com/content/j1462845176g881q/
http://www.springerlink.com/content/j1462845176g881q/
http://www.springerlink.com/content/j1462845176g881q/
http://www.springerlink.com/content/j1462845176g881q/
http://www.springerlink.com/content/0169-3913/
http://www.springerlink.com/content/0169-3913/

ERMBRE®R FTHL HF—H $£2-46H (RE-—oRZF)
Journal of Air Force Institute of Technology, Vol. 15, No. 1, pp. 29-46, 2016

11.

12.

13.

14.

15.

16.

17.

hydromagnetic natural convection heat and
mass transfer from vertical surfaces with

power-law variation in wall temperature and

concentration in porous media,” Int. Commun.

Heat Mass Transfer, Vol. 32, pp. 204-213
(2005).

Cheng, C. Y., “Effect of a magnetic field on
mixed convection heat and mass transfer from
a vertical wedge in a porous medium by an
integral approach,” J. Southern Taiwan
University, Vol. 40, pp. 27-38 (2015).
Hossain, M. A., and Takhar, H. S., “Radiation
effect on mixed convection along a vertical
plate with uniform surface temperature,” Heat
Mass Transfer, Vol. 31, pp. 243-248 (1996).
Yih, K. A,
convection over an isothermal wedge in
porous media: the entire regime,” Heat
Transfer Engrg., Vol. 22, pp. 26-32 (2001).
Yih, K. A, “Radiation and blowing/suction

“Radiation effect on mixed

effects on mixed convection over an
isothermal vertical cylinder in porous media:
the entire regime,” J. Air Force Insti. Tech.,
\ol. 9, pp. 277-286 (2010).

Chamkha, A. J., Abbasbandy, S., Rashad, A.
M., and Vajravelu, K., “Radiation effects on
mixed convection over a wedge embedded in
a porous medium filled with a nanofluid,”
Trans. Porous Media, Vol. 91, pp. 261-279
(2012).

Hong, J. T., Yamada, Y., and Tien, C. L., “The
effects of non-Darcian and non-uniform
porosity on vertical plate- natural convection
in porous media,” J. Heat Transfer, Vol. 109,
pp. 356-362 (1987).

Cebeci, T., and Bradshaw, P., Physical and

Computational Aspects of Convective Heat

45

18.

19.

20.

21.

Transfer, New York, Springer-Verlag (1984).
Bejan, A., and Khair, K. R., “Heat and mass
transfer by natural convection in a porous
medium,” Int. J. Heat Mass Transfer, Vol. 28,
pp. 909-918 (1985).

Cheng, C. Y., “Effect of magnetic field on
heat and mass transfer by natural convection
from vertical surfaces in porous media- an
integral approach,” Int. Commun. Heat Mass
Transfer, Vol. 26, pp. 935-943 (1999).

Yih, K. A., “Coupled heat and mass transfer
by free convection over a truncated cone in
porous media: VWT/VWC or VHF/VMF,”

Acta Mech., Vol. 137, pp. 83-97 (1999).
Yih, K. A, “Effect of radiation on natural

convection over an isothermal vertical
permeable flat plate in porous media,” J. Air
Force Insti. Tech., Vol. 7, pp. 131-138

(2008).



MERNBRE®HR F+EE F—H(RE-—CoHF)

46



