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Abstract 
The influence of the internal heat generation on coupled heat and mass transfer by the free 

convection flow of a non-Newtonian fluid over a vertical flat plate embedded in a saturated-porous 
medium is numerically analyzed. The surface of the vertical flat plate is maintained at variable heat 
flux and variable mass flux (VHF/VMF). In order to obtain the similarity solution, the internal heat 
generation is of an exponential decaying form. The transformed governing equations are then solved 
by Keller box method (KBM). Comparisons with previously published work are performed and 
excellent agreement is obtained. Numerical data for the dimensionless temperature profile, the 
dimensionless concentration profile, the local Nusselt number and the local Sherwood number are 
graphically and tabularly presented for the internal heat generation coefficient A*, the power-law 
index of the non-Newtonian fluid n, the exponent of VHF/VMF λ, the buoyancy ratio N, and the 
Lewis number Le. The physical aspects of the problem are discussed in details. 
Keywords: internal heat generation, non-Newtonian fluid free convection, vertical flat plate, porous 
media, VHF/VMF 
 

摘  要 

    本文以一數值方法分析：內部熱源效應對於飽和多孔性介質內非牛頓流體流經一垂直平板
之自然對流熱傳與質傳影響。垂直平板的表面維持於可變熱通量/可變質通量之條件。為了要
得到一組相似解，內部熱源形式假設為指數漸減形式。經轉換後的控制方程式則以凱勒盒子法
求解之。所得的數值計算結果與早期已刊登發表的論文結果作比較，結果非常吻合。本文數值
計算的結果主要以圖形與表格的形式來顯示：內部熱源參數，非牛頓流體之冪次律指標，可變
壁溫度/可變壁濃度指數，浮力比，路易士數對無因次溫度分佈、無因次濃度分佈、局部紐塞
爾數和局部希爾吾德數之影響。文中的物理現象也詳加討論。  
關鍵字： 內部熱源，非牛頓流體自然對流，垂直平板，多孔性介質，可變熱通量/可變質通量 
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1. Introduction 
 

The convective heat transfer in a saturated 
porous medium has a number of important 
applications in geothermal and geophysical 
engineering. These include nuclear reactor cooling 
system, extraction of geothermal energy, thermal 
insulation of buildings, filtration processes and 
disposal of underground nuclear wastes. Recent 
books by Nield and Bejan [1], Ingham and Pop [2] 
and Vafai [3] present a comprehensive account of the 
available information in the field. 

A number of industrially important fluids, 
including fossil fuels which can saturate 
underground beds, display the behavior of 
non-Newtonian. The non-linear relationship between 
shear strain rate and shear stress of non-Newtonian 
fluids in porous matrix is quite different from that of 
Newtonian fluids in porous media. In the aspect of 
pure heat transfer, Mehta and Rao [4], Gorla and 
Kumari [5], and El-Amin et al. [6] investigated the 
case of the vertical flat plate. Wang et al. [7] 
examined the body of arbitrary shape. The case of 
the vertical cone was considered by Cheng [8]. 

In the aspect of coupled heat and mass transfer, 
double-diffusion from a vertical surface in a porous 
region saturated with a non-Newtonian fluid was 
studied by Rastogi and Poulikakos [9]. El-Hakiem 
and El-Amin [10] investigated the mass transfer 
effects on the non-Newtonian fluids past a vertical 
plate embedded in a porous medium with 
non-uniform surface heat flux. Cheng [11] examined 
the natural convection heat and mass transfer of 
non-Newtonian power law fluids with yield stress in 
porous media from a vertical plate with variable wall 
heat and mass fluxes (VHF/VMF). Soret and Dufour 

effects on free convection boundary layers of 
non-Newtonian power law fluids with yield stress in 
porous media over a vertical plate with variable wall 
heat and mass fluxes (VHF/VMF) was examined by 
Cheng [12]. 

The effect of internal heat generation is 
important in several applications that include reactor 
safety analyses, metal waste form development for 
spent nuclear fuel, fire and combustion studies, and 
the storage of radioactive materials. A new class of 
similarity solutions has obtained for isothermal 
vertical plate in a semi-infinite quiescent fluid with 
internal heat generation decaying exponentially by 
Crepeau and Clarksean [13]. Postelnicu et al. [14] 
used the model of Crepeau and Clarksean [13] to 
present free convection boundary-layer over a 
vertical permeable flat plate in a porous medium 
with internal heat generation. Mohamed [15] 
investigated the effect of lateral mass flux on the 
natural convection boundary layers induced by a 
heated vertical plate embedded in a saturated porous 
medium with internal heat generation. Grosan and 
Pop [16] studied the free convection over vertical 
flat plate with a variable wall temperature and 
internal heat generation in a porous medium 
saturated with a non-Newtonian fluid. Groşan at al. 
[17] analyzed free convection boundary layer over a 
vertical cone in a non-Newtonian fluid saturated 
porous medium with internal heat generation. Bagai 
and Nishad [18] investigated the free convection in a 
non-Newtonian fluid along a horizontal plate 
embedded in porous media with internal heat 
generation. Chamkha et al. [19] studied effect of 
suction/injection on free convection along a vertical 
plate in a nanofluid saturated non-Darcy porous 
medium with internal heat generation. Very recently, 
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Yih and Huang [20-22] examined the effect of 
internal heat generation on free convection heat and 
mass transfer of non-Newtonian fluids flow over a 
vertical plate [20], vertical full cone [21], and 
vertical truncated cone [22] in porous media: 
VWT/VWC, respectively. 

The objective of the present work is to extend 
the work of Yih and Huang [20] to investigate the 
internal heat generation effect on coupled heat and 
mass transfer by the free convection flow of a 
non-Newtonian fluid over a vertical flat plate 
embedded in a saturated-porous medium: VHF/VMF. 
To the best of our knowledge, this problem has not 
been investigated before. It is assumed that the 
internal heat generation is of the exponential 
decaying form. The governing equations have been 
solved numerically using Keller box method (KBM). 
The results are obtained for various values of the 
parameters. 

 
2. Analysis 
 

Let us consider the problem of the influence of 
the internal heat generation on combined heat and 
mass free convection flow of non-Newtonian fluids 
over a vertical flat plate embedded in a 
fluid-saturated porous medium. Figure 1 shows the 
flow model and physical coordinate system. The 
origin of the coordinate system is placed at the 
leading edge of the vertical flat plate, where x and y 
are Cartesian coordinates measuring distance along 
and normal to the surface of vertical flat plate, 
respectively. In order to obtain the similar solution, 
we consider the boundary condition of variable heat 
flux qw(x) and variable mass flux mw(x) 
(VHF/VMF); both the ambient temperature and 
ambient concentration are T∞ and C∞, respectively. 

The variations of fluid properties are limited to 
density variation that affects the buoyancy force 
term only. The viscous dissipation effect is neglected 
for the low velocity. The flow of a non-Newtonian 
fluid through the porous medium is governed by the 
power law. 
 

 
Fig. 1. The flow model and the physical coordinate 

system 
 

Introducing the boundary layer and Boussinesq 
approximations, the governing equations and the 
boundary conditions based on the Darcy law (It is 
valid under the condition of low velocity and small 
pores of porous medium [23]) can be written as 
follows [17, 20]: 
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Concentration equation: 
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Boussinesq approximation: 
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Here, u and v are the Darcian velocities in the x- and 
y- directions; K(n) is the permeability of the porous 
medium; n is the power-law index of the 
non-Newtonian fluid; g is the gravitational 
acceleration; μ, p and ρ are the viscosity, the 
pressure and the density of the fluid, respectively; T 
and C are the volume-averaged temperature and 
concentration, respectively; α and DM are the 
equivalent thermal diffusivity and mass diffusivity, 
respectively; q ′′′  is the internal heat generation rate 

per unit volume; CP is the specific heat at constant 
pressure; βT and βC are the thermal and concentration 
expansion coefficients of the fluid, respectively; k is 
the equivalent thermal conductivity; a and b are 
positive constants; λ is the exponent of VHF/VMF; 
equations (7.2)-(7.3) are the Fourier’s law of heat 
conduction and the Fick’s law of mass diffusion, 
respectively. 

The power-law fluid index n for various fluids 
is as follows: 
(i) n < 1 for pseudo-plastic fluids (for example, the 
polymer solution) or shear-thinning fluids that have 
a lower apparent viscosity at higher shear rates. 
(ii) n = 1 for Newtonian fluids (for instance, air and 
water) where the shear stress is directly proportional 
to the shear rate. 

(iii) n > 1 for dilatant fluids (for example, the 
suspensions of sand) or shear-thickening fluids for 
which there is an increase in the apparent viscosity 
at higher shear rates. 

For the power law model of Ostwald-de-Waele, 
Christopher and Middleman [24] and Dharmadhikari 
and Kale [25] proposed the following relationships 
for the permeability of the porous medium: 
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where d is the particle diameter while ε is the 
porosity. 

The stream function ψ  is defined by 
y/u ∂y∂= , x/v ∂ψ−∂= .        (10) 

Therefore, the continuity equation is automatically 
satisfied. 
    Paying attention to equations (2)-(3). If we do 
the operation of the cross-differentiation: 

,x/)3(y/)2( ∂∂−∂∂  then the pressure terms in 

equations (2)-(3) can be eliminated. Further, with the 
help of the equation (6) and the boundary layer 
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Integrating equation (11) once and with the aid 
of equation (8), then we get 
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where Rax is the modified local Rayleigh number for 
the flow through the porous medium. 

In order to achieve the similar solution, the 
internal heat generation rate per unit volume q ′′′  is 

modeled according to the following equation 
[14-22]: 
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Here, A* is the internal heat generation coefficient. 
Note that when A* = 0 corresponds to the case: no 
internal heat generation (designated as NIHG), 
however, for A* > 0 corresponds to the other case: 
with internal heat generation (WIHG). 

Substituting equations (13)-(14) into equations 
(12), (4)-(5), (7)-(8), we obtain 
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The boundary conditions are defined as follows: 
,1,1,0f:0 −=f′−=θ′==η       (18) 

.0,0: =φ=θ∞→η         (19) 

In the above equations, the primes denote 
differentiation with respect to η. Besides, the 
buoyancy ratio N and the Lewis number Le are 

defined as followed, respectively: 
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In addition, in terms of the new variables, the 
Darcian velocities in x- and y- directions are, 
respectively, given by 

,f
x

Rau
1n2

2

x ′a
=

+

            (21) 

.f
1n2

nf
1n2

1n
x

Rav
1n2

1

x







 ′η







+
λ−

−







+
λ++a

−=
+

   (22) 

The results of practical interest in many 
applications are both the surface heat and mass 
transfer rates. The surface heat and mass transfer 
rates are expressed in terms of the local Nusselt 
number Nux and the local Sherwood number Shx 
respectively, which are basically defined as 
followed: 
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where hx, hm,x are the local convective heat transfer 
coefficient and the local convective mass transfer 
coefficient, respectively; [ ]∞−= T)x(Th)x(q wxw  

(the Newton’s law of cooling) and 
[ ]∞−= C)x(Ch)x(m wx,mw  (the analogy between 

the mass transfer and the heat transfer) , 
respectively. 
    Inserting equation (13) into equations (23)-(24), 
the local Nusselt number Nux and the local 
Sherwood number Shx in terms of 1n2

1

xRa +  are, 
respectively, obtained by 
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3. Numerical Method 
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The present analysis integrates the system of 
equations (15)-(19) by the implicit finite difference 
approximation together with the modified Keller box 
method of Cebeci and Bradshaw [26]. To begin with, 
the differential equations are first converted into a 
system of five first-order equations. Then these 
first-order equations are expressed in finite 
difference forms and solved along with their 
boundary conditions by an iterative scheme. This 
approach gives a better rate of convergence and 
reduces the numerical computational times. 

Computations were carried out on a personal 
computer with the first step size Δη1 = 0.01. The 
variable grid parameter is chosen 1.01 and the value 
of η∞ = 16. The iterative procedure is stopped to give 
the final temperature and concentration distributions 
when the errors in computing the wθ  and wφ  in 

the next procedure become less than 10-5. 
 

4. Results and Discussion 
 

In order to verify the accuracy of our present 
method, we have compared our results with those of 
Hsieh [27], Cheng [11], Yih [28], El-Amin et al. [6], 
Cheng [12], and Yih [29]. Table 1 illustrates the 
comparison of the values of 1n2

1

xx Ra/Nu +  for 
various values of λ with n = 1, N = A* = 0. Table 2 
depicts the comparison of the values of ( )0θ  for 

various values of n with N = λ = A* = 0. Table 3 
shows the comparison of the values of ( )0θ  for 

various values of n and λ with N = A* = 0. Table 4 
lists the comparison of the values of ( )0θ  and ( )0φ  

for various values of N and Le with n = λ = 1, A* = 0, 
respectively. The comparisons in all the above cases 
are found to be in excellent agreement, as shown in 
Tables 1-4.  
 

Table 1 Comparison of the values of 1n2
1

xx Ra/Nu +  
for various values of λ with  

n = 1, N = A* = 0 

λ  
1n2

1

xx Ra/Nu +  

Hsieh [27] Cheng [11] Present results 

5.0−  0.5818 0.5818 0.5818 

0.0 0.7715 0.7715 0.7715 

0.5 0.8998 0.8998 0.8998 

1.0 1.0000 1.0000 1.0000 

 

Table 2 Comparison of the values of ( )0θ  for 

various values of n with N = λ = A* = 0 

n 

( )0θ  

Yih [28] 
El-Amin et 

al. [6] 
Cheng 
[12] 

Present 
results 

0.5 1.3302 1.3294 1.3302 1.3302 

0.8 1.3113 — 1.3113 1.3114 

1 1.2962 1.2958 1.2962 1.2962 

1.5 1.2641 1.2639 1.2641 1.2641 

2.0 1.2411 — 1.2411 1.2411 

2.5 — — — 1.2244 

 
Table 3 Comparison of the values of ( )0θ  for 

various values of n and λ with N = A* = 0 

n 

( )0θ  

λ = 0.2 λ = 0.5 

El-Amin 
et al. [6] 

Present 
results 

El-Amin 
et al. [6] 

Present 
results 

0.5 1.2595 1.2643 1.1884 1.1892 

1 1.2083 1.2085 1.1112 1.1114 

1.5 1.1669 1.1670 1.0607 1.0608 

2.0 — 1.1389 — 1.0279 

2.5 — 1.1191 — 1.0052 

 
Table 4 Comparison of the values of ( )0θ  and 

( )0φ  for various values of N and Le with  
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n = λ = 1, A* = 0 

N Le 

( )0θ  ( )0φ  
Yih 
[29] 

Present 
results 

Yih 
[29] 

Present 
results 

4 1 0.5848 0.5848 0.5848 0.5848 

 10 0.8891 0.8891 0.2172 0.2172 

 100 0.9839 0.9839 0.0747 0.0747 

1 1 0.7937 0.7937 0.7937 0.7937 

 10 0.9635 0.9635 0.2506 0.2507 

 100 0.9955 0.9955 0.0794 0.0795 

 
The following numerical results are presented 

for the internal heat generation coefficient A* 
ranging from 0 to 1, the power-law index of the 
non-Newtonian fluid n ranging from 0.5 to 2.0, the 
exponent of VHF/VMF λ ranging from 5.0−  to 1, 
the buoyancy ratio N ranging from 0 to 10, the 
Lewis number Le ranging from 0.1 to 10. 

The effects of power-law index n and internal 
heat generation coefficient A* on the dimensionless 
temperature and concentration profiles for λ = 0, N = 
1, Le = 2, are shown in Figs. 2 and 3, respectively. In 
Fig. 2, for the fixed n, it is observed that the 

dimensionless temperature profile )(ηθ  increases 
with increasing the internal heat generation 
coefficient A*, thus enhancing the dimensionless 

wall temperature, i.e., )0(θ ; for the fixed A*, the 
non-Newtonian fluid with higher power-law index n 
has the larger dimensionless wall temperature.  

Fig. 3 shows that the non-Newtonian fluid with 
higher power-law index n has larger dimensionless 

wall concentration, i.e., )0(φ . It is also found that 
the dimensionless concentration profile )(ηφ  
decreases with increasing the internal heat 
generation coefficient A*, thus reducing the 
dimensionless wall concentration.  

η
0 1 2 3 4 50

0.5

1

1.5

2

λ = 0 , N =1 , Le = 2

A* = 0

A* = 1

n = 0.5

n = 1.5

θ

 
Fig. 2 Effects of power-law index and internal 

heat generation coefficient on the dimensionless 
temperature profile 

 

η
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0.4

0.6
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λ = 0 , N =1 , Le = 2

A* = 1

A* = 0

n = 0.5

n = 1.5

φ

 
Fig. 3 Effects of power-law index and internal 

heat generation coefficient on the dimensionless 
concentration profile 

 
Figs. 4 and 5 illustrate the variation of the local 

Nusselt number 
1n2

1

xx Ra/Nu +

 and the local 

Sherwood number 
1n2

1

xx Ra/Sh +

 with the buoyancy 

ratio N for two values of power-law index (n = 0.5, 
1.5) and internal heat generation coefficient (A* = 0, 
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1) with λ = 0, Le = 2, respectively. In Fig. 4, on one 
hand, for fixed n, the local Nusselt number tends to 
decrease as the internal heat generation coefficient 
A* is increased. This is because increasing the 
internal heat generation coefficient A* increases the 

dimensionless wall temperature )0(θ , as shown in 
Fig. 2. From equation (25.1), the larger the 
dimensionless wall temperature, the smaller the local 
Nusselt number. On the other hand, for fixed A*, the 
local Nusselt number increases as the power-law 
index n is decreased. Decreasing the power-law 
index n tends to increase the velocity of the flow and 
decrease the dimensionless wall temperature, as 
shown in Fig. 2, thereby enhancing the local Nusselt 
number. Thus, the pseudoplastic fluids (n = 0.5) are 
superior to the dilatant fluids (n = 1.5) from the 
viewpoint of the free convection heat transfer rates 
from a vertical flat plate embedded in a porous 
medium saturated with non-Newtonian power-law 
fluids. In addition, increasing the buoyancy ratio N 
tends to increase the buoyancy force, accelerating 
the flow and thereby increasing the local Nusselt 
number. 

N
0 2 4 6 8 100.5

1

1.5

2

λ = 0 , Le = 2

n = 0.5

n = 1.5

n = 0.5
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Fig. 4 Effects of power-law index and internal 

heat generation coefficient on the local Nusselt 
number 

Fig. 5 shows that, for fixed n, the local 
Sherwood number tends to slightly increase as the 
internal heat generation coefficient A* is increased. 
This is because increasing the internal heat 
generation coefficient A* decreases the 

dimensionless wall concentration )0(φ , as shown in 
Fig. 3. From equation (25.2), the thinner the 
dimensionless wall concentration, the greater the 
local Sherwood number. For the fixed A*, the local 
Sherwood number decreases as the power-law index 
n is increased. Increasing the power-law index n 
tends to retard the velocity of the flow, thus lowering 
the local Sherwood number. Thus pseudoplastic 
fluids (n = 0.5) are superior to the dilatant fluids (n = 
1.5) from the viewpoint of the mass transfer rates by 
natural convection from a vertical flat plate 
embedded in a porous medium saturated with 
power-law fluids. Besides, enhancing the buoyancy 
ratio N tends to increase the buoyancy force, 
accelerating the flow and thereby increasing the 
local Sherwood number. 
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Fig. 5 Effects of power-law index and internal 

heat generation coefficient on the local Sherwood 
number 
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Figs. 6 and 7 show the variation of the local 

Nusselt number 
1n2

1

xx Ra/Nu +

 and the local 

Sherwood number 
1n2

1

xx Ra/Sh +

 with the buoyancy 

ratio N for two values of Lewis numbers (Le = 0.5, 
5), exponent of VHF/VMF (λ = 0, 1) with A* = 1, n 
= 2, respectively. In Fig. 6, comparing these curves, 
we can find that the local Nusselt number decreases 
as the Lewis number Le is increased, for fixed N and 
λ. This is due to the fact that a larger Lewis number 
Le is associated with a thicker thermal boundary 
layer. The thicker the thermal boundary layer 
thickness, the smaller the local Nusselt number. 
Moreover, for fixed Le, increasing the buoyancy 
ratio N and the exponent of VHF/VMF λ tends to 
increase the buoyancy force, accelerating the flow 
and thereby increasing the local Nusselt number. 
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Fig. 6 Effect of the exponent of VHF/VMF and 

Lewis number on the local Nusselt number 
 
Results in Fig. 7 show that the local Sherwood 

number increases as the Lewis number Le is 

increased, for fixed N and λ . This is because that a 
larger Lewis number Le is associated with a thinner 

concentration boundary layer. The thinner the 
concentration boundary layer thickness, the greater 
the local Sherwood number. The Lewis number Le 
has a more significant effect on the local Sherwood 
number than it does on the local Nusselt number, as 
compared Figs. 6 and 7. Besides, for fixed Le, 
increasing the buoyancy ratio N and the exponent of 
VHF/VMF λ tends to increase the buoyancy force, 
accelerating the flow and thereby increasing the 
local Sherwood number. 
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Fig. 7 Effect of the exponent of VHF/VMF and 
Lewis number on the local Nusselt number 

 

For the sake of future comparison, we 
illustrated Tables 5-7 and discussed as follows. Table 
5 shows the values of ( )0θ  for various values of n 

and λ  with N = 0 (pure heat transfer), A* = 1. For 
the fixed n, the dimensionless wall temperature 
( )0θ  decreases with increasing the exponent of 

VHF/VMF λ. For 0≤λ  (λ = 1), increasing the 
power-law index of the non-Newtonian fluid n 
enhances (reduces) the dimensionless wall 
temperature ( )0θ . However, for λ = 0.5, the 
dimensionless wall temperature ( )0θ  increases 

initially, reaches a maximum in the intermediate 
value of n, and then reduces gradually. 
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Table 5 Values of ( )0θ  for various values of n and 

λ with N = 0, A* = 1 

n 
( )0θ  

5.0−=λ  λ = 0 λ = 0.5 λ = 1 
0.5 2.0339 1.6269 1.4401 1.3244 
0.8 2.2569 1.6943 1.4495 1.3026 
1 2.3557 1.7170 1.4458 1.2854 

1.5 2.5154 1.7447 1.4303 1.2488 
2.0 2.6105 1.7559 1.4158 1.2223 
2.5 2.6735 1.7612 1.4041 1.2029 

 

Table 6 shows the values of ( )0θ  and ( )0φ  
for the various values of N, n and A* with λ = 0, Le 
= 1, respectively. For the given N and n, increasing 
the internal heat generation coefficient A* increases 
the dimensionless wall temperature ( )0θ , but 
decreases the dimensionless wall concentration 
( )0φ . It is observed that, for the fixed A*, both the 

dimensionless wall temperature ( )0θ  and the 
dimensionless wall concentration ( )0φ  reduce as 
the buoyancy ratio N is increased or the power-law 
index n is decreased.  
 

Table 6 Values of ( )0θ  and ( )0φ  for various 

values of N, n and A* with λ = 0, Le = 1 

N n 
( )0θ  ( )0φ  

A* = 0 A* = 1 A* = 0 A* = 1 

4 0.5 0.5949 0.9122 0.5949 0.5472 
 0.8 0.7061 1.0708 0.7061 0.6633 
 1 0.7580 1.1472 0.7580 0.7184 
 1.5 0.8454 1.2806 0.8454 0.8125 
 2.0 0.8995 1.3667 0.8995 0.8716 
1 0.5 0.9406 1.3096 0.9406 0.7808 
 0.8 1.0045 1.4268 1.0045 0.8726 
 1 1.0288 1.4765 1.0288 0.9115 
 1.5 1.0630 1.5541 1.0630 0.9717 
 2.0 1.0804 1.5988 1.0804 1.0060 
0 0.5 1.3302 1.6269 1.3302 0.9653 
 0.8 1.3114 1.6943 1.3114 1.0279 
 1 1.2962 1.7170 1.2962 1.0508 
 1.5 1.2641 1.7447 1.2641 1.0817 
 2.0 1.2411 1.7559 1.2411 1.0964 

 

Table 7 illustrates the values of ( )0θ  and ( )0φ  

for the various values of N, Le, λ with A* = 1, n = 
2.0, respectively. For the given N and λ, increasing 
the Lewis number Le increases the dimensionless 
wall temperature ( )0θ , but decreases the 
dimensionless wall concentration ( )0φ . It is found 

that, for the fixed Le, both the dimensionless wall 
temperature ( )0θ  and the dimensionless wall 
concentration ( )0φ  reduce as the buoyancy ratio N 

and the exponent of VHF/VMF λ are increased.  
 

Table 7 Values of ( )0θ  and ( )0φ  for various 

values of N, Le and λ with A* = 1, n = 2.0 

N Le 
( )0θ  ( )0φ  

λ = 0 λ = 1 λ = 0 λ = 1 

4 0.1 0.9844 0.6782 2.3359 1.7007 

 1 1.3667 0.9419 0.8716 0.6369 

 10 1.6756 1.1595 0.2971 0.2188 

1 0.1 1.2836 0.8881 2.9925 2.1759 

 1 1.5988 1.1077 1.0060 0.7375 

 10 1.7319 1.2034 0.3160 0.2335 

0 0.1 1.7559 1.2223 4.6973 3.2797 

 1 1.7559 1.2223 1.0964 0.8066 

 10 1.7559 1.2223 0.3245 0.2403 

 
5. Conclusions 
 

A two-dimensional, steady, laminar boundary 
layer analysis is presented to study the effect of 
internal heat generation on natural convection flow 
resulting from combined heat and mass buoyancy 
effects of a non-Newtonian fluid adjacent to the 
vertical flat plate maintained at variable heat flux 
and variable mass flux (VHF/VMF) in a Darcy 
porous medium. Numerical solutions are obtained 
for different values of the internal heat generation 
coefficient A*, the power-law index n, the exponent 
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of VHF/VMF λ, the buoyancy ratio N, and the 
Lewis number Le. The local Nusselt (Sherwood) 
number tends to decrease (increase) as both the 
internal heat generation coefficient A* and the Lewis 
number Le are increased. Enhancing the buoyancy 
ratio N and the exponent of VHF/VMF λ tends to 
increase the local Nusselt number as well as the 
local Sherwood number. In addition, a decrease in 
the power-law index n of fluids tends to increase the 
heat and mass transfer from a vertical flat plate in a 
porous medium saturated with non-Newtonian 
power-law fluids. 
 

Nomenclature 
A* internal heat generation coefficient 
a positive constant 
b positive constant 
C concentration 
CP  specific heat at constant pressure 
DM mass diffusivity 
d particle diameter 
f dimensionless stream function 
g gravitational acceleration 
hx local convective heat transfer coefficient 
hm,x local convective mass transfer coefficient 
K(n) permeability of the porous medium 
k equivalent thermal conductivity 
Le Lewis number 
mw local wall mass flux 
N buoyancy ratio 
n power-law index of the non-Newtonian fluid 
Nux local Nusselt number 
p pressure 
q ′′′  internal heat generation rate per unit volume 

qw local wall heat flux 
Rax modified local Rayleigh number 
Shx local Sherwood number 

T temperature 
u Darcy velocity in the x-direction 
v Darcy velocity in the y-direction 
x streamwise coordinate 
y transverse coordinate 
 

Greek symbols 
α equivalent thermal diffusivity 
βC coefficient of concentration expansion 
βT coefficient of thermal expansion 
ε porosity 
η similarity variable 
θ dimensionless temperature 
λ exponent of VHF/VMF 
μ viscosity 
ρ density 
φ  dimensionless concentration 
ψ  stream function 

 

Subscripts 
w condition at the wall 
∞ ambient 
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