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Internal Heat Generation Effect on Free Convection Flow of Power-Law Fluids
over A Vertical Plate in Porous Media: VHF/VMF
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Abstract

The influence of the internal heat generation on coupled heat and mass transfer by the free
convection flow of a non-Newtonian fluid over a vertical flat plate embedded in a saturated-porous
medium is numerically analyzed. The surface of the vertical flat plate is maintained at variable heat
flux and variable mass flux (VHF/VVMF). In order to obtain the similarity solution, the internal heat
generation is of an exponential decaying form. The transformed governing equations are then solved
by Keller box method (KBM). Comparisons with previously published work are performed and
excellent agreement is obtained. Numerical data for the dimensionless temperature profile, the
dimensionless concentration profile, the local Nusselt number and the local Sherwood number are
graphically and tabularly presented for the internal heat generation coefficient A”, the power-law
index of the non-Newtonian fluid n, the exponent of VHF/VMF A, the buoyancy ratio N, and the
Lewis number Le. The physical aspects of the problem are discussed in details.
Keywords: internal heat generation, non-Newtonian fluid free convection, vertical flat plate, porous
media, VHF/VMF

§ 2

Ao rio g A R R A e S I A R AR AT - £ T

2_ B R¥EE %L@bh’%ﬁ’@ 33‘3 o -7 T i & AFIF %%mé’ﬁ/"‘ %’Fﬁ’xé‘ T2 0EE e 50 &

ig':f'J BAP MRS P %K’ﬂb/},%lq/;( B3k RJ}L ﬁizﬁfzﬁk‘q/;\ o M gk {4 i 4 B fL}kﬂl”h‘“mﬁy’ﬁ;/é

Fefgz o 7@ mﬁxxﬁ ICER - ’T'J’Q’? Ze £ BEIE R BE2EY L o A il

;,Lﬂt# % % RV Eg]ﬂ/.bf’ = ﬁi.g’j":ﬂ};\: ;L&F,—I- S v‘g%tl)g, Kﬁi: , 2b A4 ;gF, SRl 2 %/ 'i;}ﬂﬁ"‘ , = %

/B_Ji/'”%@?iféliiﬁﬁi FAL O RIIEHFAEFIIERAT CATFIRERAT ~ Al E
Eﬁm‘fﬁv AR AR o v IR g P

MAEZ ¢ P B LA MR AR 8 T HE o SRR T R R/ R R

15



MERMSERE®HR F+HE F—H (RE—CoHF)

1. Introduction

The convective heat transfer in a saturated
of
and geophysical

porous medium has a number important

applications in  geothermal
engineering. These include nuclear reactor cooling
system, extraction of geothermal energy, thermal
insulation of buildings, filtration processes and
disposal of underground nuclear wastes. Recent
books by Nield and Bejan [1], Ingham and Pop [2]
and Vafai [3] present a comprehensive account of the
available information in the field.

A number of industrially important fluids,
which saturate
the of

non-Newtonian. The non-linear relationship between

including fossil  fuels can

underground beds, display behavior
shear strain rate and shear stress of non-Newtonian
fluids in porous matrix is quite different from that of
Newtonian fluids in porous media. In the aspect of
pure heat transfer, Mehta and Rao [4], Gorla and
Kumari [5], and EI-Amin et al. [6] investigated the
case of the vertical flat plate. Wang et al. [7]
examined the body of arbitrary shape. The case of
the vertical cone was considered by Cheng [8].

In the aspect of coupled heat and mass transfer,
double-diffusion from a vertical surface in a porous
region saturated with a non-Newtonian fluid was
studied by Rastogi and Poulikakos [9]. El-Hakiem
and EI-Amin [10] investigated the mass transfer
effects on the non-Newtonian fluids past a vertical
plate embedded in a porous medium with
non-uniform surface heat flux. Cheng [11] examined
the natural convection heat and mass transfer of
non-Newtonian power law fluids with yield stress in
porous media from a vertical plate with variable wall

heat and mass fluxes (VHF/VMF). Soret and Dufour
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effects on free convection boundary layers of
non-Newtonian power law fluids with yield stress in
porous media over a vertical plate with variable wall
heat and mass fluxes (VHF/VMF) was examined by
Cheng [12].

The effect of
important in several applications that include reactor

internal heat generation is
safety analyses, metal waste form development for
spent nuclear fuel, fire and combustion studies, and
the storage of radioactive materials. A new class of
similarity solutions has obtained for isothermal
vertical plate in a semi-infinite quiescent fluid with
internal heat generation decaying exponentially by
Crepeau and Clarksean [13]. Postelnicu et al. [14]
used the model of Crepeau and Clarksean [13] to
present free convection boundary-layer over a
vertical permeable flat plate in a porous medium
with Mohamed [15]
investigated the effect of lateral mass flux on the

internal heat generation.
natural convection boundary layers induced by a
heated vertical plate embedded in a saturated porous
medium with internal heat generation. Grosan and
Pop [16] studied the free convection over vertical
flat plate with a variable wall temperature and
internal heat generation in a porous medium
saturated with a non-Newtonian fluid. Grosan at al.
[17] analyzed free convection boundary layer over a
vertical cone in a non-Newtonian fluid saturated
porous medium with internal heat generation. Bagai
and Nishad [18] investigated the free convection in a
non-Newtonian fluid along a horizontal plate
embedded in porous media with internal heat
generation. Chamkha et al. [19] studied effect of
suction/injection on free convection along a vertical
plate in a nanofluid saturated non-Darcy porous

medium with internal heat generation. Very recently,
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Yih and Huang [20-22] examined the effect of
internal heat generation on free convection heat and
mass transfer of non-Newtonian fluids flow over a
vertical plate [20], vertical full cone [21], and
vertical truncated cone [22]
VWT/VWC, respectively.

The objective of the present work is to extend

in porous media:

the work of Yih and Huang [20] to investigate the
internal heat generation effect on coupled heat and
mass transfer by the free convection flow of a
non-Newtonian fluid over a vertical flat plate

embedded in a saturated-porous medium: VHF/VMF.

To the best of our knowledge, this problem has not
been investigated before. It is assumed that the
internal heat generation is of the exponential
decaying form. The governing equations have been
solved numerically using Keller box method (KBM).
The results are obtained for various values of the

parameters.

2. Analysis

Let us consider the problem of the influence of
the internal heat generation on combined heat and
mass free convection flow of non-Newtonian fluids
flat embedded
fluid-saturated porous medium. Figure 1 shows the

over a vertical plate in a
flow model and physical coordinate system. The
origin of the coordinate system is placed at the
leading edge of the vertical flat plate, where x and y
are Cartesian coordinates measuring distance along
and normal to the surface of vertical flat plate,
respectively. In order to obtain the similar solution,
we consider the boundary condition of variable heat
flux gw(x) and variable mass
(VHF/VMF); both the ambient temperature and

ambient concentration are T,, and C,, respectively.

flux  my(x)
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The variations of fluid properties are limited to
density variation that affects the buoyancy force
term only. The viscous dissipation effect is neglected
for the low velocity. The flow of a non-Newtonian
fluid through the porous medium is governed by the

power law.
X
boundary layer
G (X) 1T,
g m,, (X) ," C,

[}
saturated porous
medium with e

heat generation O

Fig. 1. The flow model and the physical coordinate
system

Introducing the boundary layer and Boussinesq
approximations, the governing equations and the
boundary conditions based on the Darcy law (It is
valid under the condition of low velocity and small
pores of porous medium [23]) can be written as
follows [17, 20]:

Continuity equation:

6_u+@ =0, (1)
oX oy
Momentum (Darcy) equation:
un :_@(@+pgj, (2)
po\oX
v &(@j .
ooy
Energy equation:
2 "
uﬂ+v£=ag+ g , 4)
ox oy oy pCy
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Concentration equation:
oC

0°C

u&jLVE:DMV’ (5)
Boussinesq approximation:
p=p.[L-Br(T-T.)-Bc(C-C.)} (6)
Boundary conditions:
y=0: v=0, —kﬁzqw(x)zax‘,
gé X (7.1-3)
—-Dy—=m,,(x) =bx",
oy
y—>w: u=0, T=T,, C=C,. (8.1-3)

Here, u and v are the Darcian velocities in the x- and
y- directions; K(n) is the permeability of the porous
medium; n is the power-law index of the
fluid; g the

acceleration; u, p and p are the viscosity, the

non-Newtonian is gravitational
pressure and the density of the fluid, respectively; T
and C are the volume-averaged temperature and
concentration, respectively; a and Dy are the
equivalent thermal diffusivity and mass diffusivity,
respectively; q” is the internal heat generation rate
per unit volume; Cs; is the specific heat at constant
pressure; Br and B¢ are the thermal and concentration
expansion coefficients of the fluid, respectively; k is
the equivalent thermal conductivity; a and b are
positive constants; X is the exponent of VHF/VMF;
equations (7.2)-(7.3) are the Fourier’s law of heat
conduction and the Fick’s law of mass diffusion,
respectively.

The power-law fluid index n for various fluids
is as follows:
(i) n < 1 for pseudo-plastic fluids (for example, the
polymer solution) or shear-thinning fluids that have
a lower apparent viscosity at higher shear rates.
(if) n = 1 for Newtonian fluids (for instance, air and
water) where the shear stress is directly proportional
to the shear rate.

18

(iii) n > 1 for dilatant fluids (for example, the
suspensions of sand) or shear-thickening fluids for
which there is an increase in the apparent viscosity
at higher shear rates.

For the power law model of Ostwald-de-Waele,
Christopher and Middleman [24] and Dharmadhikari
and Kale [25] proposed the following relationships
for the permeability of the porous medium:

6( ne V[ ed 1™
2_5[3n +1] |:3(1—8)i| [24]
K(n)= , i ton)
2f de (6n+1](£j* 25
e|81-¢)| 10n-3)\75
©)

where d is the particle diameter while ¢ is the
porosity.
The stream function v is defined by
u=oyl/oy, v=—-0y/ox. (10)
Therefore, the continuity equation is automatically
satisfied.
Paying attention to equations (2)-(3). If we do
of the
then the pressure terms

the  operation cross-differentiation:
a(2)/ oy —a(3)/ ox,

equations (2)-(3) can be eliminated. Further, with the

in

help of the equation (6) and the boundary layer
approximation (0/0x <<dloy, v<<u), then we can

obtain
ou" pmgK(n)( oT acj
— =22 2 B —+Be— | (11)
oy "oy oy
Integrating equation (11) once and with the aid
of equation (8), then we get

o =PI (17, )+ pelc-c. )} @2

Invoking the  following  dimensionless

variables:

n=YRa/im (13.1)
X
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__ v
f=—> - (13.2)
(T-T,) k Ra/
6(n) = (13.3)
Gy (X) X
(c-c,) b,,Raj
o) = (13.4)

m,, (X) X

Ra

X

_ P.9B10., ()XK(n) ( X j (13.5)
pk o
where Ra, is the modified local Rayleigh number for
the flow through the porous medium.
In order to achieve the similar solution, the
internal heat generation rate per unit volume q" is
modeled according to the following equation

[14-22]:

L Raf g, ()
—_— € .

qm - A (14)

Here, A" is the internal heat generation coefficient.
Note that when A" = 0 corresponds to the case: no
internal heat generation (designated as NIHG),
however, for A“ > 0 corresponds to the other case:
with internal heat generation (WIHG).

Substituting equations (13)-(14) into equations
(12), (4)-(5), (7)-(8), we obtain

(f')" =0+ No, (15)
NRLES ST PV n(L+ 2x)1,_,6+A*e_n _o
2n+1 2n+1

(16)

1 n+1+4 n(l+21)
—¢"+ fo - f'd=0. 17
Le¢ 2n+1 ¢ 2n+1 ¢ (17)

The boundary conditions are defined as follows:

n=0: f=0, 0'=-1 ¢ =-1, (18)
n—o: 0=0, ¢$=0. (19)

In the above equations, the primes denote
differentiation with respect to mn. Besides, the
buoyancy ratio N and the Lewis number Le are
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defined as followed, respectively:
_ Bckm,(x)  Bckb

- Br Dy dy (X) - BTDMa,

In addition, in terms of the new variables, the

a
Le=—. (20
o (@0

Darcian velocities in x- and y- directions are,
respectively, given by

2,
U= ocRaf“+1
X

%nﬂ —_
_ oRa; (n+1+kjf_[n xjnf, @
X 2n+1 2n+1

The results of practical

f,

(21)

interest in many
applications are both the surface heat and mass
transfer rates. The surface heat and mass transfer
rates are expressed in terms of the local Nusselt
number Nu, and the local Sherwood number Sh,

respectively, which are basically defined as

followed:
Nu, = hex _ Gw(X) X | 23)
k [TW(X)_TOC] k
X m,, (x) X
Sh, =— (24)

“ Dy [Cu(-C.]Dy’
where hy, hp,« are the local convective heat transfer
coefficient and the local convective mass transfer
coefficient, respectively; q,, (x)=h,[T,(x)-T,]
(the Newton’s of cooling) and
My, (X) = hy [Co (X)=C..] (the analogy between

law

the mass transfer and the heat transfer) |,
respectively.

Inserting equation (13) into equations (23)-(24),
the local

Sherwood number Shy in terms of Ra}x/2n+l are,

local Nusselt number Nuy, and the

respectively, obtained by
Nu, 1 Sh, 1

Raj 0(0) RalT 40)

(25.1-2)

3. Numerical Method
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The present analysis integrates the system of
equations (15)-(19) by the implicit finite difference
approximation together with the modified Keller box
method of Cebeci and Bradshaw [26]. To begin with,
the differential equations are first converted into a
system of five first-order equations. Then these
first-order equations are expressed in finite
difference forms and solved along with their
boundary conditions by an iterative scheme. This
approach gives a better rate of convergence and
reduces the numerical computational times.

Computations were carried out on a personal
computer with the first step size An; = 0.01. The
variable grid parameter is chosen 1.01 and the value
of n,, = 16. The iterative procedure is stopped to give
the final temperature and concentration distributions
when the errors in computing the 6, and ¢, in

the next procedure become less than 10~
4. Results and Discussion

In order to verify the accuracy of our present
method, we have compared our results with those of
Hsieh [27], Cheng [11], Yih [28], EI-Amin et al. [6],
Cheng [12], and Yih [29]. Table 1 illustrates the
comparison of the values of NuX/Raf?“*l for
various values of L withn =1, N = A" = 0. Table 2
depicts the comparison of the values of 6(0) for
various values of n with N = A = A" = 0. Table 3
shows the comparison of the values of 6(0) for
various values of n and A with N = A" = 0. Table 4
lists the comparison of the values of 6(0) and ¢(0)
for various values of N and Le withn=A=1, A" =0,
respectively. The comparisons in all the above cases
are found to be in excellent agreement, as shown in
Tables 1-4.

)

Table 1 Comparison of the values of Nu, /Rai/zm1

for various values of A with

n=1,N=A"=0
N Nu, /Ra /="
Hsieh [27] | Cheng [11] | Present results
-0.5 0.5818 0.5818 0.5818
0.0 | 0.7715 0.7715 0.7715
05| 0.8998 0.8998 0.8998
1.0 | 1.0000 1.0000 1.0000

Table 2 Comparison of the values of 6(0) for

various values of nwith N=A=A"=0

6(0)

n vih [28] El-Aminet | Cheng Present
al. [6] [12] results

0.5 | 1.3302 1.3294 1.3302 1.3302
0.8 | 1.3113 — 1.3113 1.3114
1 1.2962 1.2958 1.2962 1.2962
1.5 | 1.2641 1.2639 1.2641 1.2641
2.0 | 1.2411 — 1.2411 1.2411
2.5 — — — 1.2244

Table 3 Comparison of the values of 6(0) for

various values of nand A withN=A"=0

6(0)
r=0.2 A=05

" El-Amin Present | EI-Amin Present
etal. [6] results etal. [6] results

05| 1.2595 1.2643 1.1884 1.1892
1 1.2083 1.2085 1.1112 1.1114
15| 1.1669 1.1670 1.0607 1.0608
2.0 — 1.1389 — 1.0279
2.5 — 1.1191 — 1.0052

20

Table 4 Comparison of the values of 6(0) and

®(0) for various values of N and Le with
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n=A=1,A"=0
6(0) 4(0)

N | Le Yih | Present | Yih | Present
[29] | results | [29] | results

4| 1 |0.5848 | 0.5848 | 0.5848 | 0.5848
10 | 0.8891 | 0.8891 | 0.2172 | 0.2172

100 | 0.9839 | 0.9839 | 0.0747 | 0.0747

1| 1 |0.7937 | 0.7937 | 0.7937 | 0.7937
10 | 0.9635 | 0.9635 | 0.2506 | 0.2507

100 | 0.9955 | 0.9955 | 0.0794 | 0.0795

The following numerical results are presented
for the internal heat generation coefficient A"
ranging from 0 to 1, the power-law index of the
non-Newtonian fluid n ranging from 0.5 to 2.0, the
exponent of VHF/VMF A ranging from —0.5 to 1,
the buoyancy ratio N ranging from 0 to 10, the
Lewis number Le ranging from 0.1 to 10.

The effects of power-law index n and internal
heat generation coefficient A* on the dimensionless
temperature and concentration profiles for A =0, N =
1, Le = 2, are shown in Figs. 2 and 3, respectively. In
Fig. 2, for the fixed n, it is observed that the
dimensionless temperature profile () increases
with increasing the internal heat generation
coefficient A*, thus enhancing the dimensionless
wall temperature, i.e., 9(0); for the fixed A¥*, the
non-Newtonian fluid with higher power-law index n
has the larger dimensionless wall temperature.

Fig. 3 shows that the non-Newtonian fluid with
higher power-law index n has larger dimensionless

wall concentration, i.e., ¢(O). It is also found that

the dimensionless concentration profile o(m)
decreases with increasing the internal heat
generation coefficient A*, thus reducing the

dimensionless wall concentration.

21

Fig. 2 Effects of power-law index and internal
heat generation coefficient on the dimensionless
temperature profile

08—
\ A=0, N=1,Le=2

0.67 n=15 ]

A A*=1

0.4 ---- A*=0

0.2 —
9% 1 2 3

n

Fig. 3 Effects of power-law index and internal
heat generation coefficient on the dimensionless
concentration profile

Figs. 4 and 5 illustrate the variation of the local

%nﬂ

Nusselt number Nu, /Ra; and the local
%ml

Sherwood number Shy /Ra with the buoyancy

ratio N for two values of power-law index (n = 0.5,
1.5) and internal heat generation coefficient (A* =0,
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1) with A = 0, Le = 2, respectively. In Fig. 4, on one
hand, for fixed n, the local Nusselt number tends to
decrease as the internal heat generation coefficient
A* is increased. This is because increasing the
internal heat generation coefficient A* increases the
dimensionless wall temperature 9(0), as shown in
Fig. 2. From equation (25.1), the larger the
dimensionless wall temperature, the smaller the local
Nusselt number. On the other hand, for fixed A*, the
local Nusselt number increases as the power-law
index n is decreased. Decreasing the power-law
index n tends to increase the velocity of the flow and
decrease the dimensionless wall temperature, as
shown in Fig. 2, thereby enhancing the local Nusselt
number. Thus, the pseudoplastic fluids (n = 0.5) are
superior to the dilatant fluids (n = 1.5) from the
viewpoint of the free convection heat transfer rates
from a vertical flat plate embedded in a porous
medium saturated with non-Newtonian power-law
fluids. In addition, increasing the buoyancy ratio N
tends to increase the buoyancy force, accelerating
the flow and thereby increasing the local Nusselt

number.
2 T T T T
A=0, Le=2 _ -1
15¢ n=03- .
Nu, I Phd
Ra/n A* ?9 . S

Fig. 4 Effects of power-law index and internal
heat generation coefficient on the local Nusselt
number

E+HES E-8(RE—oHF)
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Fig. 5 shows that, for fixed n, the local
Sherwood number tends to slightly increase as the
internal heat generation coefficient A* is increased.
This the heat
generation decreases  the

is because increasing internal

coefficient  A*
dimensionless wall concentration ¢(0), as shown in
Fig. 3. From equation (25.2), the thinner the
dimensionless wall concentration, the greater the
local Sherwood number. For the fixed A*, the local
Sherwood number decreases as the power-law index
n is increased. Increasing the power-law index n
tends to retard the velocity of the flow, thus lowering
the local Sherwood number. Thus pseudoplastic
fluids (n = 0.5) are superior to the dilatant fluids (n =
1.5) from the viewpoint of the mass transfer rates by
natural convection from a vertical flat plate
embedded in a porous medium saturated with
power-law fluids. Besides, enhancing the buoyancy
ratio N tends to increase the buoyancy force,
accelerating the flow and thereby increasing the

local Sherwood number.

sh,
Ra)}(éml

[N

10
Fig. 5 Effects of power-law index and internal

heat generation coefficient on the local Sherwood
number
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Figs. 6 and 7 show the variation of the local

%nﬂ

Nusselt number Nu, /Rag and the local
%ml

Sherwood number Shy /Ra with the buoyancy

ratio N for two values of Lewis numbers (Le = 0.5,
5), exponent of VHF/VMF (A =0, 1) with A*=1,n
= 2, respectively. In Fig. 6, comparing these curves,
we can find that the local Nusselt number decreases
as the Lewis number Le is increased, for fixed N and
A. This is due to the fact that a larger Lewis number
Le is associated with a thicker thermal boundary
layer. The thicker the thermal boundary layer
thickness, the smaller the local Nusselt number.
Moreover, for fixed Le, increasing the buoyancy
ratio N and the exponent of VHF/VMF X tends to
increase the buoyancy force, accelerating the flow
and thereby increasing the local Nusselt number.

1.6 — 01— ———————

Nu,
Raje

TR N (ISR I S A A S N A
0.4 10

Fig. 6 Effect of the exponent of VHF/VMF and
Lewis number on the local Nusselt number

Results in Fig. 7 show that the local Sherwood
number increases as the Lewis number Le is

increased, for fixed N and . This is because that a
larger Lewis number Le is associated with a thinner

23

concentration boundary layer. The thinner the
concentration boundary layer thickness, the greater
the local Sherwood number. The Lewis number Le
has a more significant effect on the local Sherwood
number than it does on the local Nusselt number, as
compared Figs. 6 and 7. Besides, for fixed Le,
increasing the buoyancy ratio N and the exponent of
VHF/VMF A tends to increase the buoyancy force,
accelerating the flow and thereby increasing the
local Sherwood number.

R

Le=0.5

Fig. 7 Effect of the exponent of VHF/VMF and
Lewis number on the local Nusselt number

For the sake of future comparison, we
illustrated Tables 5-7 and discussed as follows. Table
5 shows the values of 6(0) for various values of n
and A with N = 0 (pure heat transfer), A" = 1. For
the fixed n, the dimensionless wall temperature
0(0) decreases with increasing the exponent of
VHF/VMF A. For A<0 (A = 1), increasing the
power-law index of the non-Newtonian fluid n

the

However,

dimensionless  wall
for A 0.5, the
dimensionless wall temperature 6(0) increases

enhances  (reduces)

temperature  6(0) .

initially, reaches a maximum in the intermediate
value of n, and then reduces gradually.
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Table 5 Values of 6(0) for various values of n and
AWithN=0,A"=1

6(0)

n

A=-05| =0 [r=05| A=1
0.5| 2.0339 |1.6269 | 1.4401 | 1.3244
0.8 | 22569 |1.6943 | 1.4495 | 1.3026
1 | 2.3557 |1.7170 | 1.4458 | 1.2854
1.5 | 2.5154 | 1.7447 | 1.4303 | 1.2488
2.0 | 2.6105 |1.7559 | 1.4158 | 1.2223
2.5| 2.6735 |1.7612 | 1.4041 | 1.2029

Table 6 shows the values of 6(0) and ¢(0)
for the various values of N, n and A" with . = 0, Le
= 1, respectively. For the given N and n, increasing
the internal heat generation coefficient A™ increases
the dimensionless wall temperature 6(0) , but
decreases the dimensionless wall concentration
(0). It is observed that, for the fixed A", both the
dimensionless wall temperature 6(0) and the
dimensionless wall concentration ¢(0) reduce as
the buoyancy ratio N is increased or the power-law
index n is decreased.

Table 6 Values of 6(0) and ¢(0) for various
values of N, nand A" withA=0,Le=1

0(0) $(0)

N n " " " "
A= A= A = A=
4 105 | 05949 | 09122 | 0.5949 | 0.5472
0.8 | 0.7061 | 1.0708 | 0.7061 | 0.6633
1 0.7580 | 1.1472 | 0.7580 | 0.7184
15 | 0.8454 | 1.2806 | 0.8454 | 0.8125
20 | 0.8995 | 1.3667 | 0.8995 | 0.8716
1105 | 09406 | 1.3096 | 0.9406 | 0.7808
0.8 | 1.0045 | 1.4268 | 1.0045 | 0.8726
1 1.0288 | 1.4765 | 1.0288 | 0.9115
15 | 1.0630 | 1.5541 | 1.0630 | 0.9717
2.0 | 1.0804 | 1.5988 | 1.0804 | 1.0060
0]05 ] 13302 | 1.6269 | 1.3302 | 0.9653
0.8 | 1.3114 | 1.6943 | 1.3114 | 1.0279
1 1.2962 | 1.7170 | 1.2962 | 1.0508
15 | 1.2641 | 1.7447 | 1.2641 | 1.0817
20 | 12411 | 1.7559 | 1.2411 | 1.0964

Table 7 illustrates the values of 6(0) and ¢(0)
for the various values of N, Le, L with A" =1, n =
2.0, respectively. For the given N and A, increasing
the Lewis number Le increases the dimensionless
6(0) , but the
dimensionless wall concentration ¢(0). It is found

wall temperature decreases

that, for the fixed Le, both the dimensionless wall
temperature  6(0) and the dimensionless wall
concentration ¢(0) reduce as the buoyancy ratio N

and the exponent of VHF/VMF A are increased.

Table 7 Values of 6(0) and ¢(0) for various
values of N, Le and Awith A" =1,n=2.0

v e 0(0) 9(0)
A=0 A=1 A=0 A=1
4 101 | 09844 | 0.6782 | 2.3359 | 1.7007
1 1.3667 | 0.9419 | 0.8716 | 0.6369
10 | 1.6756 | 1.1595 | 0.2971 | 0.2188
1|01 | 1.2836 | 0.8881 | 2.9925 | 2.1759
1 15988 | 1.1077 | 1.0060 | 0.7375
10 | 1.7319 | 1.2034 | 0.3160 | 0.2335
0] 01| 17559 | 1.2223 | 4.6973 | 3.2797
1 1.7559 | 1.2223 | 1.0964 | 0.8066
10 | 1.7559 | 1.2223 | 0.3245 | 0.2403
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5. Conclusions

A two-dimensional, steady, laminar boundary
layer analysis is presented to study the effect of
internal heat generation on natural convection flow
resulting from combined heat and mass buoyancy
effects of a non-Newtonian fluid adjacent to the
vertical flat plate maintained at variable heat flux
and variable mass flux (VHF/VMF) in a Darcy
porous medium. Numerical solutions are obtained
for different values of the internal heat generation
coefficient A", the power-law index n, the exponent
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of VHF/VMF A, the buoyancy ratio N, and the
Lewis number Le. The local Nusselt (Sherwood)
number tends to decrease (increase) as both the
internal heat generation coefficient A” and the Lewis
number Le are increased. Enhancing the buoyancy
ratio N and the exponent of VHF/VVMF A tends to
increase the local Nusselt number as well as the
local Sherwood number. In addition, a decrease in
the power-law index n of fluids tends to increase the
heat and mass transfer from a vertical flat plate in a
porous medium saturated with non-Newtonian
power-law fluids.

Nomenclature

internal heat generation coefficient
a  positive constant

b positive constant

C  concentration

Cr specific heat at constant pressure

Dy mass diffusivity

d particle diameter

f dimensionless stream function

g gravitational acceleration

h, local convective heat transfer coefficient
hmx local convective mass transfer coefficient

m,X
K(n) permeability of the porous medium
k  equivalent thermal conductivity

Le Lewis number
m,, local wall mass flux
N  buoyancy ratio

n  power-law index of the non-Newtonian fluid
Nuy
p  pressure
q”
Ow

Ray
Shy

local Nusselt number

internal heat generation rate per unit volume
local wall heat flux

modified local Rayleigh number

local Sherwood number

25

T
u  Darcy velocity in the x-direction

temperature

Darcy velocity in the y-direction

streamwise coordinate

< X <

transverse coordinate

Greek symbols

a  equivalent thermal diffusivity
Bc  coefficient of concentration expansion
Br  coefficient of thermal expansion
€ porosity

n similarity variable

0 dimensionless temperature

A exponent of VHF/VMF

pu viscosity

p  density

¢  dimensionless concentration

v stream function

Subscripts

w  condition at the wall

o  ambient
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