因應砲兵群裁撤後作戰分區火協組通資系統之研究

作者: 陳文質

提要

- 一、原砲兵群及所屬通信排擔任作戰分區火協組任務及編組人員,其通資系統之建立、作業與維護,由受支援單位專屬通資部隊負責建置,然部分作戰分區無專責通信部隊開設,迄今仍有諸多問題待解決。
- 二、砲兵群裁撤後作戰分區火協組通資系統現況分析人裝及職掌,並檢討窒礙 因素與缺失探討,從砲指部本部連通資排無法支援作戰分區、無實際編裝 及專責通資部隊、無線電中繼台略顯不足、戰場通資參數流失、無線電機 加密機制不同影響指管能力、戰技術射擊指揮儀軟體未全面配發與上下級 火協組未建置專屬戰術指揮儀區域網路等議題,深切將作戰分區通資問題 逐一探討,研擬具體作為解決目前作戰分區火協組通資系統。
- 三、筆者長期涉獵通資領域,擬藉由本研究觀察問題,提出未來具體作為之淺 見,對作戰分區火協組未來通資系統提出個人規劃構想,如詳實修訂編裝、 運用通裝特性、配合專案、建構專線電路及精簡指揮層級等,期能對爾後 作戰分區火協運作機制,略盡棉薄。

關鍵詞:砲兵群、作戰分區、專線電路

前言

作戰分區聯合火力攻擊之執行,是以火力支援協調組為核心,統一指管陸、海、空之火力,以遂行國土防衛作戰任務,為達此目的,則須彈性靈活運用通資系統。作戰分區火協組原係砲兵群編組人員開設,其通資系統之建立、作業與維護,由受支援單位專屬通資部隊負責建置,然部分作戰分區無專責通信部隊開設,迄今仍有諸多問題待解決。因應砲兵群裁撤後,原通信排任務由何者接替及配賦通裝開設無線電網路,使得作戰分區火協組指揮管制之通資系統需求及整合,仍然存在問題及提升空間。

為能發揮作戰分區火力支援協調組運作機制,就現有通資系統之人裝編制,作全般檢討及找出解決方式,使砲兵幹部能深入瞭解其通資支援能力,以作為任務執行實考量因素。然作戰分區屬任務編組型態無實際編裝,平戰時任務不同,在主客觀因素下,有執行上室礙問題與缺失,據此提出因應具體作為,並研析可行解決方案。依火協實際通資需求規劃,建立完善之火力通資網路,以確保作戰分區聯合火力任務順遂。

未來隨火協組指管系統日趨數位化,通資網路之規劃亦為其關鍵,因此提 供個人見解及參據美軍現行作為,建議外來砲兵通資系統發展方向,期望能精 進作戰分區火協組通資系統效能,達成國土防衛任務。

砲兵群裁撤後作戰分區火協組通資系統現況與檢討

- 一、原砲兵群任務及編組:群任務依軍團(防衛指揮部)火力計畫,遂行火力支援任務;依任務賦予,統轄編配之砲兵營,支援友軍;支援作戰分區作戰時,負責全般支援火力之分配與執行。¹群編組由群部及群部連編組而成。²
- 二、原群通信排任務及編組:通資系統以支援砲兵戰術行動、目標獲得、情報傳遞、射擊指揮、火力支援協調、指揮管制及勤務支援之通資需求為目的。 群部參謀組編制通信官、資訊士及電腦硬體維護士等,群部連通信排編組排部、 無線電及文電中心組及有線電組等。開設通資設施計有軍線、指揮網、射擊網、 火協網、防情網及氣象網等無線電通信網路、射擊自動化資訊網路。
 - 三、群裁撤後作戰分區火協組通資系統現況檢討
- (一)通資系統現況:原砲兵群通信排人裝依現況能滿足作戰分區火協組通信設施開設,然砲兵群裁撤後,若無納編專責通信人裝負責火協組通信網路開設,恐影響火協指管機制運作,無法有效管制火力。砲兵群現況通信系統開設人裝,如圖一及表一。

圖一 配置圖

資料來源:《陸軍部隊火力支援協調作業手冊—第二版》,(桃園:陸軍司令部,民國101年9月19日),頁2-58。

7 - 27, 17 - 17 - 17 - 17 - 17			
區分	開設單位	裝備	
有線電網	砲指部砲兵群	000	
		000	
作戰分區砲兵射擊網	砲指部砲兵群	000	
		000	
作戰區火協/射擊網	砲指部砲兵群	000	

表一 通資系統人員及裝備一覽表

^{1《}陸軍野戰砲兵部隊指揮教則—第二版》(桃園:陸軍司令部,民國 98 年 4 月 8 日),頁 1-1-3。

²同註1,頁1-2-13。

		000
作戰分區空域管制網	砲指部作戰科或防空營	000
作戰區空域管制網		
艦砲支援網	作戰區資電群	000
艦砲管制協調網	作权四貝电研	000
戰術空軍指導網	作戰分區所屬通資部隊或作 戰區任務編組通資部隊	000
戰術空軍管制協調網		000
空援網		000

資料來源:作者自繪。

(二)窒礙因素與缺失探討

- 1. 砲指部本部連通資排人裝不足,無法支援分區開設:檢討砲指部本部連通信排(轄排部、有線電組、無線電、文電中心組及資訊組,如表二)職掌及平、戰時任務,經分析後僅能滿足指揮部通資設施作業與維護,無法兼任或分組作戰分區火協組通資設施開設任務。³
- 2. 無實際編裝及專責通資部隊:作戰分區為任務編組型態,如砲訓部戰時依令指揮岡南作戰分區所屬部隊,原屬教勤營(通信排)戰時編成後備砲兵營, 其因無實際編裝及專責通資部隊負責開設指揮所各類通資設施,故仍由教勤營 通信排協助建立相關通資系統,凸顯作戰分區實際作戰指管問題。
- 3. 無線電中繼台(VHF)略顯不足:原群編制中繼台(VHF)以指揮官網通連使用,作戰分區火協組對下開設火協\射擊網、空域管制網、艦砲、空軍指導/管制協調網及空援網等無線電(VHF)網路,分別對作戰區、砲指部射擊指揮所、砲兵營、海空連絡官等單位實施通連,群裁編後無中繼台運用,影響作戰分區火協組協調及安全管制作為。
- 4. 空域管制網欠缺通信機:原群可檢討部分無線電機作為作戰分區空域管制網使用,經群裁撤後裝備繳回,致使作戰分區火協組防空連絡官無通裝使用, 僅以軍線對上下連絡協協調空域安全管制。
- 5. 戰場通資參數流失:群通信排經過多年戰場經營,負責指揮所火協組開設,何處地形適合通信高地均有詳細兵要調查,每年演習都會驗證計劃可行性及檢討改進。蒐整戰術位置相關通資參數資料作為開設依據(如中繼台、臨時資訊銜接點、預備指揮所、光纖電路、設施地下化、電磁脈衝防護設施)。群通信排裁撤後造成戰場通資參數流失,對爾後作戰分區火協指管鏈路勢必影響。
- 6. 無線電機加密機制不同,通信支援能力受限:作戰分區動員編成後備部 隊之無線電機,雙方相互通聯時,因裝備型式加密機制不同(定頻、跳頻、跳

^{3《}陸軍軍團砲兵指揮部編裝表》(桃園:陸軍司令部,民國98年1月1日),頁10。

- 密),無法實施加密,僅能以明語相互通連,易洩露軍機,危害部隊安全。
- 7. 戰技術射擊指揮儀軟體未全面配發,影響火力分配作為:戰技術射擊指揮儀軟體未全面配發,使得後備旅(含砲兵營)未安裝戰技術射擊指揮儀軟體, 無法與作戰分區戰術射擊指揮儀鏈結,影響作戰分區火力分配及管制作為。
- 8. 與上下級火協組未建置專屬戰術指揮儀區域網路:作戰分區火協組對上 與作戰區鏈結,對下掌握所轄旅級火協組,戰術射擊指揮儀資訊連線因資安規 定不可介接軍網,僅能以區域專線型態鏈結,平時若未預先申請核定電路或檢 討相關經費支應,作好射擊資訊化戰場經營,則戰時難以立即支援火力指管, 影響整體作戰任務。

組別	人員編組	執掌
排部	排長、副排長、話務兵	負責指揮部通資系統建立、作業與維護。
有線電組	組長、交換機組、架設組	1. 砲指部交換中心開設作業,各作業機 構(總機)及延伸節點局部線路與資訊 網路架設、作業與線路查修維護。 2. 負責作戰指揮所、射擊指揮所局部線 路架設作業與維護。
無線電組 文電中心組	無線電組、文電中心組	 1.負責指揮所等5大中心設施無線 電網路開設作業與維護 2.負責指揮部通訊中心開設作業與維護。
資訊組	組長、資訊士、資訊兵	負責指揮部資訊系統建立、作業與維護。

表二 砲指部本部連通信排任務與職掌如下表

資料來源:作者自繪。

因應具體作為

- 一、編實通資人裝,確保火協機制運作:基於遂行作戰分區防衛任務,確保火協組機制運作正常及構建靈活指管手段,砲兵群裁撤後,仍須保留作戰分區通信作業能量(含火協組),故作戰分區火協組增編通信作業人力,確保作戰分區防衛作戰任務順遂。
- 二、修訂編裝通信網路,滿足火力指管需求:為達成作戰任務,應詳實檢 討編裝,確實人裝合一始可遂行戰術行動。依作戰分區火協組需求修訂單位編 裝通信網路,將實際使用之無線電通信網正式納入網別(如中繼台、火協網及射 擊數據網),以符合戰時火力指管需求。
- 三、調整無線電機型式,確保指管暢通:檢討精粹案裁編單位之無線電機, 移交至後備部隊,優先滿足旅營級指揮官網及砲兵營射擊網,可使通裝特性一

致(加密及跳頻方式),確保部隊安全及指管暢通。

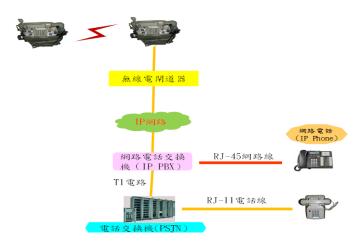
四、增購或調整戰技術指揮儀,建立火協共同平台:除配合單位裁撤戰技術射擊指揮儀調整至後備部隊外,另檢討單位戰演訓專案電腦安裝戰技術射擊指揮儀軟體,以滿足火力指管作業需求,建立火協共同平台。

五、建置或修改專屬戰術指揮儀網路,發揮火協指管效能:原戰術射擊指揮儀連線規畫採區域網路未實際介接軍網,且無專線電路銜接戰術射擊指揮儀,致使作戰分區對上下級火協組均無法構連。為解決實際問題應從資安管控面探討,作好資安設定及檢查機制,安裝連線版資安監控軟體,呈文司令部修改網路鏈結架構及協請同意裝備連線專線網路(如陸區),徹底解決作戰分區火協指管資訊化,達成火力運用及安全管制作為。

六、整合現行通資系統,強化火力指管能力

- (一)有無線電語音整合:目前現用 37C 無線電機主要作語音通信為主,數據傳輸及 GPS 功能則為附加功能,若能研改數據頻寬(64K)、穩定傳輸信號及 GPS 定位誤差值縮減等技術特性,使指揮管制效能與武器系統整合更趨完善,符合戰需。若能以無線電網際網路通信協定(Radio over Internet Protocol,RoIP)⁴,加以整合特高頻無線電機,以建立更彈性的無線電通信環境,將可提供快速、安全、可靠、靈活的通信能力,增加多重路徑之選擇,以便能迅速的取得戰場資訊,爭取更多的作戰反應時間,進而增強通資電戰力,提升無線電機整體效能,透過數位交換機及陸區系統整合,更增加裝備運用彈性。RoIP 是以 IP 技術為基礎,其架構由許多不同類型的元件組成,功能特性非常類似線路交換網路,需要能執行像 PSTN 能做的相同工作,且能操作與管控系統上的 IP 網路、無線電閘道器、網路電話交換機及用戶終端設備。RoIP 系統包含系統架構圖,如圖二。
- (二)即時掌握部隊動態:研究國軍跳頻無線電機內建 GPS 衛星定位功能,結合中科院與 401 廠共同合作開發 GPS/GIS 部隊動態管制系統,即時掌握作戰分區兵力位置與動態,以提升整體指管戰力。另運用具互動式三度空間瀏覽、坐標紀錄查詢、資訊文字與圖形標註等功能,提供平面圖資無法表現之立體空間環境,能有效提升戰場地形透明程度。部隊動態管制系統,如圖三。
- (三)運用機動數位微波(野戰數據資傳系統):陸軍新一代多波道系統,主要為取代現行陸軍旅級(地區指揮部)至營級已逾壽期之無線電多波道系統,並建構聯兵旅級(地區指揮部)至營級,具保密、抗干擾、機動性強及肆應電子戰環境等功能之「機動數位微波系統」。系統由數位微波次系統、乙太網路保密器、

⁴陸玉珠,〈以ROIP 整合本軍特高頻無線電機〉《陸軍學術雙月刊》(臺北:陸軍學術雙月刊,102年10月) 頁13。

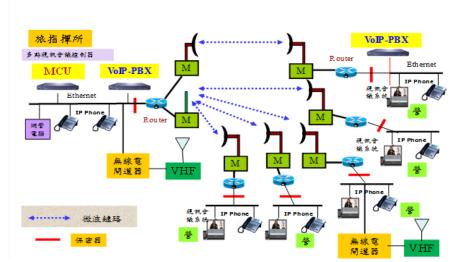

網路電話次系統及視訊會議次系統所組成,可提供旅營級語音、數據及視訊等功能,並能透過無線電語音閘道器提供 VHF/UHF 無線電用戶進入系統網路;旅級指揮所可因應不同狀況,彈性運用點對點或點對多點方式開設系統,俾利作戰部隊指管運用(系統架構如圖四)。5若作戰區能檢討機動數位微波配屬作戰分區運用,可藉系統高容量資訊頻寬傳輸火協組所需大量目標情報,並由分享所屬聯兵旅運用(示意圖如圖五)。

- (四)利用 UAS 監偵效能:作戰分區火力支援單位攻擊後,藉由 UAS 實施效果監控,經偵蒐區隊可攜式影像接收站(RVT)將目標影像回傳至指揮所情報中心鑑定、研判及處理後,再分享情資至火協組實施效果評估。6火力支援協調組運用 UAS 示意圖,如圖六。
- (五)建立共同作戰圖像:作戰分區情資來源有限,未能即時接收海空情資, 須由作戰區透過語音或資訊傳遞情資提供,無法建立共同作戰圖像(COP)。因此, 若能將作戰區迅安系統專線電路延伸至作戰分區,以彌補火協組目標情報來源 不足問題。延伸示意圖,如圖七。
- (六)掌握短程防空情資:作戰分區火協組防空連絡官目前僅能透過有無線電通信手段掌握遠近程防空情資,對於實際在空機航跡動態無法即時獲得。為建立完整防空情資,可運用野戰防空蜂眼雷達情資介接配屬防空營陸區延伸節點(須請中科院調整網段)或專線電路,將情資回傳至作戰分區火協組提供近程防空情資。蜂眼介接陸區或專線示意圖,如圖八。
- (七)善用機動衛星通信:配合新一代兵力作戰需求,以通信衛星為載體,建置「衛星通信系統」,區分車載網管主台、車載終端、可攜式終端及固定式終端等 4 類,提供司令部、一至五作戰區、外離島,打擊旅、砲指部、航空旅及特戰指揮部等單位使用,以強化聯兵旅(含以上)協同(聯合)作戰之指管效能。然作戰分區若遭敵攻擊造成對外通資電路損壞時,可經由通資電中心向作戰區申請新式機動衛星通信系統,經檢討作戰區衛星通信能量,緊急調撥新式機動衛星通信系統搶通指揮所對外所需指管電路,運用穩定之頻寬,保障火協指管暢通。衛星通訊示意圖,如圖九。
- (八)建立近岸雷情:作戰分區確保灘岸守備任務順遂,須掌握遠近程海面動態,以瞭解敵船團動向先期判別主力指向,藉火協機制運作有效摧毀敵主力。故運用地區岸巡總隊雷情專線電路延伸至作戰分區情報中心及火協組,以即時掌握及監控近岸船隻動態,達成作戰分區守備任務。岸巡雷情傳輸示意如圖十。

⁵ 《陸軍 CS/VRC-518 機動數位微波系統訓練手冊-第一版》(桃園:陸軍司令部,民國 104 年 11 月 11 日),頁 1-1。

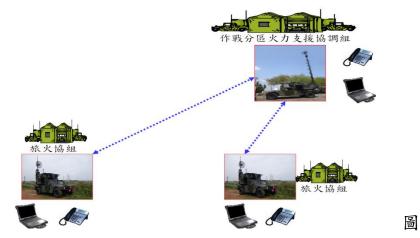

⁶陸軍砲兵訓練指揮部,〈UAS聯合情監偵與火協機構鏈結運用簡報〉,頁 22。

圖二 RoIP 系統包含系統架構示意圖

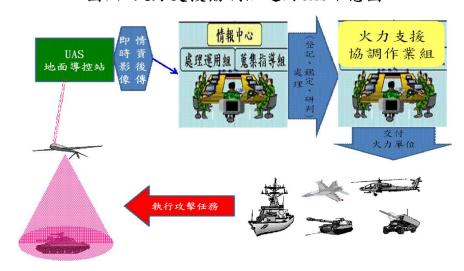


資料來源:參考陸玉珠,〈以ROIP整合本軍特高頻無線電機〉《陸軍學術雙月刊》(桃園:陸軍學術雙月刊,102年10月),頁19,由作者修改繪製。

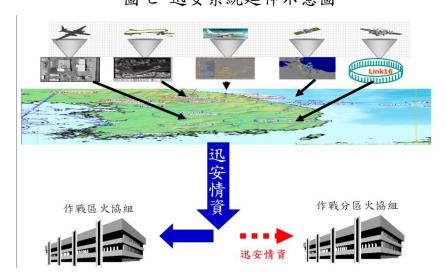
圖三 部隊動態管制系統



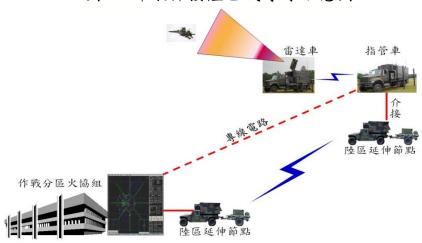
資料來源:作者自繪
圖四 機動數位微波系統架構示意圖



資料來源:陸軍CS/VRC-518機動數位微波系統訓練手冊-第一版》(桃園:陸軍司令部,民國104年11月11日),頁1-4。


圖五 資訊傳輸示意圖

資料來源:作者自繪 圖六 火力支援協調組運用UAS示意圖



資料來源:陸軍砲兵訓練指揮部,〈UAS聯合情監偵與火協機構鏈結運用簡報〉,頁22。 圖七 迅安系統延伸示意圖

資料來源:作者自繪

圖八 蜂眼介接陸區或專線示意圖

資料來源:作者自繪圖九 衛星通訊示意圖

資料來源:作者自繪 圖十 岸巡雷情傳輸示意圖

資料來源:作者自繪

(九)綜合以上整合現行通資系統,各作戰區於防衛作戰時,作戰分區火協 組通資系統由編制內通資連或任務編組通信作業組,開設相關通資網路來滿足 火協組指管需求,其中有線電系統整合 6 碼、陸區軍線與 VOIP 網路電路,不只是實體電路亦運用虛擬網路來達成雙向語音通連,且可設定熱線或直通線功能,以增加通信運用彈性。無線電系統方面藉同類型通信裝備參加上下級無線電通信網相互構連,另空援申請原拍發電報現改為資訊傳輸為主,以縮短作業時間增加執行效率,待任務機到達目標區後使用對空機構連;資訊傳輸部分,運用營區既有資訊設備及資電群配屬陸區延伸節點,開設作戰分區資傳設施提供指揮所(含火協組)語音、資(視)訊、傳真等通信手段,另外可向作戰區軍公民營通信聯合管制中心申請軍租資訊電路作為備援資訊電路,增加單位資訊能量。

未來通資系統規劃構想

- 一、詳實修訂編裝,確保任務遂行:因應作戰任務需求,明確律定作戰分 區編裝,將實際通資人裝詳實修訂,確保戰時火協組任務遂行。
- 二、運用通裝特性,發揮指管效能:幹部熟悉各項通裝特性,如資訊網路 快速傳輸特性,就不需語音傳遞,以資訊為主,報務為輔,即時申請能縮短作 業時效,迅速提供火力摧毀敵軍。
- 三、配合迅合專案,提升整體指管:美國陸軍為在資訊時代的數位化戰場打贏戰爭,自 20 世紀末即運用「戰術數據鏈路」(Tactic Data Link,TDL)大幅改變其指揮管制系統,調整後的美國陸軍指揮管制系統總稱為「陸軍作戰指揮系統」(Army Battle Command System,ABCS),是美國陸軍各級指揮管制的融合,包括從戰區地面部隊司令官、聯合特遣部隊司令官至單兵、武器平臺。「相對於國軍專案已規劃作戰區以下運用機動數據傳輸系統,將作戰區多重情資及作戰計畫透過野戰數據鏈路與作戰分區及旅級單位相互構連分享情資,建立共同通資平台及戰術圖像,以數據資傳取代語音功能,可大幅提升整體指管。

四、建構專線電路,健全多重情資:火協組內部各項通資設施需健全,俾 使作業方便及協調容易,以確保火力指管暢通。為使目標獲得單位提供穩定情 報來源應建立專線電路供目標分析官及各席位研析所獲情報資料,如岸巡雷情、 UAS 情資、迅安系統及戰術射擊指揮儀等電路需求,以健全多重情資作為火力計 書運用。

五、精簡指揮層級,有效掌握時效:作戰區畫分二個以上作戰分區掌握所屬作戰部隊,依據作戰區指導執行各項任務,然作戰分區屬任務編組型態無實際編裝,且平戰時工作略有不同,如砲訓部平時為砲兵專業訓練單位,戰時受第四作戰區管制負責岡南作戰分區防衛作戰任務,然分區無實際編裝表,通裝及網路皆未納入單位編裝表,故無裝備開設通信網路,僅能檢討教勤單位支援人裝,影響作戰任務遂行。就務實面探討作戰分區存在必要性,精簡指揮層級、

78

⁷梁華傑,〈美國陸軍戰術數據鏈路在指揮管制系統的應用〉(臺北:尖端科技,105年4月),頁70。

保留火力單位、縮短指揮鏈路、加大指揮幅度,將作戰分區機構裁撤,由作戰區直接指揮所屬部隊,減少指揮鏈路負擔,以有效掌握時效及增加作戰效能。

結論

依防衛作戰任務需求,砲兵群戰時負責作戰分區火協機構開設與運作;砲兵群裁撤後,基於作戰區防衛作戰任務遂行層面,仍須保留作戰分區火協作業能量,除須於各砲指部增編火協組通資作業小組,以接替原砲兵群作戰分區火力協調作業所需通資網路任務,以滿足作戰實需。若不能整合現有通資設施,善用科技帶動火力協調組轉型的理念,有效節約部隊人力、物力資源,在未來台澎防衛作戰勢必無法發揮火力效能,甚至發生誤擊友軍事件。「戰、技術射擊指揮系統」是砲兵執行火力主要裝備,通資鏈路正常確實保障火力持續發揚。因此,砲兵群通信排裁撤後,作戰分區火協組通資系統須深切檢討及提出具體作為。作戰分區通資系統應採「複式配置、多重手段」靈活彈性運用,有效整合目前可運用之通資系統,積極規劃火力協調組通資網路,以創機造勢達成作戰分區殲滅進犯敵軍之目標。

参考文獻

- 一、《陸軍野戰砲兵部隊指揮教則—第二版》(桃園:陸軍司令部,民國 98 年 4 月 8 日)。
- 二、《陸軍軍團砲兵指揮部編裝表》(桃園:陸軍司令部,民國98年1月1日。
- 三、陸玉珠,〈以ROIP 整合本軍特高頻無線電機〉《陸軍學術雙月刊》,(臺北: 陸軍學術雙月刊,102年10月)。
- 四、《陸軍部隊火力支援協調作業手冊—第二版》(桃園:陸軍司令部,民國101年9月19日)。
- 五、《陸軍 CS/VRC-518 機動數位微波系統訓練手冊-第一版》(桃園:陸軍司令部,民國 104 年 11 月 11 日)。
- 六、陸軍砲兵訓練指揮部,〈UAS聯合情監偵與火協機構鏈結運用簡報〉。
- 七、梁華傑、〈美國陸軍戰術數據鏈路在指揮管制系統的應用〉(臺北:尖端科技,105年4月)。

作者簡介

陳文質中校,志願役預官 84 年班、通信正規班 166 期、陸院 95 年班,歷任排、連、營長,現任職陸軍砲訓部戰術通信小組中校主任教官。