精進「前方交會法」基線選擇與測考標準之研究

作者:耿國慶

提要

- 一、砲兵基本測量中的「前方交會法」,屬於三角測量範疇,長期被誤稱為「交會法」,即使在現階段「定位定向系統為主」之作業型態,前地部分(檢驗點、基準點與目標)仍須使用「前方交會法」作業。惟「前方交會法」受限於認錯目標、精度有限與觀測所誤差傳播等原因,為砲兵測地較弱之一環,因此在當前裝備性能提升、測考環境改變與人員訓測經驗長期累積之際,如何精進作技術與測考標準,實為砲兵測地重要課題。
- 二、無論有、無定位定向系統的砲兵營測地,前地部分皆須使用「前方交會法」 作業,基於現行準則對基線選擇條件、要領不明確,且測考評分標準適切 性與問延性不足,不僅造成測地人員困惑,且易與其他測考評分標準相互 矛盾,甚至影響檢驗射擊之成效,亟需統一觀念與修訂標準。
- 三、砲兵現行「前方交會法」問題可歸納為「前地基線選擇條件之必要性」與 「檢驗點測考評分標準寬鬆且與方向基角評分標準相互矛盾」兩項存在已 久且關鍵性的問題。為能達成確立觀念、測考公信與提高測考標準等目的, 建議:「前方交會法」之基線,基於條件寬鬆且營觀測所選擇時已對應相關 條件,可沿用兩觀間之連線。測考部分則保留原「方向基角」評分標準, 將檢驗點「徑誤差」評分標準適度提高且區分四種等級,以符合實需。

關鍵詞:前方交會法、基線、徑誤差、方向基角、常態分佈曲線、合併誤差 前言

砲兵基本測量包括「前方交會法」(Forward intersection)與「導線法」(Method of traverse),即使在現階段「定位定向系統為主」、「傳統測量為輔」之作業型態下,定位定向系統僅能取代原本「導線法」之觀測所與陣地測地,前地部分(檢驗點、基準點與目標)仍須使用「前方交會法」作業。惟「前方交會法」受限於認錯目標、精度有限與觀測所誤差傳播等原因,成為砲兵測地較弱之一環,因此在當前裝備性能提升、測考環境改變與人員訓測經驗長期累積之際,如何提升相關作業技術與測考標準,實為砲兵測地重要之課題。

前方交會法內涵

70 年代砲兵基地營測驗「全部測地」不及格單位,比例甚高,不及格單位 將指定使用「裁判成果」,除測地成績受影響外,因測地影響之射擊效果分數亦 隨之減半,甚至出基地後將另行通知擇期補測。而當時影響測地成果之關鍵因 素,即在前地測地的「前方交會法」作業(如表一)。時至今日,不僅測量裝備 性能已大幅提升,測考場地亦相對精簡與符合標準化,且測地人員受惠於「募 兵制」政策累積長期訓測經驗,當年的限制因素多不存在,致藉由提高測考標準提升部隊戰力之構想因運而生。本研究即就測地專業考量,提供「前方交會法」訓測相關之精進作為。

一、「前方交會法」正名

就「測量學」解釋:三角測量如因三角點距離甚長,致三角形過大,不敷 測繪之應用時,常需藉交會法增設補助三角點,以補三角點之不足。補助三角 點因其觀測角度與計算方法不同,區分為前方交會法、側方交會法、兩點法(雙 點定位)與後方交會法「等四種(如表二)。²基此,如將「前方交會法」簡稱為 「交會法」,並非恰當且易與其他交會法混淆,特予正名。

二、使用時機

砲兵測地基於前地要點(檢驗點、基準點與目標)特性、裝備條件、時間 與精度要求等考量,前地測地通常使用「前方交會法」實施,且在裝備條件未 明顯改變前,已成為測地人員之唯一選擇。通常在砲兵測地使用時機如下:

- (一)前地要點位於敵方或地障(河流、峽谷、斷崖)隔絕,無法整置反射稜鏡或使用捲尺測距。
- (二)前地要點為特殊地物、地貌(如塔尖、煙囪、水塔、避雷針、電桿、獨立樹、石柱、山巔等),無須(法)設置測站時。
 - (三) 可獲得雷射測距裝備,惟測距能力或精度無法滿足作業需求。
 - (四)已知點不便前往,惟須實施「交會閉塞」檢查時。
 - (五) 須檢查某測點位置正確性,惟不作為擴張使用。

表一 「前方交會法」精度範圍原因分析

精 度 範 圍	原 因	分析	附記
檢驗點徑誤差超過50	一、認錯點位(所測核	脸點與裁判官指示並	一、民國 90 年之前, 砲兵基
公尺	非同一點)。		地南、北岸目標均區分
	二、兩觀測所交會並	非同一個檢驗點。	東、中、西、西西等四區。
	三、檢驗點求邊距離:	或座標計算錯誤。	不僅各區目標數量龐大且
	四、主觀測所座標錯言	误,致錯誤傳播至交會	均採鵝卵石堆砌,因無明
	法所測之檢驗點	· 禁標。	顯特徵或顏色區別,測錯
檢驗點徑誤差大於25	一、基線條件不理想	,影響求邊距離精度。	導致成果不佳之單位,比
公尺,小於50公尺	二、使用器材(M2 方	「向盤)空迴較大,造	例甚高。
	成內、外角誤差	0	二、基地測考為便於目標指
	三、未遵照累積測角-	要領,內、外角雖有誤	示,要求測地除檢驗點
	差但不嚴重。		外,另加測四個指定射擊
	四、兩觀測所交會點.	並非檢驗點之幾何中	之目標,致前方交會法認
	心。		錯或測錯機率倍增。

資料來源:作者自製

19

¹李景中,《測量學概要》(台中市:考用出版社,民國90年1月二版一刷),頁200。

²郭基榮,《測量學精義》(台南市:復文書局,民國 79 年),頁 220-221。

	化一 州里	子到 义旨位	4】 之尺我兴下来	外心毕也	
區分	圖示	已知點數目	設置器材點位	觀測量	待求點
前方交會	A 1 2 B	兩個 (A、B)	A、B 點位	∠1 ∠2	C點座標
側方交會	$\begin{array}{c} C \\ \hline 3 \\ A \\ \hline \end{array}$	兩個 (A、B)	A、C 點位 或 B、C	∠1、∠3 或 ∠2、∠3	C點座標
兩	P1 P2	兩個 (A、B)	P1、P2 點位	$\begin{array}{c} \alpha 1 \cdot \alpha 2 \\ \beta 1 \cdot \beta 2 \end{array}$	P1、P2 點座 標
後方交會	A B C	三個 (A、B、C)	P點位	α、β	P點座標

表二 測量學對「交會法」之定義與作業規範

資料來源:李景中,《測量學概要》(台中市:考用出版社,民國90年1月二版一刷),頁201。

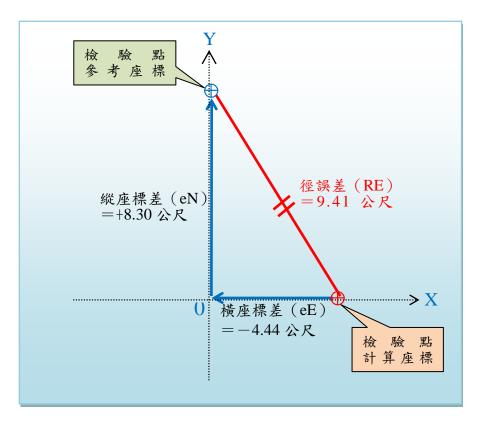
三、特性與限制

- (一)特性:1.可適用於前地測地、標定作業、平均彈著點與高炸檢驗。
- 2. 可對覘視良好,惟無法直接測距之點位作業。3.可迅速測出較遠距離之點位。
- (二)限制:因其第三角(頂角)係計算求得,致距離精度不易掌握,不得作為基準點再行擴張。³

四、精度評定依據與計算方式

- (一)精度評定依據:「前方交會法」所得之邊長,並非如「導線法」經由 捲尺或測距儀直接求取,因此其邊長(距離)在精度計算上不具代表性,故無 法使用「導線法」之精度比,僅能計算參考案已知與計算所得座標之「徑誤差」 (Radial Error, RE),作為作業精度評定之依據。
- (二)「徑誤差」計算方式:「徑誤差」為已知與計算所得座標之比較結果,即已知座標與計算所得座標之距離。可經由解算正確三角形之「畢達哥拉斯數學定理」(Pythagorean Theorem,簡稱畢氏定理)予以確定,此定理視「徑誤差」為「橫座標差」(eE)與「縱座標差」(eN)所構成直角三角形之斜邊(如圖一)。簡言之,「畢氏定理」敘述在一個正確三角形中,A、B為直角三角形之邊,C則為直角三角形之斜邊,其直角三角形斜邊之平方等於邊長平方和。4而「徑誤差」25公尺標準之範圍,係以檢驗點參考座標為圓心,用半徑25公尺畫圓周,計算所得之檢驗點座標,必須落在半徑25公尺圓周內。「徑誤差」公式:

$$C^2 = A^2 + B^2$$
 $C = \sqrt{A^2 + B^2}$

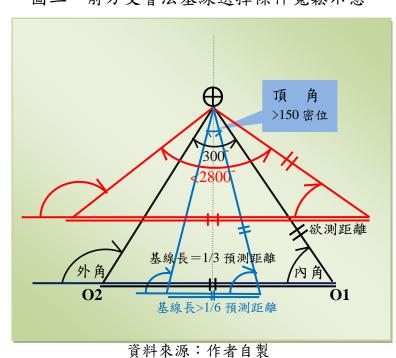

³《陸軍野戰砲兵測地訓練教範(第二版)》(桃園:國防部陸軍司令部,民國 99 年 11 月),頁 4-39。

⁴ "Marine Artillery Survey (MCWP3-1.6.15, Draft)" (United States Marine Corps, 2000), p10-11.

將「橫座標差」(eE)、「縱座標差」(eN) 代入公式: $RE = \sqrt{eE^2 + eN^2}$ (三) 計算範例

檢驗點參考案座標 X: 17265.98 Y: 27657.32 檢驗點計算所得座標 X: 17269.54 Y: 27649.02 座標誤差(公尺) -4.44 +8.30... (1) 徑誤差 (RE) = $\sqrt{(4.44)^2 + (8.30)^2}$ (2) = $\sqrt{88.6036}$ =9.41 公尺

圖一 檢驗點徑誤差示意

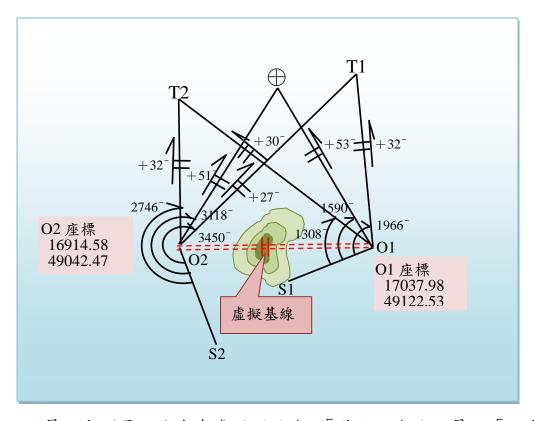

資料來源:作者自製

現行作業問題探討

當前砲兵營測地無論有、無定位定向系統,前地部分皆須使用「前方交會法」作業,基於現行準則對基線選擇條件規範寬鬆亦不明確,且測考評分標準適切性與問延性存疑,不僅造成測地人員困惑,且易與其他測考評分標準相互矛盾,甚至影響檢驗射擊之成效,務需統一觀念與修訂標準。現行作業問題,分述如下:

一、基線條件寬鬆,且多未審慎考量:依據「野戰砲兵測地訓練教範」— 「前方交會法」選定基線時,須從其長度、方向、標高三方面考慮之。長度: 約為欲距離之三分之一以上,使交會之頂角大於 300 密位以上為佳(不得大於 2800 密位)。如受地形限制頂角不得小於 150 密位(基線長不得小於欲距離之六分之一)。方向:基線與所測目標構形之三角形以概略等腰為佳,即基線中央與目標概略垂直。標高:基線兩端之標高宜概略相等,且能同時通視目標為宜(如圖二)。5就前述基線選擇而言,條件極為寬鬆,比對現行營觀測所選擇要領與各訓測場地規格,即使無法達到最佳條件,惟仍在限制條件以內。

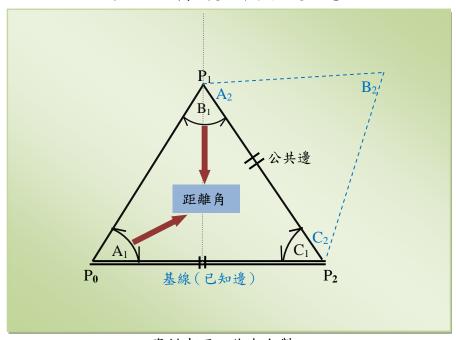
(一)兩觀通視時,沿用兩觀連線為基線:砲兵營全部測地之前地部分, 為求作業方便與爭取速度,通常使用兩觀測所(主觀測所 O1、輔助觀測所 O2) 為基線。惟兩觀係依據觀測所選擇要領決定,並未考量「前方交會法」之基線 條件,在便宜行事的情況下被動接受,無法確定是否影響檢驗點(基準點與目標)之精度。


圖二 前方交會法基線選擇條件寬鬆示意

(二)兩觀不通視時,無法考慮基線條件:兩觀測所(主觀測所O1、輔助觀測所O2)無法相互通視,在砲兵營測地作業中實屬常態,前地測地將採「兩觀不通視」之前方交會法要領實施,不僅測地計畫草擬階段不考慮基線選擇條件,成果整時時亦運用兩觀測所座標計算「虛擬基線」,再實施「交會法距離計算」(如圖三)。如基線條件不佳,其衍生出求邊距離不精確之結果,則將概括承受。

22

⁵ 《陸軍野戰砲兵測地訓練教範(第二版)》(桃園:國防部陸軍司令部,民國 99 年 11 月),頁 4-39。


圖三 「兩觀不通視」時設置虛擬基線實施「前方交會法」

二、同屬三角測量,惟未考慮圖形強度:「前方交會法」屬於「三角測量」(Triangulation),惟就三角測量之原理,其邊長計算採用正弦定律求得,通常角度接近 90 度時,其正弦函數值變化較小,而接近 0 度與 180 度時,其正弦函數值變化較小,而接近 0 度與 180 度時,其正弦函數值變化甚大,亦即角度越接近 0 度或 180 度,計算之邊長精度越差。因此選定三角點位時,可由三角形各內角正弦函數一秒之變化值(log sin 1"),以誤差傳播定律算出此「圖形強度」(Strength of figure),其「圖形強度數值」(R)大小即表示對於該三角系最後一邊邊長誤差之大小(如圖四)。如圖形強度值越小,圖形越強,亦即表示測角誤差因圖形而造成對邊長計算之影響越小。 6 「三角測量」應用正弦定律推求未知邊長時,必須利用 $\angle A$ 與 $\angle B$ 的角度值,此種用於推算未知邊之已知角度稱之為「距離角」(即已知邊與求邊之對角),亦為四邊形三角鎖判定「圖形強度」之依據。就「前方交會法」基線選擇要領與「三角測量」圖形強度對照,「前方交會法」作業或許不夠嚴謹,極可能影響成果之精度。

查景中,《測量學概要》(台中市:考用出版社,民國90年1月二版一刷),頁179。

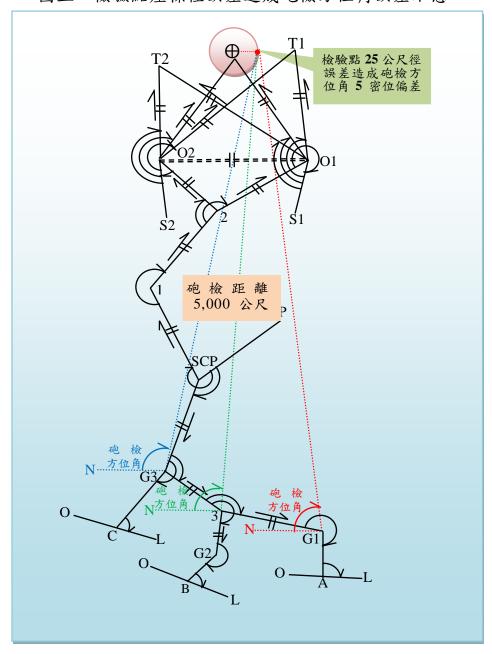
圖四 三角測量圖形強度示意

資料來源:作者自製

三、測考標準不夠適切、周延

砲測中心現行測地精度檢驗點評分標準:「座標徑誤差小於 25 公尺為滿分、50 公尺以上為零分」,就誤差定律與常態分佈曲線原則而言,較不適切。另一項測考標準「方向基角則小於 2 密位為滿分,4 密位以上為零分」(如表三),未考量檢驗點「徑誤差」對「方向基角」造成之影響,則不夠問延。基於「方向基角」=「方向基線方位角」—「砲檢方位角」,以目前測考場地 105 榴砲火砲平均射程 (5 公里)為例,依據密位公式計算偏差密位數:

25 公尺(滿分徑誤差)÷5(距離千除數)=5 密位


50 公尺(及格徑誤差)÷5(距離千除數)=10 密位

由前述計算結果觀察,即使檢驗點座標徑誤差評定為滿分(小於25公尺), 砲檢方位角誤差已高達5密位(如圖五),致方向基角為零分(超過4密位以上), 顯見檢驗點測考標準過寬,且未考量檢驗點「徑誤差」與「方向基角」兩者影 響層面,致造成矛盾現象。為求提升測考公信、標準與射擊精度,實應審慎檢 討評分標準,將檢驗點徑誤差縮小至合理程度,並適切對應「方向基角」造成 之影響。

表三 砲兵營測地期末測驗評分標準 (摘要)

檢	驗	點	評	分	標	準	方	向	基	角	評	分	標	準	附		1	記
徑誤	3 全 つ)5 A	R IJ	內但	. 15	公	誤	差 2	(3)	密	位以	內彳	导 14	分	` '	括弧/		支
1王 跃	左 4	J Z	八以	1717	45	21	誤	差 2	(3)	· —	3 (4	!)?	密位.	以		地評	分標	
徑誤	差 2	26-5	50 公	尺以	內得	£ 20	內	得 1	2分						準。			
分							誤	差 3	(4)	· —	4 (5	5) {	密位.	以				
徑誤	. 半 5	(A A)	ט ט	L 为	乘 八		內	得 14	4分									
2000	左り	ロ公	人以	上為	令刀	1-	誤	差 4	(5)	密	位以	上為	為零	分				

資料來源:陸軍砲兵部隊測考中心軍團砲兵營測地期末測驗標準評分檢查表 圖五 檢驗點座標徑誤差造成砲檢方位角誤差示意

資料來源:作者自製

精進作法

就砲兵現行「前方交會法」檢討結果,可歸納出「基線選擇條件之必要性」與「檢驗點徑誤差評分標準不適切且與方向基角評分標準相互矛盾」兩項存在已久且關鍵性的問題。為能達成確立觀念作法、測考公信與提高測考標準等目的,實須針對相關問題研擬適切、有效之精進作法。

- 一、前地基線可沿用兩觀間之連線:砲兵使用之「前方交會法」雖屬於「三角測量」,惟其作業方式、目的、圖形強度與精度規範等,皆不如三角測量,因此前地基線選擇條件無須比照三角測量,且就目前砲兵營觀測所開設條件而言,使用兩觀測所間連線為基線,即可符合「前方交會法」之作業要求。除非營觀測所配置背離正常條件,或用於「前地測地」以外之任務,則須檢討基線條件或改採三角測量。理由如下:
- (一)就作業方式與精度而言:「三角測量」乃實地測定各相連成三角形之各點與各相鄰點間之方向(水平角)而得,必須有各內角值,再直接或間接測量一個三角形之一邊作為基線,並以其中一已知點之座標與其相鄰之方位角為依據,用以推算各點之點位,區分為單三角鎖、四邊形鎖與中心點三角網,通常用於高精度之「控制測量」(Control surveying)。7

「前方交會法」其「頂角」並非由測量所得,而是由左觀「外角」減右觀「內角」,或 3200 密位減兩觀「內角和」所得,如「外角」或「內角」測量發生誤差(錯誤),不僅無法察覺且自動轉移至「頂角」,將影響求邊距離之精度。基於「前方交會法」之結果精度有限,無法作為擴張使用,僅提供計算「檢驗點」(目標)座標或檢查某一點位置之正確性,故刻意要求基線條件,實無法改變其先天限制,反而增加作業複雜度且影響作業速度。

- (二)就「三角測量」基線選擇條件而言:「三角測量」之單三角鎖與「前方交會法」圖形較相似,依據測量學所述:單三角鎖形狀以等邊三角形為最佳,因其角誤差影響邊長最小,且涵蓋面積最大。惟如受地形限制,其內角應使勿小於30度或大於120度(如表四)。基於目前多以測距經緯儀量取基線長,其基線選定條件共計四條,刪除「鋼捲尺量距」相關條文後,僅剩下列兩條,且就條文內容觀察並無特別設限。
- 1. 基線宜為三角系之一邊,故其長度以能接近三角系邊長為佳。如因地形有限,長度不足時,須將基線以網形擴大之,故應考慮基線兩端能與增大之點通視。
 - 2.選定基線兩端後,應設置標樁表示其正確位置。8

⁷ 李景中,《測量學概要》(台中市:考用出版社,民國 90 年1月二版一刷),頁 175-176。

⁸ 郭基榮,《測量學精義》(台南市:復文書局,民國79年),頁181。

「三角測量」之作業精度高於「前方交會法」,惟其基線選擇條件仍屬寬鬆 且與「前方交會法」差異甚大(如「前方交會法」最佳頂角為>300 密位,「三 角測量」則為1200 密位),僅強調「四邊形三角鎖」須考慮圖形強度。基此,「前 方交會法」基線選擇條件實無須刻意強調,在正常狀況下沿用兩觀測所連線為 基線即可。

	表四	「三角測量」之單三角鎖選點要領分析
選 點	要 領	理由
等邊三角	形最佳	一、角度誤差影響邊長最小且涵蓋面積最大。 二、最佳頂角為 67 度 32 分 (1200 密位)。 三、受地形限制時內角不可小於 30 度(533 密位) 或大於 120 度 (2133 密位)。
圖形強度 越小越好	數值(R) 之。	一、圖形強度因素小,圖形越佳。 二、三角形無太小之銳角或過大之鈍角。 三、即使測角有誤差,其影響邊長輕微。

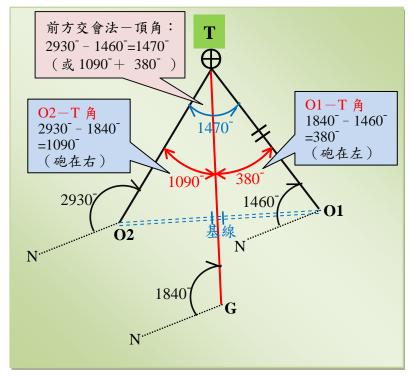
資料來源:作者自製

(三)就營觀測所選擇要領而言:依據陸軍野戰砲兵部隊指揮教則(第二版)第五篇 502020 條「觀測所選擇要領」:砲兵營觀測所概略位置通常由營長或情報官指定,其確實位置由指定開設之連觀通組長選定,以能獲得橫廣與縱深之最佳觀測為著眼,各觀測所之配置其觀測能力應能涵蓋全營射擊區域,故應盡各種手段消滅觀測死界,其應具備條件為:有良好視界,能觀測責任區域;便於作業與警戒;有良好進出路;隱蔽良好,避免接近明顯地形、地物;通信設施及維護容易。⁹

同教則第六篇 604008 條「觀測所偵選要領」:須考量任務之遂行,以選擇良好視野,避免接近顯著物體,進出容易,不妨礙通信連絡,又能適度隱蔽、掩蔽並有利觀測人員之準備作業為原則,狀況許可時,應力求接近砲目線,以減少 T 角對觀測人員射彈修正之影響。10

就前述教則條文內容分析,如各觀測所之配置須使觀測能力涵蓋全營射擊區域,盡可能消滅觀測死界;當狀況許可時,應力求接近砲目線,以減少 T 角對觀測人員射彈修正之影響……等原則(通常 T 角 > 500 密位時,射擊指揮所才通報觀測所),正與「前方交會法」基線選擇條件中的長度、頂角(如圖六)範圍與通視程度相互對應(如表五),故在正常狀況下,沿用兩觀之連線作為「前方交會法」基線,對檢驗點「徑誤差」之影響極為有限。

^{9《}陸軍野戰砲兵部隊指揮教則 (第二版)》(桃園:國防部陸軍司令部,民國 98 年 4 月),頁 5-3-23。

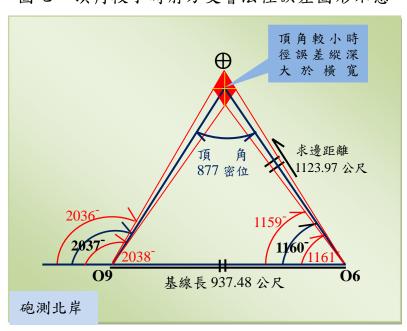

^{10 《}陸軍野戰砲兵部隊指揮教則(第二版)》(桃園:國防部陸軍司令部,民國 98 年 4 月),頁 6-4-67。

表五 基線與觀測所(檢驗點)選擇條件對應

基線選擇條件	觀測所、檢驗點選擇要領	附 記
為欲測長度 1/3, 使交會之頂	1. 狀況許可時,力求接近砲目線,以減少	1. 觀測所 T 角
角>300 密位為佳(不得>	<u>T 角❶</u> 對觀測人員射彈修正之影響。★	通常不宜>
2800 密位)。如受地形限制,	2. 各觀測所配置其觀測能力以能獲得橫廣	500 密位,故
不得<150 密位●(基線長不得	與縱深之最佳觀測❷為著眼。	兩觀T角和
小於欲測長度之 1/6) ❷。		<1000 密
基線與構成之三角形概略等	1. 檢驗點為目標區域中易於識別之地物,	位,符合不
腰為佳,即基線中央與目標	可作為檢驗與指示目標基準。如目標區	得>2800 密
_(檢驗點)概略垂直3。	域過大,應考慮轉移界線❸。	位原則。
	2. 各觀測所之配置觀測能力應能涵蓋全營	2. 0-0表示
	射擊區域,盡可能消滅觀測死角❸。	對應條件。
基線兩端之標高概略相等,且	1. 有良好之視界,能觀測責任區域◆。	
能同時通視目標為宜4。	2. 各觀測所之配置觀測能力應能涵蓋全營	
	射擊區域,盡可能消滅觀測死角母。(重	
	複)	

資料來源:作者自製

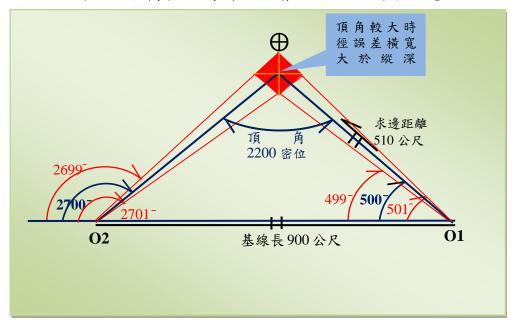
圖六 「T角」(<6400 密位)與前方交會法「頂角」關係示意


資料來源:依據《陸軍野戰砲兵射擊指揮教範(第三版)》(桃園:國防部陸軍司令部,民國103年10月),頁 6-4-67修改。

(四)就兩觀不通視時「前方交會法」之作業方式而言:當砲兵營兩觀測所不通視時,兩觀測所與「方位基準點」(S點)成果由系統組(或連接組)提供,前地組則利用兩觀測所座標計算虛擬基線之「基線長」與「基線方位角」,再運用兩觀不通視時之「前方交會法」計算兩內角與頂角,求算檢驗點(目標)

之座標、標高。基於基線件寬鬆且觀測所選擇已呼應基線條件,當兩觀不通視時,前地組為簡化作業與增加速度,無暇考慮基線條件,可逕自沿用兩觀連線為基線作業,其檢驗點徑誤差皆可小於「容許誤差」。

二、修訂測考標準適應實際需求:現行「砲兵營測地期末測驗標準評分檢查表」中,檢驗點「徑誤差」評分標準較為寬鬆,且與「方向基角」評分標準相互矛盾,可能發生受測部隊測地成果中檢驗點「徑誤差」(≥25公尺)評定滿分,「方向基角」(方向基線方位角—砲檢方位角=方向基角,其值不得>3200密位)卻因為超過 4 密位評定零分之異象。為能周延測考評分標準、建立測考公信與符合提升測考標準之實際需求,誠宜審慎研析、適切修訂,砲測中心亦應同時重行檢測目標區參考案,俾供建立具公信力之裁判成果。修訂考量與要領分述如下:


(一)「徑誤差」圖形變化:「前方交會法」依據學理其頂角較小(1,000 密位以內)或較大(2,000 密位以上),其交會點之座標「徑誤差」圖形將有不同之變化。通常頂角較小時,徑誤差之縱深大於橫寬(如圖七);頂角較大時,則橫寬大於縱深(如圖八)。就砲測中心北岸 O6、O9 觀測所為例(基線長 937.48 公尺,頂角約 877 密位),屬於頂角較小範圍,徑誤差之縱深大於橫寬,當「前方交會法」之左、右觀角度符合「容許誤差」(±1 密位)時,檢驗點「徑誤差」將小於 2.65 公尺(如表六)。

圖七 頂角較小時前方交會法徑誤差圖形示意

資料來源:作者自製

圖八 頂角較大時前方交會法徑誤差圖形示意

資料來源:作者自製

表六 前方交會法角度誤差±1 密位時檢驗點「徑誤差」對照

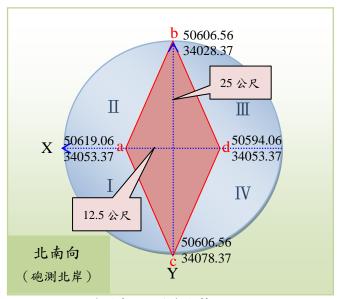
區 分	左觀 1 (a)	左觀 2(b)	正 確	右觀 1(c)	右觀 2 (d)	
左觀外角	2036-	2036-	2037-	2038-	2038-	
右觀內角	1159-	1161-	1160-	1159-	1161-	
左邊長	1121.94 公尺	1124.86 公尺	1122.45 公尺	1120.05 公尺	1122.96 公尺	
右邊長	1124.47 公尺	1126.37 公尺	1123.97 公尺	1121.57 公尺	1123.46 公尺	
上侧京播	50607.77	50606.77	50606.56	50606.36	50605.35	
左側座標	34053.43	34050.69	34053.33	34055.96	34053.23	
右側座標	50607.76	50606.76	50606.56	50606.34	50605.34	
石侧座标	34053.50	34050.77	34053.40	34056.03	34053.31	
平均座標	50607.77	50606.77	50606.56	50606.35	50605.35	
十均座保	34053.47	34050.73	34053.37	34056.00	34053.27	
相對正確位 置之徑誤差	1.21 公尺	2.65 公尺★	0	2.64 公尺	1 公尺	

資料來源:作者自製

(二)檢驗點「徑誤差」評分標準修訂依據

1.就角度誤差而言:目前砲測中心「砲兵營測地期末測驗檢驗點評分標準」:檢驗點徑誤差小於 25 公尺以內得 45 分(滿分)。惟當徑誤差等於 25 公尺時(如圖九),其相應「前方交會法」左(外角)、右觀(內角)之「角度誤差」已高達±12 密位(如表七),除超出 M2 方向盤測角標準誤差(每站±1 密位)高達12 倍,已到達判定「錯誤」之程度,不宜設定為滿分標準。

2. 就方向基角評分標準而言:檢驗點座標徑誤差小於25公尺時,就基地測考火砲平均射程5公里而言,「砲檢方位角」誤差已高達5密位(25公尺÷5「距離千除數」),致「方向基角」(方向基線方位角—砲檢方位角=方向基角)超過測考標準(<4密位)極限。當檢驗點「徑誤差」評定為滿分標準,卻產生評定


零分之「方向基角」,不僅兩項評分標準相互矛盾,亦難獲得受測部隊認同。

3. 就射擊精度而言:查105公厘榴彈砲射表V號裝藥G表(距離5,000公尺):距離公算偏差為21公尺、方向公算偏差為3公尺。¹¹如將距離與方向公算偏差分別視為橫座標與縱座標差,計算其「徑誤差」為21.21公尺。

$$\sqrt{(21)^2+(3)^2}$$
=21.21320 公尺 = 21.21 公尺

通常當測地成果中檢驗點「徑誤差」(25公尺)大於1個距離與方向公算 偏差時,不僅顯示測地成果誤差過大,亦將影響檢驗射擊之成效。

圖九 頂角較小時檢驗點「徑誤差」<25公尺之座標示意

資料來源:作者自製

表七 頂角較小時檢驗點「徑誤差」<25公尺之「角度誤差」對照

區 分	徑誤差(a)	徑誤差(b)	正 確	徑誤差(c)	徑誤差(d)
誤差極限	50619.06	50606.56	50606.56	50606.35	50594.06
座標	34053.47	34028.37	34053.37	34078.37	34053.27
相對正確位 置之徑誤差	X+12.5 公尺	Y-25 公尺	0	Y+25 公尺	X-12.5 公尺
左觀外角	2026	2029	2037-	2045	2047
右觀內角	1150	1170	1160-	1148	1169
左邊長	1118.26 公尺	1145.04 公尺	1122.45 公尺	1097.56 公尺	1126.03 公尺
右邊長	1130.41 公尺	1145.54 公尺	1123.97 公尺	1101.53 公尺	1117.92 公尺
相對正確位	-11	-8^{-}	0	+8-	+10-
置之角誤差	-10^{-}	$+10^{-}$	U	-12 ⁻ ★	+9-

資料來源:作者自製

(三)修訂評分標準考慮因素: 就檢驗點「徑誤差」與「方向基角」評分標準分析,問題癥結為檢驗點「徑誤差」測驗評分標準過寬,「方向基角」則符合現行測地作業、射向賦予與射擊安全要求,故無修訂必要。檢驗點「徑誤差」測驗評分標準修訂考慮因素如下:

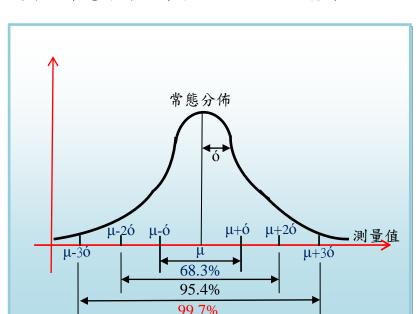
 $^{^{11}}$ 《M2A1, M2A2, 及 M49, 105 公厘榴彈砲射表-FH-105-H-6》(桃園:陸總部翻譯叢書,民國 67 年再版〉,頁 164。

1.檢驗點「徑誤差」形成原因:誤差來源區分為「自然誤差」(Natural error)、「器材誤差」(Instrumental error)與「人為誤差」(Personal error),種類依其性質則區分為「錯誤」、「系統誤差」與「偶然誤差」等三類,其中「錯誤」為不可原諒之過失,將導致徑誤差超過 50 公尺,故不予討論。通常受測部隊在測考標準要求下,勢必力求消除「系統誤差」(多來自器材本身空迴或校正不確實而產生之誤差),致成果精度最終取決於「偶然誤差」(錯誤或系統誤差經改正後仍然存在之誤差,其誤差值較小,且正、負皆可能出現)之大小。就「前方交會法」而言,係選定基線,採左觀測外角、右觀測內角方式,以「正弦定律」求算邊長提供計算檢驗點座標、標高使用,其「偶然誤差」來源為水平角(外、內角)、距離(邊長)或主觀測所(O1)傳播之誤差。此種誤差初無規則可依,亦無法預知其大小,惟測量次數增至無窮次時,且每次測量均在同一環境下,則所有「偶然誤差」之大小分佈,有其定則可循。12基此,依據「測量學」對偶然誤差基本原則分析,可確定測考評分標準修訂之方向(如表八)。

表八 偶然誤差基本原則對應評分標準之修訂方向

基本原則	評分標準修訂方向	附 記
「較小」誤差比「較大」	誤差 25 公尺以內為滿分	偶然誤差並非
誤差發生之或然率為多。	之標準,可適度提高。	「錯誤」,當檢
正誤差與負誤差發生之	以徑誤差作為評分標準	驗點徑誤差超
或然率均等。	方式不改變。	過 50 公尺時,
甚大誤差其發生之可能		歸類為錯誤等
性甚小。	誤差 50 公尺以上為零分	級。
當誤差符號不同時,大部	之標準確定過於寬鬆。	
分誤差可能被抵消。		

資料來源:作者自製


2.檢驗點「徑誤差」標準訂定考慮因素:就砲測中心營測驗場地內「觀測所、目標」設置幅員而言,其「前方交會法」頂角屬於較小類型(1,000 密位以內),「徑誤差」圖形之縱深大於橫寬。現行評分標準須如何修訂始能符合周延、適切原則,誠宜依據誤差來源,綜合考慮學理、數據驗證與誤差傳播等因素,審慎訂定。

(1)水平角:M2方向盤測角「標準誤差」每站±1密位(包括<0.5密位之方向機構空迴¹³),在測量實務之應用中通常使用「標準誤差」作為衡量精度之指標,惟依據「常態分佈曲線」(如圖十),大於「標準誤差」之偶然誤差出現之機率為68.3%,大於標準誤差兩倍者約占4.6%(100%-95.4%),大於標準誤差三倍者約占0.3%(100%-99.7%),因此測量作業常將標準誤差之兩倍稱為「容許誤差」(Tolerance error),標準誤差之三倍為「誤差極限」(Limited

¹² 郭基榮,《測量學精義》(台南市:復文書局,民國 79 年),頁 12。

^{13 《}M2 及 M2A2 式方向盤(附裝備)單位、直接支援及一般支援保修手冊(TM9-1290-262-24)》(桃園:陸軍總司令部計畫署譯印,民國79年6月),頁100-101。

error)。¹⁴三倍以上則為「錯誤」,應予以摒棄。¹⁵以砲測中心北岸 O6、O9 觀測所為例,水平角「誤差極限」±3 密位(±1 密位×3)所造成之檢驗點最大「徑誤差」約為 7.98 公尺(如表九)。

圖十 常態分佈曲線中一、二、三倍標準誤差之機率

資料來源:李良輝,《最小二乘法平差理論與實務》(新北市: 旭營文化事業,2014年1月初版),頁24。

水平角剔除標準誤差後,「剩餘誤差」多來自標定失準,通常發生於檢驗 點體積較大且不易選定中心點時,「前地組」測手在兩觀測所標定檢驗點之中 心點產生偏差,且因內、外角誤差,導致求邊距離誤差,最終將影響檢驗點之 「徑誤差」。為改正此一問題,測手可分別觀測檢驗點之左、右水平角,再計 算檢驗點幾何中心水平角(如圖十一),將可增進測角精度。

表九	水	平角		誤差	極限	┙	(± 3)	密位) 所:	造成	之	檢馬	僉點	徑	誤差	對	照
	`) v.	-	()) 1h	_	(1)	_					/	`		_	/ 1

	. , ,				<u> </u>
區 分	左觀 1 (a)	左觀 2(b)	正 確	右觀 1 (c)	右觀 2 (d)
左觀外角	2034-	2034-	2037-	2040-	2040-
右觀內角	1157-	1163-	1160-	1157-	1163-
左邊長	1120.92 公尺	1129.7 公尺	1122.45 公尺	1115.29 公尺	1123.97 公尺
右邊長	1125.48 公尺	1131.22 公尺	1123.97 公尺	1116.82 公尺	1122.45 公尺
左側座標	50610.11	50607.12	50606.56	50605.86	50602.85
左侧座标	34053.67	34045.41	34053.33	34061.21	34053.07
上侧立墙	50610.11	50607.11	50606.56	50605.85	50602.85
右側座標	34053.66	34045.41	34053.40	34061.21	34053.07
亚马克姆	50610.11	50607.12	50606.56	50605.86	50602.85
平均座標	34053.67	34045.41	34053.37	34061.21	34053.07
相對正確位 置之徑誤差	3.56 公尺	7.98 公尺★	0	7.87 公尺	3.72 公尺


資料來源:作者自製

33

¹⁴ 李良輝,《最小二乘法平差理論與實務》(新北市:旭營文化事業,2014年1月初版),頁23-24。

¹⁵ 李瓊武,《測量學新編》(台北市:九樺出版社,民國77年4月再版),頁14。

資料來源:作者自製

(2)基線長與基線條件:基線長目前皆由「連接組」以測距經緯儀量取, 或使用兩觀測所座標計算,其誤差有限(如表十),且因基線條件過於寬鬆, 影響檢驗點之求邊距離亦有限,遠不如水平角誤差所造成之影響。

表十 砲兵現行編制測距經緯儀測距能力、精度對照

區 分	蔡司 Rec Elta-13 測距經緯儀	徠卡 TPS700 測距經緯儀					
測距能力	紅外線:2,000 公尺 雷射測距:(無)	紅外線: 1-2,000 公尺 雷射: 有稜鏡: 2,000 至 7,500 公尺					
測距精度	3mm+D×0. 2ppm 最大顯示:小數點後 4 位	無稜鏡:500 公尺 紅外線:2mm+Dx2ppm 雷射:5mm+Dx2ppm 最大顯示:小數點後 3 位					
基 線 長 (937.482 公尺) 之	0.003 公尺+937.4820 公尺× (0.2/1,000,000)=0.0032 公尺。 精度範圍 =937.4820±0.0032 公尺	0.002 公尺 +937.482 公尺× (2/1,000,000) =0.004 公尺。 精度範圍 =937.482±0.004 公尺					
比較精度	[(937.4852+937.4798) ÷2]÷ 0.0064=1/937.4820÷0.0064 =1/146,400	[(937.478+937.486) ÷2]÷ 0.004=1/937.482÷0.008 =1/117,100					
精度要求	情度要求 砲兵測地之距離比較精度最高要求為 1/7,000。 ¹⁶						

資料來源:作者自製

(3) 求邊距離:水平角「誤差極限」(±3 密位)時,影響檢驗點「求邊 距離」最大誤差為 7.17 公尺(參考表九:1123.97 公尺—1116.82 公尺),小於 影響之座標「徑誤差」 7.87 公尺,故不考慮求邊距離誤差,將直接採用附表八 中最大徑誤差 7.98 公尺。

 $^{^{16}}$ 《陸軍野戰砲兵測地訓練教範(第二版)》(桃園:國防部陸軍司令部,民國 99 年 11 月),頁 2-13。

- (4) 主觀測所(O1) 座標傳播之誤差: 主觀測所(O1) 座標通常由連接組以「導線法」或系統組以「定位定向系統」建立。當使用「導線法」時,主觀測所(O1) 座標精度滿分標準為 1/1,000, 依據平均作業距離 3 至 5 公里計算,最大徑誤差約為 5 公尺(5,000 公尺÷1,000=5 公尺)。如使用「定位定向系統」時,主觀測所(O1) 座標精度滿分為<3 公尺徑誤差(4 分鐘零速更新)或<7 公尺徑誤差(10 分鐘零速更新),基於受測單位可依據狀況與需求自選 4 或 10 分鐘零速更新模式,故將兩者平均,徑誤差亦為 5 公尺(3 公尺+7 公尺÷2)。
- (四)檢驗點「徑誤差」標準計算要領:計算合理「徑誤差」標準前,須先求得「標準徑誤差」,再依據誤差計算要領計算「容許徑誤差」與「徑誤差極限」。如超過「徑誤差極限」,則視為「錯誤」,不予評分(原定與修訂後檢驗點評分標準對照,如表十一)。檢驗點之「標準徑誤差」包括:「連接組」(系統組)傳播之主觀測所(O1)徑誤差與「前地組」水平角「誤差極限」(±3 密位)所造成之檢驗點徑誤差兩部分,基於絕大部分的兩個(種)徑誤差皆發生在不同方位,不宜直接相加,須依據「合併誤差」(Combined CEP)公式計算,「惟就試算結果評估其值過小(9.42 公尺≒10 公尺),受測部隊可能因修訂幅度太大致適應困難,特採「直接相加法」行之,並將評分標準細分為「標準徑誤差」、「容許徑誤差」、「徑誤差極限」與「錯誤」四種等級,增加評分標準之公平、周延與彈性。
 - 1. 合併誤差計算法(如圖十二)

公式: $\sqrt{(O1 傳播之徑誤差)^2 + (檢驗點「徑誤差」)^2}$ =檢驗點「標準徑誤差」 $\sqrt{(5)^2 + (7.98)^2} = 9.42 公尺 = 10 公尺$

(標準較高,考慮受測部隊適應問題,僅供參考)

2. 直接相加法(如圖十三)

公式:檢驗點「徑誤差」+O1傳播之「徑誤差」 =檢驗點「標準徑誤差」

(原則上須小於一個方向、距離公算偏差之「徑誤差」21.21公尺)

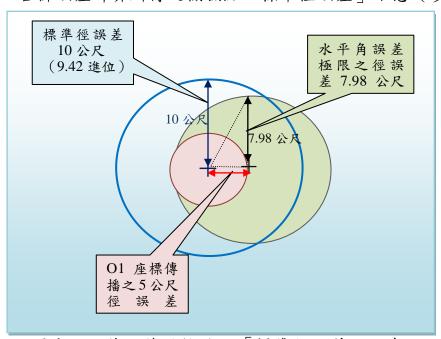
檢驗點「標準徑誤差」= 5公尺+7.98公尺

=12.98 公尺≒13 公尺

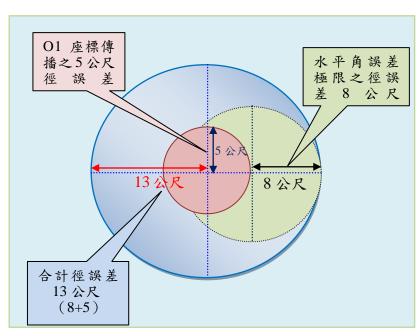
(13 公尺以內得 45 分)

檢驗點「容許徑誤差」= 13 公尺×2(倍)=26 公尺 (14 至 26 公尺以內得 30 分)

¹⁷ 《野戰砲兵測地訓練教範-第二版》(桃園:國防部陸軍司令部印頒,民國 99 年 11 月),頁-18、1-19。


檢驗點「徑誤差極限」= 13 公尺×3(倍)=39 公尺 (27 至 39 公尺以內得 15 分)

檢驗點「徑誤差錯誤」=39公尺以上為零分


表十一 原定與修訂後檢驗點徑誤差評分標準對照

原定檢驗點評分標準	修訂後檢驗點評分標準	附 記
誤差 25 公尺以內得 45 分	誤差 13 公尺以內得 45 分	修訂後檢驗點徑
誤差 26-50 公尺以內得	誤差 14-26 公尺以內得 30 分	誤差標準僅提高
20 分	誤差 27-39 公尺以內得 15 分	11 公尺,且區分
誤差 50 公尺以上為零分	誤差 39 公尺以上為零分	4種分數等級。

圖十二 合併誤差計算所得之檢驗點「標準徑誤差」示意(參考)

圖十三 修訂後的檢驗點「標準徑誤差」示意

資料來源:表十一、圖十二、圖十三為作者自製

- (五)修訂檢驗點「徑誤差」後對「方向基角」評分之影響:以 105 榴砲為例,2/3 射擊距離約為 7,000 公尺,依據密位公式計算「砲檢方位角」偏差:檢驗點「標準徑誤差」(13 公尺)÷7(射擊距離千除數)=1.86 密位≒2 密位(或13 公尺÷5「射擊距離千除數」=2.6 密位≒3 密位),可對應「方向基角」誤差 2 密位以內得 14 分(或 2-3 密位以內得 12 分)之評分標準,且無矛盾現象。如受測部隊主觀測所(O1)傳播之徑誤差小於 5 公尺,且前方交會法之水平角符合「標準誤差」時,除檢驗點「徑誤差」變小,相對「方向基角」之影響則越小。
- (六)修訂檢驗點「徑誤差」預期效益: 1.提高測地成果精度,增進檢驗 射擊成效。2.修訂幅度有限,不致增加訓練與測考難度。3.配合「方向基角」 評分標準,提升測考公信與周延。4.區分四種分數等級,增大公平性與彈性。 結語

「前方交會法」在砲兵測地技術領域有其重要性,尤其在國軍研議「提高 測考標準與增進射擊安全」指導下,精進相關作業技術與提高測考標準,實為 砲兵測地之重要課題。現行「前方交會法」基線選擇條件已對應觀測所選擇要 領,故為爭取測地時效,可直接沿用兩觀測所之連線為基線作業。原有檢驗點 「徑誤差」評分標準則宜參考學理、數據驗證與誤差傳播等因素,適度提高至 合理標準,俾提升作業技術、增進檢驗射擊成效與符合「方向基角」測考標準, 期藉本研究建議之精進作為,為砲兵測地技術與測考執行,提供嶄新的思維與 實質效益。

参考文獻

- 一、 李景中,《測量學概要》(台中市:考用出版社,民國 90 年1月二版一刷)。
- 二、郭基榮,《測量學精義》(臺南市:復文書局,民國79年)。
- 三、李瓊武,《測量學新編》(台北市:九樺出版社,民國77年4月再版)。
- 四、李良輝,《最小二乘法平差理論與實務》(新北市: 旭營文化事業, 2014年 1月初版)。
- 五、焦人希,《平面測量之理論與實務》(台北市:文笙書局,84年3月五版)。
- 六、《陸軍野戰砲兵測地訓練教範(第二版)》(桃園:國防部陸軍司令部,民國 99年11月)。
- 七、《陸軍野戰砲兵部隊指揮教則(第二版)》(桃園:國防部陸軍司令部,民國 98年4月)。
- 八、《陸軍野戰砲兵射擊指揮教範(第三版)》(桃園:國防部陸軍司令部,民國 103年10月)。
- 九、《M2A1,M2A2,及 M49,105 公厘榴彈砲射表—FH-105-H-6》(陸總部翻譯叢書:民國 67 年再版)。
- 十、《M2 及 M2A2 式方向盤(附裝備)單位、直接支援及一般支援保修手冊 (TM9-1290-262-24)》(桃園:陸軍總司令部計畫署譯印,民國 79 年 6 月)。

- 十一、梁乙農,《使用 ULISS-30 執行砲兵營前地測地之研究》(臺南:砲兵季刊第 129 期,民國 94 年第二季)。
- 十二、耿國慶,《精進導線測量誤差判斷之研究》(臺南:砲兵季刊第 170 期, 民國 104 年第三季)。
- 十三、耿國慶、《M2與 M2A2 式方向盤機械作用檢查與鑑定要領之研究》(臺南: 砲兵季刊第 171 期,民國 104 年第四季)。
- 十四、耿國慶,《砲兵傳統測地精度規範探討》(臺南:砲兵季刊第140期,民國 97年第一季)。
- + \pm 、"Marine Artillery Survey (MCWP3-1.6.15 , Draft) " (United States Marine Corps , 2000) \circ
- 十六、"Tactics,Techniques,and Procedures for FIELD ARTILLERY SURVEY (FM6-2),"(Washington,DC:HEADQUARTERS DEPARTMENT OF THE ARMY,9/1993)。
- 十七、陸軍砲兵部隊測考中心軍團砲兵營測地期末測驗標準評分檢查表。 作者簡介

耿國慶老師,陸軍官校 66 年班,歷任排長、測量官、連、營長、主任教官,現任職於陸軍砲兵訓練指揮部目標獲得教官組。