ARMY BIMONTHLY

習近平強軍夢

論火箭軍建軍規劃

作者簡介

藍仲聖少校,陸官95年班、影像情報班96年班、砲校正規班 101年班;曾任情報官、排、連長,現為國防大學陸軍學院 學員。

提 要 >>>

- 一、中共第五代領導人習近平接任國家主席與軍委會主席,已成為集黨政軍大權於一身的領導人,有關「國防和軍隊建設」的指導思想,凸顯出以「強軍夢」為內涵的行動綱領。
- 二、2015年12月31日,習近平對火箭軍部隊成軍授旗,正式將第二砲兵正名, 成為第四軍種,從其「火箭軍」的名稱研討,是否會將長程多管火箭及攻 擊衛星之航天火箭納入編制,殊值我們持續關注。
- 三、火箭軍在習近平的領導下,依其「中國夢、強軍夢」的方針,必然會不斷 地擴編,對區域及我國防安全形成重大壓力;「防衛固守」及「有效嚇阻」何者應較著重?將是兩難的選擇。
- 四、若臺灣仍希望擁有決定自身前途的權利、確保臺海情勢安全,建立反制武器,達到「有效的獨立嚇阻能力」無異是較佳的選擇。

關鍵詞:習近平、火箭軍、強軍夢、導彈、第二砲兵

習近平強軍夢

論火箭軍建軍規劃

前 言

2013年3月初中共「十二屆全國人大 一次會議」後,中共第五代領導人習近平 接仟國家與軍委會主席,成為集黨政軍大 權於一身的領導人,「有關「國防和軍隊 建設」的指導思想,凸顯出以「強軍夢」 為內涵的行動綱領。習近平並於視導部隊 及參與重要會議時,不斷發表相關的談話 ,已成為解放軍各領導階層、相關軍報及 學者研究與實踐的要求重點。2習近平更 於2015年9月3日閱兵後發表談話, 宣示裁 軍30萬人,3自此得知解放軍編制將進行 大改革, 並於2015年12月31日對火箭軍部 隊(原二砲部隊)成軍授旗,4正式將第二砲 兵正名,成為陸、海、空之外的第四軍種 。由是觀之,為能知彼,先期的研究有其 必要性,才能瞭解其強軍夢下「火箭軍部 隊」的發展內涵。

中共軍事戰略暨導彈思維演變

一、毛澤東時期

毛澤東創立的「人民戰爭思想」,持續在中共國防中處於主導地位,此思維強調「人勝於武器」,指出決定戰爭勝負的關鍵因素在於人,戰爭要強調政治目標的正義性,以利全面動員社會、民眾,而與敵人相較雖裝備物質處於劣勢,仍堅信運用中國廣大的領土與人民的支持,必能以弱擊強,戰勝具優勢裝備的入侵之敵,因此強調實施「誘敵深入」的持久戰、游擊戰和運動戰。但毛澤東也感受到,在核時代,戰略核力量就是國家威力的象徵。因此決定要發展自己的核武器,打破當時只有美蘇的核壟斷,使中共也具備核威懾力。5

二、鄧小平時期

中共在1960年代中期確立以「早打、 大打、打核戰」為目標的軍隊與國防建設 方針,⁶但鄧小平認為有能力發動世界大 戰的,只有美蘇兩個國家,同時兩國的核 均勢具有相互威懾的作用,也使其不敢輕 易發起戰端,因此大戰打不起來,取而代 之的是,為爭奪霸權主義而產生的局部戰 爭,故制定對內發展經濟的總體方針進而

² 陳津萍,〈論習近平「強軍目標」之研究 — 以「能打勝仗」為例〉《陸軍學術雙月刊》(桃園),第50 卷第537期,陸軍教準部,2014年10月,頁36。

³ 自由時報,〈為了和平?習近平:將裁軍30萬〉,http://news.ltn.com.tw/news/world/breakingnews/1432826 ,2016年1月28日。

⁴ 白宇、劉軍濤,〈國防部回應成立火箭軍是否意味加大核力量建設〉,http://military.people.com.cn/BIG5/n1/2016/0101/c1011-28003394.html,2016年1月28日。

⁵ 黄明秋,〈中共核戰略之發展與演變——戰略文化觀點〉(桃園:國防大學戰略研究所戰略與國際事務碩 士論文,民國98年3月),頁61~64。

⁶ 蔡和順,〈從中共軍事戰略思維演變論其陸軍未來發展〉,發表於「中共軍力現代化暨第16屆國家安全 與軍事戰略國際學術研討會」(地點:國防大學陸軍指揮參謀學院,民國104年11月16日),頁2。

ARMY BIMONTHLY

裁減軍隊,並要求軍隊要服從大局,以經濟發展為首位;在研製武器設備部分,二 砲部隊著重在研製多彈頭系統及機動化戰略導彈裝備,整體而言,鄧小平的軍事戰略建立在機動防禦的概念上,以有限的核子武力威懾霸權主義,裁減軍隊建立科學的編制體制,重點發展高科技常規兵器,以打贏高技術條件下之局部戰爭。⁷

三、江澤民時期

第一次波灣戰爭,以美軍為首的多國 聯軍迅速擊潰伊拉克部隊,加上96年臺海 危機美國的介入,刺激其加強軍隊建設及 戰略調整,⁸首先提出「兩個根本性轉變」的要求,分別是「在軍事鬥爭準備上, 由準備打贏一般條件下的局部戰爭向準備 打贏現代技術,特別是高技術條件下的 局部戰爭」與「在軍隊建設上,逐步由 數量規模型向質量效能型,由人力密集型 向科技密集型轉變」,⁹藉由科技強軍之 「兩個根本性轉變」戰略思想,建構江澤 民時期主要的軍事決策與軍隊建設發展方 向。

四、胡錦濤時期

美國因911事件而實施反恐戰爭,成 為新世紀的戰爭型態,尤其在二次波灣戰 爭中,透過資訊化的優勢、部隊的高機動 化及精確制導武器的使用,使得美軍在短 時間內即擊潰海珊政權,從而讓中共體認 到資訊化戰爭將成為新世紀的主導。10因 此胡的軍事理論立足於「打贏信息化條件 下的局部戰爭」,"意味中共軍隊現代化 的淮程將由機械化推淮至信息化(資訊化) 。為實現此一目標,中共提出「跨越式發 展」策略,12並以資訊化主導共軍跨越式 發展,將重點放在加強研發資訊化武器裝 備,及著重海、空軍與二砲作戰力量的建 設,全面提高軍隊的威懾與實戰能力,此 點從陸軍部隊比例降了1.5%,而海、空 軍及二砲員額則反向提高了3.8%,¹³凸顯 出了海、空軍及二砲之地位,從而建設一 支能夠打贏未來資訊化戰爭的現代化軍隊 。14因此胡錦濤的國防、建軍政策,即為 指引共軍走向具有中國特色資訊化軍隊的 戰略思想。15

⁷ 洪志良,〈從中共軍事戰略之演變論臺海安全〉(桃園:國防大學政治作戰學院政治研究所碩士論文,民國96年6月),頁34~50。

⁸ 同註5,頁102~105。

⁹ 蕭智林、胡建剛,《江澤民軍事創新思想研究》(北京:軍事科學出版社,2011年4月1日),頁141、142。

¹⁰ 同註5, 百108。

¹¹ 中國國務院辦公室,〈2006年中國的國防白皮書〉,http://www.mod.gov.cn/affair/2011-01/06/content_4249948.htm,2016年1月28日。

¹² 徐明善、方永剛,《新世紀新階段中國國防和軍隊建設》(北京:人民出版社,2008年9月1日),頁107。

¹³ 莫大華,(胡錦濤的領軍、建軍、治軍與安軍之道),收錄《胡錦濤政權之續與變論文集》(楊開煌主編,臺北:中國大陸研究學會,2007年),頁206。

¹⁴ 王宏平,〈後冷戰時期中共國防改革之研究〉(高雄:國立中山大學大陸研究所碩士論文,2006年),頁 34。

¹⁵ 同註12, 頁77。

習近平強軍夢

── 論火箭軍建軍規劃

五、習近平時期

(一)習近平的軍事戰略指導

2012年11月,習近平在接任總書 記及中央軍事委員會主席後,於12月初對 駐穗部隊師以上幹部講話時指出,「實現 中華民族偉大復興,是中華民族近代以來 最偉大的夢想。可以說這個夢想是強國夢 ,對軍隊來說,也是強軍夢」,「初始揭 示習近平對共軍未來5~10年「國防和軍 隊建設」的強軍夢願景。「「而後接連視察 二砲部隊等單位時,並提出「能打仗、打 勝仗」及「召之即來、來之能戰、戰之必 勝」等強軍目標。「18

綜上所述有關習近平「國防和軍隊建設」的論點,從初始的「強軍夢」擴展到「強軍目標」,共軍認為這是軍隊建設目標任務的新概括、新發展,明確軍隊建設的聚焦點和著力點,在實現「強國夢」的同時,指明實現「強軍夢」的方向。19

(二)對火箭軍部隊建軍規劃的影響

2012年11月23日,習近平單獨為 二砲司令員魏鳳和舉行隆重的晉陞上將軍 銜儀式。²⁰當時即有媒體指出,習近平此 舉違反中共憲法,因當時習還不是國家主 席,此舉令解放軍中眾多將領感到意外與 震撼。²¹

另外在黨中央軍委副主席的安排上,由原解放軍空軍司令員許其亮破格接任而令人關注,因為許其亮是建立中共強大航空航天力量的極力倡導者,此舉也體現一種更廣泛的趨勢,即非地面部隊軍種正獲得更大的話語權,自2004年以來,被提升至重要的軍事領導崗位的海、空軍及二砲軍官,數量空前增多,驗證解放軍追求西式聯合作戰行動的渴望。²²

六、小結

在火箭軍部分,歷任領導人均有不同 的指導(如表一),2015年12月31日,習近 平對火箭軍部隊成軍授旗,²³正式將第二 砲兵正名,從其「火箭軍」的名稱研討, 筆者研判除參考俄羅斯戰略火箭軍之命名

¹⁶ 劉聲東,〈堅持富國和強軍相統一努力建設鞏固國防和強大軍隊〉《解放軍報》(北京),2012年12月13日,版1。

¹⁷ 陳津萍,〈習近平對中共「國防和軍隊建設」指導思想〉《國防雜誌》(桃園),第28卷第5期,國防大學,2013年9月,頁116。

¹⁸ 王新,〈習近平首提12字強軍目標〉,http://china.dwnews.com/big5/news/2013-03-11/59154616-2.html, 2016年1月28日。

¹⁹ 許三飛,〈中國夢也是強軍夢—— 訪空軍指揮學院教授王壽林〉《解放軍報》(北京),2013年3月26日, 版7。

²⁰ 于飛,〈中共二砲司令魏鳳和晉陞上將習近平授銜〉,http://tw.aboluowang.com/2012/1123/270253.html, 2016年1月28日。

²¹ 陳仁公,《中國軍事大戲》(臺北:領袖出版社,2013年8月),頁37。

²² 同註21,頁56、57。

²³ 白宇、劉軍濤, 〈國防部回應成立火箭軍是否意味加大核力量建設〉, http://military.people.com.cn/BIG5/n1/2016/0101/c1011-28003394.html, 2016年1月28日。

表一 中國大陸歷任領導人對火箭軍之指導

	中國大陸歷任領導人對火箭軍之指導							
時期	對火箭軍部隊的指導							
毛澤東	「我們不但要有更多的飛機和大砲,而且還要有原子彈。在今天的世界上,我們要不受人家 欺負,就不能沒有這個東西。」							
鄧小平	「二砲在政治上要非常可靠。我們的核武器只是體現你有我也有,你要毀滅我們,你也要受 點報復。」							
江澤民	「要加強戰略飛彈部隊建設,保衛祖國安全,維護世界和平。」							
胡錦濤	「二砲部隊是黨中央,中央軍委直接使用的戰略部隊,是我國戰略威懾的核心力量,在履行 軍隊新世紀新階段歷史使命中有著特殊重要的地位與作用。」							
習近平	火箭軍是中國戰略威懾的核心力量,是中國大國地位的戰略支撐,是維護國家安全的重要基石;火箭軍全體官兵要把握火箭軍的職能定位和使命任務,按照核常兼備、全域威懾的戰略要求,增強可信可靠的核威懾和核反擊能力,加強中遠程精確打擊力量建設,增強戰略制衡能力,努力建設一支強大的現代化火箭軍。							

- 資料來源:1.謝游麟,〈共軍第二砲兵戰力發展之研析〉《空軍學術雙月刊》(桃園),第625期,2011年12月,頁
 - 2.維基百科,〈中國人民解放軍火箭軍〉,https://zh.wikipedia.org/wiki/%E4%B8%AD%E5%9B%BD% E4%BA%BA%E6%B0%91%E8%A7%A3%E6%94%BE%E5%86%9B%E7%81%AB%E7%AE%AD%E5%86%9B, 2016年2月24日。
 - 3.大陸中心,〈火箭軍、戰略支援部隊成立 解放軍打造戰略威懾核心力量〉,http://www.ettoday.net/news/20160101/623306.htm,2016年1月28日。

外,²⁴是否會將長程多管火箭(衛士二、三型)及攻擊衛星之航天火箭納入火箭軍編組,殊值我們持續關注。

中共火箭軍部隊概述及近期建軍政策

一、火箭軍部隊沿革

(一)研究發展時期

中共於1950年獲得前蘇聯兩枚「 SS-2」短程地對地導彈後,即展開了導彈 研製的開端,而留美科學家錢學森在中共 以換俘的條件下返回大陸,進而使中共的 導彈研究開始突飛猛進,²⁵1956年5月10 日中共中央軍委決定設立「導彈研發機構 」並於同年10月8日成立「國防第五研究 院」以強化導彈研發工作。²⁶

(二)戰力組建時期

1960年11月5日,在錢學森等人 及前蘇聯的技術支援下,首枚「東風一號」 」導彈試射成功,自此開始一系列東風導

²⁴ 維基百科,〈俄羅斯戰略火箭軍〉,https://zh.wikipedia.org/wiki/%E4%BF%84%E7%BE%85%E6%96%AF%E6%88%B0%E7%95%A5%E7%81%AB%E7%AE%AD%E8%BB%8D,2016年2月24日。

²⁵ 趙雲山,《中共飛彈及其戰略 — 解放軍的核心武器》(臺北:明鏡出版社,1997年4月),頁69、70。

²⁶ 田俊儒,(從中共軍事現代化的努力談中共彈道飛彈的發展)《國防雜誌》(桃園),第17卷第2期,國防大學,民國90年8月16日,頁6。

習近平強軍夢

論火箭軍建軍規劃

彈的研究;²⁷1966年6月中共中央軍委批准砲兵司令員吳克清的建議,以原公安部隊及砲兵管理戰略導彈的機構為基礎,組建戰略導彈部隊,並由時任國務院總理周恩來定名為「第二砲兵部隊」,同年7月1日「第二砲兵部隊」正式成軍授旗,改編成立為一獨立兵種,²⁸將所有的地對地導彈、地對空導彈及地對艦導彈均納入第二砲兵部隊的編制。

(三)組織調整時期

1984年中共宣布正式建立「戰略 導彈部隊」,劃分戰略與戰術導彈之任 務,將戰術層面運用之導彈歸屬三軍部隊 ,「二砲部隊」則專屬「戰略導彈部隊」 ,直接受「中央軍委」指揮,地位與三軍 平行。而在1985~1987中共在進行百萬大 裁軍之際,唯獨第二砲兵予以擴編,並於 1987年將「二砲」層級提升與陸、海、空

表二 中共火箭軍發展沿革

	中共火箭軍發展沿革
時間	內容
1950	自前蘇聯獲得兩枚「SS-2」短程地對地導彈。
1955	10月留美科學家錢學森(大陸導彈之父)返回大陸策劃領導。
1956	5月10日中共中央軍委決定設立「導彈研發機構」;10月8日成立「國防部第五研究院」。
1957	组成地對地導彈訓練團。
1958	「特種砲兵部隊」成立。
1959	中央軍委決定建立兩個戰略導彈營(801、802營)。
1960	11月5日成功試射仿俄之R-2火箭(即東風1型)。
1961	由蘇俄購入SS-2,成立803、804、805營。
1963	建立戰略導彈發射基地,特種砲兵部隊首度執行發射任務。
1964	6月29日東風2型(射程1050公里)試射成功。
1964	9月28日組建51軍基地,原導彈營擴編為團。
1964	10月16日完成2萬噸級之原子彈試爆。
1965	展開東風4型、東風5型之研究開發,並第一次發射衛星進入軌道。
1966	7月1日成立「戰略」導彈部隊,周恩來命名為「第二砲兵」,東風3型首度試射成功。
1967	6月17日完成第一枚氫彈試爆。
1971	部署東風3型(CSS-2)陸基中程彈道導彈,為中共第一款自行設計之戰略導彈。
1974	第二砲兵正式成為獨立軍種。
1977	部署東風4型(CSS-3)陸基長程彈道導彈,增程型射程10,000公里為洲際彈道導彈。
1979	東風2型除役,由東風3型取代,中共戰略導彈完成大型地面試驗。
1981	部署東風5型(CSS-4),為中共獨立研製的固體推進器導彈。
1983	再度展開東風5型「多重獨立重返大氣載具」之研究。
1984	二砲由「中央軍委」直接領導,成為「第四軍種」,並首度在中共國慶閱兵中亮相。
1985	部署東風21型(CSS-5)陸基機動中程彈道導彈(與巨浪1型同),將取代東風3型。
1986	部署東風5A型(CSS-4)陸基洲際彈道導彈,可攜帶10個以上分導多彈頭打擊地球上任一地點,具 有相當大之摧毀能力。

²⁷ 同註26,頁6。

²⁸ 何頻,《中國解放軍現役將領錄》(臺北:明鏡出版社,1996年4月),頁110。

1987	東風21型實戰配備。
1988	試爆第一顆中子彈,並實施「新時代戰略導彈發展計畫」:快速導彈指揮系統化,導彈裝備機動
1700	化。
1990	部署東風15型陸基短程機動彈道導彈。
1992	部署東風11型陸基短程機動彈道導彈,並首次試爆短距離核子導彈。
1995	東風31型首度試射成功,中共向臺灣附近海域發射2枚東風21型和4枚東風15型。
1996	中共向臺灣附近海域發射4枚東風15型。
1999	8月2日起於山西五寨多次成功試射東風31型,射程最遠可達美國西部地區。
2003	東風31型進入實戰配備。
2007	部署長劍10號巡航導彈(821旅)。
2007	以「反衛星系統」發射出一枚中程陸基彈道導彈, 成功擊毀部署距離地表800餘公里的老舊氣象
2007	衛星「風雲1C」,成為繼美、俄後第三個有能力擊毀太空衛星的國家。
2012	原分屬南京與廣州軍區之導1旅、導2旅更銜納入二砲建制。
2015	東風41型從鐵路貨車上進行了發射試驗。
2015	12月31日部隊更銜授旗正名為「火箭軍」。

- 資料來源:1.田俊儒,〈由共軍現代化論二砲部隊導彈軍力發展〉《中共研究》(臺北),第36卷第6期,2002年,頁 61~63。
 - 2. 孫旭,《導彈與戰爭》(北京:國防工業出版社,1997年11月),頁79。
 - 3.五角圈內, 〈脅美馳援臺海華時:中共將部署新飛彈〉, http://www.epochtimes.com/b5/8/7/12/n2188376. htm, 2016年2月10日。
 - 4.白宇、劉軍濤, 〈國防部回應成立火箭軍是否意味加大核力量建設〉, http://military.people.com.cn/ BIG5/n1/2016/0101/c1011-28003394.html, 2016年1月28日。
 - 5.林瑞展,《中共二砲部隊對臺作戰之研究》(桃園:國防大學陸軍指揮參謀學院軍事專題研究,民國102 年6月),頁2~5。
 - 6. 陳東龍,《新世代解放軍》(臺北:黎明文化出版社,2003年5月1日),頁189、190。
 - 7.abx19831117,〈論壇-陸軍版〉,http://lt.cjdby.net/archiver/t-1320425-10-%E9%9B%86%E5%9B%A2%E5%86%9B%E7%B3%BB%E5%88%97%EF%BC%9A42%E5%86%9B.html,2016年2月23日。
 - 7.家仁,《彈道飛彈與彈道飛彈防禦》(臺北:麥田出版社,2003年12月1日),頁113~120。
 - 8.維基百科,〈東風-41型洲際彈道飛彈〉,https://zh.wikipedia.org/zh-tw/%E4%B8%9C%E9%A3%8E-41%E5%9E%8B%E6%B4%B2%E9%99%85%E5%BC%B9%E9%81%93%E5%AF%BC%E5%BC%B9,2016年4月19日。
 - 9.作者自行整理。

軍平行的第四軍種,並與空軍戰略轟炸機、海軍核潛艦合為「三位一體」的戰略打擊部隊。2015年12月31日對火箭軍部隊成軍授旗,²⁹正式將第二砲兵正名為「火箭軍」,成為第四軍種。

二、火箭軍部隊部署及裝備性能

(一)火箭軍部隊部署

火箭軍目前至少有6個軍級基地、³⁰3個後勤基地及32個導彈旅,³¹依不同任務屬性部署於全中國大陸,其部署位置及編制裝備如表三。

(二)火箭軍裝備性能

29 同註23。

30、31 於下頁。

習近平強軍夢

--- 論火箭軍建軍規劃

表三 火箭軍部署位置及主要任務

1 Hr m			11 - 1 ch m · -	A that a feath that a feathan				
火箭軍 司令部	北京 清河	司令員:魏鳳和上將。下轄至少6個軍級發射基地、3個後勤基地,4個码中心、2個指揮學院等單位。						
軍級基地	地點	下轄單位和地點	導彈類型	主要任務				
		806旅:陝西韓城	東風-3甲 東風-21					
51基地	瀋陽	810旅:大連金州	東風-3甲 東風-21丙	射程涵蓋主要針對朝鮮半島、日 本、關島。				
		816旅:吉林通化	東風-21	本 願 句 。				
		822旅:山東萊蕪	東風-21					
		826旅:河北滄州	待蒐					
		807旅:安徽池州	東風-21丙					
		811旅:安徽祁門 江西景德鎮	東風-21丙					
	安徽	815旅:江西樂平	東風-15乙 東風-15丙					
52基地		817旅:福建永安	東風-15甲	射程涵蓋主要針對臺灣,為攻臺				
5-32-		818旅:廣東梅州	東風-11甲	戰役第一擊之部隊。				
		819旅:江西贛州	東風-15					
		820旅:浙江金華	東風-15					
		830旅:福建仙游 (原地地導彈一旅)	東風-11					
		802旅:雲南建水	東風-21甲					
52 H 11	雲南	808旅:雲南楚雄 雲南玉溪	東風-21	射程涵蓋主要針對印度及東南亞				
53基地	昆明	821旅:廣西柳州	長劍-10	地區。				
		836旅:廣東揭陽 (原地地導彈二旅)	東風-11					
		801旅:河南靈寶	東風-5					
54基地	河南	804旅:河南欒川	東風-5	配有射程12,000公里的東風-5型				
J4 本地	洛陽	813旅:河南南陽	東風-31	導彈,主要是針對美國和歐洲。				
		828旅:福建寧德	待蒐					

1.核子(戰略)導彈

(1)核子(戰略)導彈的定義

射程在1,000公里以上,多為攜行核子彈 頭,主要打擊目標為敵方政經中心、軍事 打擊戰略目標的彈道導彈,通常 重地、基地、核武及交通樞紐。如「洲際

³⁰ 平可夫,《中央軍委最高地下指揮所的機密 — 二砲如何按動核導彈電鈕》(加拿大:漢和出版社,2010 年10月), 頁30~36。

³¹ 自由自在,〈二砲直屬戰鬥部隊序列〉,http://home.51.com/yangziyou188/diary/item/10029779.html, 2016 年2月23日。

		803旅:湖南靖州	東風-5	
		805旅:湖南通道	東風-4 東風-5 東風-31甲	
55基地	湖南	814旅:湖南會同	東風-4 東風31甲	配有洲際導彈及巡航導彈旅,研 判為針對南海及戰略導彈預備隊
21.2	懷化	824旅:江西宜春	長劍-10	0
		825旅:廣東(待蒐)	東風-21丁	
		829旅:廣東韶關	可能為東風-21 或東風16	
		827旅:江蘇南通	可能為東風-21	
	青海	809旅:青海大通	東風-21	射程涵蓋主要針對俄羅斯和印度
56基地	月母西寧	812旅:甘肅天水	東風-31甲	孙桂四益主女到到俄維別和印及 。
		823旅:新疆庫爾勒	東風-21丙	
22基地	陝西 寶雞	835旅:軍委值班部隊		技術後勤訓練基地。
28基地	吉林 靖宇			作戰訓練基地。
工建基地	河南 洛陽			工程建設基地。

資料來源:1.平可夫,《中央軍委最高地下指揮所的機密—二砲如何按動核導彈電鈕》(加拿大:漢和出版社,2010年10月),頁30~36。

- 2.吳長謁,《中共二砲部隊未來發展研析-兼論我愛國者飛彈系統運用》(桃園:國防大學陸軍 指揮參謀學院軍事專題研究,民國100年6月),頁6~8。
- 3.實事求是,〈中國人民解放軍戰略導彈部位〉,http://www.360doc.com/content/10/0217/16/496429 16008538.shtml,2016年2月23日。
- 4.自由自在,〈二砲直屬戰鬥部隊序列〉http://home.51.com/yangziyou188/diary/item/10029779. html, 2016年2月23日。
- 5.代名,〈論壇一陸軍版〉,http://lt.cjdby.net/archiver/t-1320425-10-%E9%9B%86%E5%9B%A 2%E5%86%9B%E7%B3%BB%E5%88%97%EF%BC%9A42%E5%86%9B.html,2016年2月23日。
- 6.東方日報, 〈韶關建導彈旅瞄準菲越〉, http://orientaldaily.on.cc/cnt/china_world/20120703/00178 001.html, 2016年2月23日。
- 7.維基百科,〈中國人民解放軍火箭軍〉,https://zh.wikipedia.org/wiki/%E4%B8%AD%E5%9B%BD%E4%BA%BA%E6%B0%91%E8%A7%A3%E6%94%BE%E5%86%9B%E7%81%AB%E7%AE%AD%E5%86%9B,2016年2月24日。
- 8.作者自行整理。

導彈」、「中長程導彈」、「中程導彈」 、「潛射導彈」。³²

(2)各核子導彈諸元 火箭軍現有之核子導彈計有東風3

型、東風4型、東風5型、東風21型、東風31型、東風41型及長劍10號等7種型號,若加上研改型共有17種型式,各型導彈的性能及諸元,經筆者整理後如表四。

³² 閻正章,《彈道導彈威脅與防禦》(臺北:豐盈美術有限公司,1999年),頁18。

習近平強軍夢

--- 論火箭軍建軍規劃

- 2.常規(戰術)導彈
- (1)常規(戰術)導彈的定義

此種導彈射程約在1,000公里以內 ,打擊目標為敵方軍事基地與設施、集結 部隊、指揮所、機場、港口、鐵、公路、

橋樑等,如「近程導彈」。33

(2)各常規導彈諸元

火箭軍現有之戰術導彈即常規導彈,目前型號計有東風11型、東風15型及東風16型等3種型號,若加上研改型共有7

表四 火箭軍現役核子導彈裝備諸元表

	火箭軍現役核子導彈裝備諸元表							
代號	東風3/3甲型	東風4型	東風5型	東風5甲型	東風5乙型	東風21型	東風21甲/ 乙型	東風21丙型
圖片		The state of			Scholing with			
全長 (公尺)	24	28	32.6	32.6	32.6	10.7	12.3	12.3
發射總重 (噸)	64	82	183	183	183	14.7	15.2	15.2
彈體直徑 (公尺)	2.25	2.25	3.35	3.35	3.35	1.4	1.4	1.4
核爆威力	3.3百萬噸 (1枚)	3.3百萬噸 (1枚)	5百萬噸 (1枚)	5百萬噸 (1枚)	5百萬噸 (1枚)	25萬噸 (1枚)	15萬噸 (1枚)/待蒐	待蒐
導航系統	慣性導航	慣性導航	慣性導航	慣性導航	慣性導航	慣性導航	慣性導航 終端導引	慣性導航 終端導引
推進系統	單節液體 燃料火箭	單節液體 燃料火箭	雙節液體 燃料火箭	雙節液體 燃料火箭	雙節液體 燃料火箭	雙節固體 燃料火箭	雙節固體 燃料火箭	雙節固體 燃料火箭
最大射程 (公里)	2,798~ 4,023	4,750	12,000	13,000	15,000	1,800~ 2,150	3,000/1,650	1,770~ 2,500
圓周誤差 (公尺)	1,000	1,500	500	500	500	待蒐	50/10	10
生產能力	已停產	有	有	有	有	有	有	有
代號	東風21丁型	東風25型	東風26型	東風31型	東風31甲型	東風31乙型	東風41型	長劍10號
圖片		待蒐		Tana de		September 1	The same of the sa	
全長 (公尺)	14	12.2	14	16	18	待蒐	21	8.3
發射總重 (噸)	20	待蒐	20	42	63	待蒐	80	2.5

彈體直徑 (公尺)	1.4	1.8	1.4	2	2	待蒐	2.25	待蒐
核爆威力	待蒐	待蒐	待蒐	1百萬噸(1 枚)或30萬 噸(3~4枚)	1百萬噸(1 枚)或30萬 噸(3~4枚)	待蒐	5百萬噸(1 枚)或25萬 噸(10枚)	待蒐
導航系統	慣性導航 終端導引	慣性導航	待蒐	慣性導航	慣性導航 終端導引	慣性導航 終端導引	慣性導航 終端導引	慣性導航 終端導引
推進系統	雙節固體 燃料火箭	雙節固體 燃料火箭	待蒐	雙節固體 燃料火箭	雙節固體 燃料火箭	雙節固體 燃料火箭	三節固體 燃料火箭	單節固體 燃料火箭
最大射程 (公里)	3,200	1,800~ 2,500	4,000	8,000	11,200	11,200	12,000~ 14,000	1,500
圓周誤差 (公尺)	10	待蒐	待蒐	500	100~300	待蒐	700~800	10
生產能力	列裝中	研發中	列裝中	有	有	研發中	研發中	有

- 資料來源:1.曾錦城,《下一場戰爭?中共國防現代化與軍事威脅》(臺北:時英出版社,1999年7月),頁109~112。
 - 2.Jack Spencer著,楊紫函、高一中合譯,《彈道飛彈威脅手冊》(The Ballistic Missile Threat)(臺北:國防部史 政編譯局,民國90年5月),頁51~57。
 - 3.曹哲維,(中共導彈技術能力之研究)《陸軍砲兵季刊》(臺南),第156期,民國101年第1季,頁5~11。
 - 4.Even S.Medeiros著,黃文啟譯,《解讀共軍兵力規模》(RIGHT-SIZING THE PEOPLE'S LIBERATION ARMY)(臺北:國防部史政編譯局,民國99年8月),頁125。
 - 5.維基百科,〈東風-5型洲際彈道飛彈〉,https://zh.wikipedia.org/wiki/%E4%B8%9C%E9%A3%8E-5%E5%9E %8B%E6%B4%B2%E9%99%85%E5%BC%B9%E9%81%93%E5%AF%BC%E5%BC%B9, 2016年2月22 д。
 - 6.维基百科,〈東風-21型中程彈道飛彈〉, https://zh.wikipedia.org/wiki/%E4%B8%9C%E9%A3%8E-21%E4%B 8%AD%E7%A8%8B%E5%BC%B9%E9%81%93%E5%AF%BC%E5%BC%B9,2016年2月22日。
 - 7.徐家仁,《彈道飛彈與彈道飛彈防禦》(臺北:麥田出版社,2003年12月1日),頁54~56、70~71。
 - 8.中共年報編輯委員會,《2015中共年報》(臺北:中共研究雜誌社,2015年4月),頁370~376。
 - 9.趙雲山,《中共飛彈及其戰略-解放軍的核心武器》(臺北:明鏡出版社,1997年4月),頁185。
 - 10.張晉德,〈中共核生化武器威脅與評估〉《陸軍學術月刊》(桃園),第37卷第431期,陸軍教準部,2001年 7月16日,頁55。
 - 11.英國簡氏防務周刊,〈簡氏曝中國改進版東風31導彈:發射車大變(圖)〉,http://mil.news.sina.com.cn/2015-03-05/0923823236.html, 2016年2月22日。
 - 12.維基百科,〈東風-41型洲際彈道飛彈〉,https://zh.wikipedia.org/wiki/%E4%B8%9C%E9%A3%8E-41%E5% 9E%8B%E6%B4%B2%E9%99%85%E5%BC%B9%E9%81%93%E5%AF%BC%E5%BC%B9,2016年2月22日
 - 13.維基百科,〈東風-26型中程彈道飛彈〉,https://zh.wikipedia.org/wiki/%E4%B8%9C%E9%A3%8E-26%E4% B8%AD%E7%A8%8B%E5%BC%B9%E9%81%93%E5%AF%BC%E5%BC%B9,2016年2月22日。 14.作者自行整理。

種型式,各型導彈的性能及諸元,經筆者 整理後如表五。

三、火箭軍部隊未來發展

南亞諸國則有南海島嶼主權爭議,其中的 (一)針對航母戰鬥群 共通點就是美國的介入,而美國則是依賴 中共未來可能面臨的軍事衝突熱 其強大的航母戰鬥群涉足這些爭議區域的

點主要集中在東南沿岸,與日本有釣魚台 主權爭議;與中華民國呈分治狀態;與東

習近平強軍夢

論火箭軍建軍規劃

表五 火箭軍現役常規導彈裝備諸元表

	火箭軍現役常規導彈裝備諸元表								
代號	東風11型	東風11甲型	東風15型	東風15甲型	東風15乙型	東風15丙型	東風16型		
圖片	aline y		-00 m		Local				
全長 (公尺)	9.75	9.75	9.1	9.1	10	10	待蒐		
發射總重 (噸)	3.8	4.2	6.2	6.5	6.5.	6~7	待蒐		
彈體直徑 (公尺)	0.8	0.8	1	1.2	1	1	1.2		
核爆威力	2萬噸 (1枚)	待蒐	9萬噸 (1枚)	5~35萬噸 (1枚)	2~15萬噸 (1枚)	鑚地彈頭	待蒐		
導航系統	慣性導航	慣性導航	慣性導航	慣性導航	慣性導航 終端導引	慣性導航 終端導引	待蒐		
推進系統	單節固體 燃料火箭	單節固體 燃料火箭	單節固體 燃料火箭	單節固體 燃料火箭	單節固體 燃料火箭	單節固體 燃料火箭	待蒐		
最大射程 (公里)	280	600	600	900	800	800	800		
圆周誤差 (公尺)	600	200	300~600	100~120	50~150	15~50	待蒐		
生產能力	有	有	有	有	有	有			

- 資料來源:1.曾錦城,《下一場戰爭?中共國防現代化與軍事威脅》(臺北:時英出版社,1999年7月),頁110、111。
 - 2.Jack Spencer著,楊紫函、高一中合譯,《彈道飛彈威脅手冊》(The Ballistic Missile Threat)(臺北:國防部 史政編譯局,民國90年5月),頁54。
 - 3.劉遠忠,〈解放軍二砲主戰裝備便覽〉,蔡翼編,《崛起東亞》(臺北:勒巴克顧問有限公司,民國98年9月25日),頁339、340。
 - 4.徐家仁,《彈道飛彈與彈道飛彈防禦》(臺北:麥田出版社,2003年12月1日),頁72、73。
 - 5.曹哲維,(中共導彈技術能力之研究)《陸軍砲兵季刊》(臺南),第156期,民國101年第1季,頁8~11。
 - 6.維基百科,〈東風-15型短程彈道飛彈〉,https://zh.wikipedia.org/wiki/%E4%B8%9C%E9%A3%8E-15%E7%9F%AD%E7%A8%8B%E5%BC%B9%E9%81%93%E5%AF%BC%E5%BC%B9,2016年2月22日。
 - 7.中共年報編輯委員會,《2015中共年報》(臺北:中共研究雜誌社,2015年4月),頁370~376。
 - 8.作者自行整理。

紛爭,也因為其具備的強大制海與制空能力,因此航母便由軍事武器一躍成為國家的政策工具。所以在美國意志的運用下,航空母艦本身就是政治目標,擊沉或擊退航艦也就等同擊敗美國。34而使用導彈來

攻擊航母則為最經濟的方式,因此中共必 須極力發展攻擊航母的導彈,進而拒止美 國航母的介入。

(二)針對地下設施

國軍為因應解放軍火箭軍部隊在

³⁴ 蘇紫雲,〈中國新飛彈及反介入戰略〉《新社會政策雙月刊》(臺北),第2期,2011年4月15日,頁12。

當面地區部署1,500餘枚導彈,³⁵對我造成 重大的威脅,故新建的國防部大樓及大直 指揮所等重要設施均以地下化為考量,³⁶ 針對我國此一作為,中共也對其東風15型 導彈進行研改,新研東風15內型即強化對 地下設施攻擊能力,據報導指出:「該導 彈配備已知最大的彈頭,可對地下掩體與 地下指揮中心等進行鑽地打擊,且射程提 高,號稱可摧毀臺灣玉山地底的地下指揮 所,癱瘓國軍指揮,這是對國人的巨大心 理震撼」。³⁷

(三)超高音速攻擊載具(如圖一)

中共於2014年1月9日、8月7日、12月2日及2016年4月22日進行了4次的超高音速滑翔飛彈「WU-14」³⁸試射,速度達到10馬赫,「WU-14」這種超音速滑翔飛彈所搭載的載具可能為「東風-21」中程導彈、「東風-31」洲際導彈,或是試驗用的「長征二號丙型」載運火箭,雖然

同樣需要靠火箭搭載升空,但仍與傳統核子彈頭不同,它在重回大氣層後可調整飛行軌道,甚至再度升高至大氣層外,也可以採非常低的高度飛行,因此又稱「超音速巡弋導彈」,³⁹依其研發進度將於2020年部署,此裝備因飛行的速度太快,一旦完成部署,可在一小時內打擊全球各地,若成功搭載核子彈頭,美國現有防禦系統將形同虛設。⁴⁰

(四)支援天軍

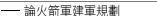
美國空軍將天權定義為「運用太空武力支援國家安全戰略、達成國家目標之能力」,⁴¹中共於2007年以「反衛星系統」發射出一枚中程陸基彈道導彈,成功擊毀部署距離地表800多公里的老舊氣象衛星「風雲1C」,使中共成為繼美、俄兩國後第三個有能力擊毀太空衛星的國家;⁴²在未來作戰中,爭取制天權(制太空權)成為一種新的概念。中共於2015年12月

³⁵ 羅添斌, 〈1,400變1,500枚中國增加對臺飛彈〉, http://news.ltn.com.tw/news/focus/paper/911648, 2016年2 月24日。

³⁶ 杜宜諳、丁世傑,〈國防部進駐大直地下堡壘可防核彈〉,http://www.chinatimes.com/realtimene ws/20141205004945-260407,2016年2月24日。

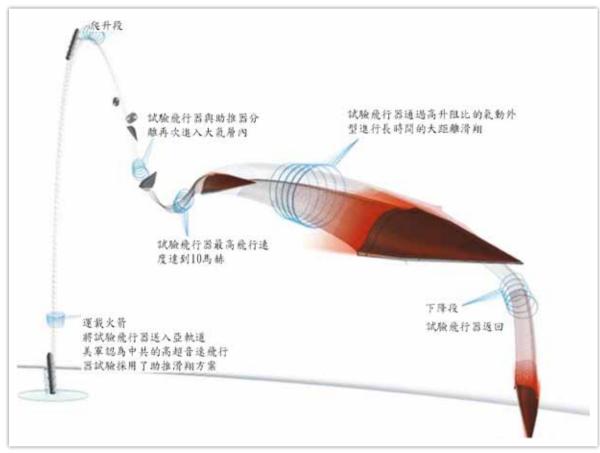
³⁷ 綜合報導,〈中國新導彈誇口專剋玉山地下碉堡〉,http://news.ltn.com.tw/news/politics/paper/724556, 2016年2月24日。

^{38 「}WU-14」只是美軍代稱,WU是指它由山西五寨飛彈基地研製,14意指首試年份為2014年。


³⁹ 綜合報導,〈大陸三度試射超音速飛彈「WU-14」俄專家:美國無法攔截〉,http://www.ettoday.net/news/20141208/436057.htm,2016年2月24日。

⁴⁰ 張國威,〈陸射高超音速武器 時速破萬公里〉,https://tw.news.yahoo.com/%E9%99%B8%E5%B0%84%E 9%AB%98%E8%B6%85%E9%9F%B3%E9%80%9F%E6%AD%A6%E5%99%A8-%E6%99%82%E9%80%9 F%E7%A0%B4%E8%90%AC%E5%85%AC%E9%87%8C-215006297--finance.html,2016年5月4日。

⁴¹ 中共年報編輯委員會,《2015中共年報》(臺北:中共研究雜誌社,2015年4月),頁378。


⁴² 維基百科, 〈2007年中國反衛星飛彈試驗〉, https://zh.wikipedia.org/zh-tw/2007%E5%B9%B4%E4%B8% AD%E5%9B%BD%E5%8F%8D%E5%8D%AB%E6%98%9F%E5%AF%BC%E5%BC%B9%E8%AF%95%E 9%AA%8C, 2016年2月24日。

習近平強軍夢

圖 一 美國媒體猜測中共高超音速武器測試示意圖

資料來源:momocha,〈華盛頓聲稱:中國試射WU-14高超音速導彈〉,http://www.7476.com/ haiwaishijiao/2014011411343.html, 2016年2月24日。

31日除將二砲部隊正名為火箭軍外,亦同 步成立了戰略支援部隊,筆者研判後續中 共對太空作戰將分為兩個部分,太空往地 面由戰略支援部隊負責,地面攻擊太空的 部分則由火箭軍承擔,故火箭軍是否會針 對此一任務而成立新的導彈旅,殊值後續 關注。

四、特、弱點研析

(一)特點

1.機動性高、發射時間快速,預警時 間短

中共常規導彈及新型戰略導彈之運 用屬第二代導彈,使用固體推進劑,故其 體積小,並以機動車輛作為活動載具(採 用仿蘇俄MAZ-543型八輪發射車,可在 載運車直接發射,因此對發射陣地要求, 不限於固定陣地), 43採機動部署,可依情 況變化及需要即時重點調整;另因發射準

⁴³ 鄭舜元,(從中共核武試爆看核戰略未來發展)《國防雜誌》(桃園),第10卷第8期,國防大學,1995年2月 , 頁47。

備作業簡易,常規導彈佔領發射陣地後, 25~40分鐘左右即可進行導彈發射,飛行 約10分鐘就能攻擊目標,⁴⁴完成火力打擊 任務,在發射後可立即撤離,轉移至另一 陣地,大大提升其生存能力,故戰力不易 受損。此外,大陸東南沿海地域多為丘陵 且鐵公路縱橫,可提供導彈機動隱蔽之良 好條件,對我臺海安全威脅甚鉅。如東風 41型的第6次試射,即成功採用鐵路機動 模式,不僅能在全國大陸進行機動,也增 加敵軍追蹤的難度,達到隱蔽效果,使其 具備有效的核反擊能力。⁴⁵

2.突防性能強、攔截困難

火箭軍配備之導彈,多屬於分離式 地對地彈道導彈,不僅飛行速度快,而且 飛行彈道高,其發射後,即爬升至大氣 層外層,彈道最高點至少100公里,在穿 透大氣層後,直至目標上空才垂直下降摧 毀目標,此外其導彈上裝有電腦,可進行 數值式控制,快速重複尋找目標,一般雷 達難以掌握其航跡,即使雷達能於導彈重 返大氣層時偵知,所容許之反應時間亦僅 數十秒,且頭體分離後之彈頭,不僅截面 積小且其彈體外塗上特殊材料,可有效降 低雷達偵獲概率,加上其最終速度可達4 ~6馬赫,⁴⁶以我軍現有之「愛國者PAC-3+」導彈性能,成功攔截機率將大幅降 低。

(二)弱點

1.獨立作戰無足夠之防空武力防衛

火箭軍導彈旅區分核導彈及常規導彈戰役軍團,通常在統帥部的指揮下,遂行獨立作戰,⁴⁷因無編制防空部隊,若無友軍協助,對空防禦能力趨近於零,而導彈發射後必須返回待機地區重新裝填,才能再次進入陣地發射,耗時太久且目前火箭軍陣地眾多,尚無足夠之防空武力協助防衛,戰時易遭受空中或是敵導彈反制攻擊,將對裝備及陣地造成嚴重損害。

2.陣地選擇及機動條件受限制

火箭軍導彈發射陣地選擇受限條件多,尤以陣地幅員及地面品質為最;導彈發射時會產生大量有毒氣體及高溫,因此發射陣地幅員須夠寬廣,筆者分析以發射車為中心,安全距離前後至少為50公尺,左右至少為35公尺,故推斷一個合格的發射陣地幅員至少需0.7公頃;另因導彈重量極重,以東風31型為例,彈體重量已為20噸,加上底盤載車筆者研判將達40噸,⁴⁸因此一般泥土及碎石子地面無法負荷導彈發射車重量,故僅能選擇水泥地、柏油等堅實地面,方能滿足其發射需求;另外火箭軍部署採「機動分散」原則,戰時則須依靠鐵、公路運輸,對其依賴性極高,而東南沿海地區多為丘陵地

⁴⁴ 陳東龍,《新世代解放軍》(臺北:黎明文化出版社,2003年5月1日),頁197。

⁴⁵ 綜合報導,〈報導東風-41新聞 央視罕見配上打擊動畫演示〉,http://www.ettoday.net/news/20160503/690844.htm,2016年5月4日。

⁴⁶ jskm, 〈中共導彈報告〉, https://www.ptt.cc/man/NAOE-86/D3BC/M.1049963173.A.3E2.html, 2016年2月 10日。

⁴⁷ 王厚卿、張興業,《戰役學》(北京:國防大學出版社,2000年5月),頁367。

⁴⁸ 曹哲維,〈中共導彈技術能力之研究〉《陸軍砲兵季刊》(臺南),第156期,民國101年第1季,頁5~11。

習近平強軍夢

論火箭軍建軍規劃

形,鐵、公路沿線隧道、橋樑若遭破壞,致使導彈部隊機動受阻,將影響全般 作戰。

中共火箭軍部隊後續應用蠡測

一、近期動態蠡測

(一)東風41型導彈於2015年12月5日 完成從鐵路貨車上導彈彈射試驗,此種「 鐵路核潛艇」的運用模式將增進中共第二 擊的能力,美智庫蘭德公司研判該型導彈 將於2017年實戰部署。⁴⁹

(二)近期中共與日本在釣魚台主權衝突已逐漸浮上檯面,筆者分析,如果要以導彈對日本本土形成威懾,以距離考量,部署地點應為江蘇(距東京約1,800公里),並以東風21型或長劍10號為最佳選擇,因此筆者認為,在火箭軍不斷擴編的現況下,江蘇地區應會增加導彈旅的部署,即使考量經濟發展而不駐軍,也會選擇數個發射陣地,以應不時之需。

(三)中共在南海與越南及菲律賓均有主權爭議,且上述兩國為因應此狀況不斷地加強軍備,火箭軍在廣東韶關新成立的導彈旅可能就是中共的反制作為,50部署裝備研判為東風16型或東風21型導彈,可直接對越南首都河內、菲律賓首都馬尼拉實施導彈突擊,對其形成重大威懾作

用。

(四)共軍考量未來的局部衝突,不易使用大規模的導彈攻擊(攻臺戰役除外),鑑於巡航導彈精準的攻擊效能,便成為運用首選;惟其目前僅821及824兩個導彈旅約200餘枚長劍10號巡航導彈,依其每年50~100枚的生產能力,研判2017年將可達450枚。51

(五)衛士型火箭屬長程且具精準導引之多管火箭,衛士二型區分原型、B、C、D等4型號,射程分別為200、200、350及400公里,衛士三型更達480公里,52幾乎等同常規導彈的射程,如此射程及火力,介於部隊戰術與軍事戰略的運用方式,若編制於地面部隊由其指揮員來運用,將產生許多不可預料的風險,是否如同導彈旅一樣,從集團軍抽出納入火箭軍部隊掌握,由中央軍委直接指揮,以避免產生無謂爭端。

二、運用模式

(一)戰略運用模式:射程1,000公里以上的戰略導彈,不一定要投射在他國才能造成威懾效果,成功的試射演習亦能達成同樣的功效。以北韓為例,藉由不斷地試射導彈或火箭,讓周邊國家深感威脅,亦認知其已具備相關能力,而不敢輕啟戰端。運用模式依中共國防大學編撰的《戰役學》區分三個階段(如表六)。

⁴⁹ Heginbotham Eric, The U.S.-CHINA Military Scorecard (Santa Monica, Calif. : RAND Corporation, 2005), p. 306 ~308.

⁵⁰ 東方日報, 〈韶關建導彈旅瞄準菲越〉, http://orientaldaily.on.cc/cnt/china_world/20120703/00178_001. html, 2016年2月23日。

⁵¹ 同註49, p52, 53.

⁵² 維基百科,〈衛士型火箭砲〉,https://zh.wikipedia.org/zh-tw/%E8%A1%9B%E5%A3%AB%E5%9E%8B%E7%81%AB%E7%AE%AD%E7%82%AE, 2016年2月24日。

		,,,,	INVESTIGATE ANTIGASE	
İ	區分		階段	
l	四刀	實施反核威懾作戰	對敵突然襲擊進行防護	實施導彈核突擊
	內容	就是反對敵人對我實施核威 懾,遏制敵方的某些重大 國或冒險行動,配合國或 冒險行動所採取 家政治、外交鬥爭所採取的 顯示核實力與意志的軍事行 動。	程和「三防」 ⁵³ 設施,尤其是 導彈部隊。當遭敵突然襲擊	關鍵也是最激烈的作戰階段,為確保導彈核突擊行動順利,指揮員必須科學運用導彈兵力與火力,並始終保持

表六 核反擊戰役三個階段

資料來源:1.王厚卿、張興業,《戰役學》(北京:國防大學出版社,2000年5月),頁372~375。 2.作者自行整理。

(二)戰術運用模式:⁵⁴火箭軍常規導彈是對臺作戰首要武器,依據中共國防大學編撰的《戰役學》,其戰術運用模式共有6項,運用方式如表七所示。

三、對我國的影響

(一)拒止美、日介入臺海衝突

臺海若發生衝突,國際的介入是極重要的因素,在臺海飛彈危機時,因美軍航空母艦巡弋臺灣海峽,成功嚇阻中共犯臺的企圖,也給其領導階層帶來極大的震撼,因此解放軍內部針對如何拒止航母介入臺海衝突,做了許多研究,也於近期部署了東風21丁型導彈,後續研發之東風25型導彈亦是針對航母而來;另針對美軍嘉手納及關島基地,美智庫評估約需200枚長劍10號巡航導彈及50枚中程彈道導彈,即可封鎖其75%戰力逾8天,55加上其核威懾能力,將會遏阻美、日等國涉入臺海戰事的程度。

(二)購建飛彈防禦系統,耗費巨大

目前火箭軍已對臺部署約1,500餘 枚導彈,⁵⁶國軍現可防護武器僅有愛國者 防空飛彈,以2枚愛國者飛彈攔截1枚導彈 來計算,約需3,000枚愛國者飛彈,以目 前新購愛國者三型飛彈而言,數量僅444 枚,遠遠無法滿足需求,且預算已近新臺 幣1,800億,⁵⁷若要完全防護中共導彈威脅 ,仍需2,500餘枚飛彈,姑且不論能否獲 得,光所需預算即高達新臺幣1兆元以上 ,遠超過我國財政負荷。

(三)國軍重要軍事設施被毀

臺海武力衝突的第一步,即由火 箭軍部隊對我國重要政、軍目標實施多波 次的飽和攻擊,因國軍防空武力無法全面 防禦,勢必重創我固定的軍事設施,尤以 機場為最,據研判火箭軍對我軍機場的首 輪攻擊共需要120枚導彈,58一旦機場跑 道被破壞,空軍已升空的戰機無法降落,

⁵³ 依解放軍「新三打三防」訓練大綱,三防是指「防精確打擊」、「防電子干擾」、「防偵察監視」。

⁵⁴ 王厚卿、張興業,《戰役學》(北京:國防大學出版社,2000年5月),頁379~382。

⁵⁵ 同註49, p62~65.

⁵⁶ 同註35。

⁵⁷ 綜合報導,〈276億 臺灣再採購愛國者飛彈〉, http://www.ettoday.net/news/20120131/21901.htm, 2016 年3月1日。

⁵⁸ 於下頁。

習近平強軍夢

論火箭軍建軍規劃

表七 常規導彈戰術模式

區分	階段								
四分	導彈威懾作戰	導彈火力破擊	導彈火力封鎖	導彈火力襲擾	導彈兵力機動戰	導彈火力機動戰			
內容	常射高威,在技中的。規程、力故中術,地導遠速大導共局具位彈、度等彈未部有和具精快特威來戰重作具精快特威來戰重作	在集彈對進突導要時強、要破,部戰大火害壞是隊方的力目性常的式,導,標的規主。	低強度之導彈	為敵作予壓「規突下無難強力。 長常行大,機導。 一個人。 一個人。 一個人。 一個人。 一個人。 一個人。 一個人。 一個人	隊的戰場存活 率, 而實務與導				

資料來源:1.王厚卿、張興業,《戰役學》(北京:國防大學出版社,2000年5月),頁379~382。 2.作者自行整理。

而地面戰機難以升空,在戰役初期我軍可 能喪失制空權。

四、小結

原屬廣州軍區的地地導彈第二旅已重新納入火箭軍的編制,可能改銜為836導彈旅,分析所獲得的資料,火箭軍導彈旅之番號,按慣例係依據成立時間來授銜,依據前述火箭軍的部隊編組(如表三),已知目前為32個導彈旅,中間尚差4個導彈旅,故筆者研判空缺的導彈旅,可能會納入衛士型火箭或是攻擊衛星火箭,亦為筆者後續研究方向。

我國之因應作為

兩岸軍力已逐漸向大陸傾斜,且中共 無論在軍事或經濟上的崛起,均對世界局 勢產生重大影響,在國際現實利益下,與 對岸建立軍事互信、政治交往的政策是最 佳上策,然構建可恃武力亦極為重要,畢 竟自立自強才能不受大國的威脅與欺凌, 故筆者對我國的因應作為依國際、國家及 國軍等三個層面,論述如後:

一、國際層面

(一)參與國際組織活動

在全球化的時代,國與國的關係 更形密切,所以參與國際組織是一件重要 的工作,除了彰顯國家主權地位,亦可拓 展生存發展空間,透過彼此多邊合作增進 互信,進而就政治、國防軍事等層面達成 更進一步的協議。

(二)建立準軍事同盟

近期美、日、菲、越與中共在釣 魚台及南海主權問題互相挑釁,中華民國 作為一個當事者,可利用這些國家與中共 交惡之際,周旋於各國間形成一個準軍事 同盟,或是簽署軍事設施共用的協議,以 便臺海衝突之際,我海、空基地均遭破壞 時,能將戰力保存於第三地,俾利後續轉 用。

二、國家層面

(一)主權問題維持戰略模糊

中華民國自大陸播遷來臺後,人

⁵⁸ 蔡志昇,〈共軍二砲部隊對臺軍事威脅與因應策略研究〉《95年5月國軍敵情專題研究優良作品彙編第18 輯》(臺北:國防部情次室,民國95年5月),頁91。

ARMY BIMONTHLY

民享有高度的民主自由,然近來國內部分政治人物,不斷就主權問題挑起民眾輿論,恐將引發兩岸關係的緊張;就軍事觀點而言,兩岸主權問題維持一種模糊狀態, 使敵方找不到動武的著力點、師出無名,才是最好的作法,不然一旦將問題檯面引發臺海衝突,亦使美國為首的盟邦無施援之理由;另就國際現實而言,各國政府間只有永遠的利益,沒有永遠的朋友或敵人,筆者研判,美國絕不會因為「臺灣片面改變現狀」而與中共軍事衝突,且其在各個公開場合均聲明堅守「一個中國」政策,因此兩岸問題維持一個模糊地帶,是目前對中華民國最好的模式。

(二)強化人民危機意識,建立全民國 防體制

我國自1991年廢止「動員戡亂臨時條款」後,已不再視中共為叛亂團體,而是分治兩地的實體政權,在歷屆總統領導下,兩岸情勢逐漸和緩,臺灣經濟亦繁榮發展,富裕的生活也使得我國民防漸漸鬆懈,甚至一意認為兩岸不會發生戰事,然「天下雖安,忘戰必危」的古語言猶在耳,若臺灣人民有為民主自由戰鬥的決心,在政府「精簡常備、廣儲後備」的政策下,仿效瑞士、以色列的全民國防體制,必然使敵人不敢輕舉妄動,畢竟民心與士氣才是實質的防禦力量,也是我國目前所欠缺而急待提升的項目。

三、國軍層面

(一)發展網軍

網路無遠弗屆,若為有心人士運

用,造成的破壞不亞於軍事武力的投射, 故網路世界已成為各國的另一個戰場,美 國與中共均有設立專職部隊因應,臺灣身 為科技產業的重鎮,相關人才不虞匱乏, 更多次在國際駭客大賽嶄露頭角,若能由 專門單位統整(如資策會、資電部),將可 發揮極大效用,亦能產生嚇阻效果。

(二)發展不對稱戰力

導彈防禦最有效的手段是建立反制武力,目前除運用空軍反制與敵後組織外,現有武器系統,難以對中共導彈陣地造成影響,亦無法破壞其戰備集運與登陸準備,故應積極發展嚇阻性戰略武器系統。

1.遠程火箭系統

國軍現有雷霆2000火箭最遠射程僅 45公里,在對臺戰役中,須待敵半渡海峽 或登陸上岸才具反擊能力,作戰效果有限 ,若能比照衛士型火箭,將射程提升至 250~400公里,即能對中共東南沿海港口 、機場形成重大威脅,對其飛機轉場或船 團裝載時,予以痛擊,以打破其渡海侵犯 的企圖。

2.中程攻陸巡弋飛彈

依2011年8月媒體報導,國軍正持續接收反制武器系統,⁵⁹中科院曾以「雄昇」為計畫名稱,「雄風二E」為代號,進行研發射程600公里、可貼地飛行、對地攻擊的巡弋飛彈,由於「雄風二E」射程達600公里,屬於敏感性武器,故此研發一直低調進行,其實際功能應是較貼近美國「戰斧」巡弋飛彈;⁶⁰惟600公里射程仍嫌稍短,應比照長劍10號射程

⁵⁹ 羅添斌,〈藍委透露:軍方新型反制武器將量產〉, http://www.libertytimes.com.tw/2011/new/aug/22/today-p13.htm,2016年2月23日。

⁶⁰ 於下頁。

習近平強軍夢

- 論火箭軍建軍規劃

1,800公里之性能予以提升,方能達嚇阻 效果。

3. 高空高速巡航導彈

基於共軍防空導彈系統已具攔截巡 航導彈功能,未來國軍巡航導彈其突防能 力勢必遭受影響,故可藉由國軍既有的巡 航導彈的技術,研發出以高空巡航方式的 巡航導彈,跨越敵防空系統;另因其採巡 航方式與彈道導彈的飛行軌道不同,可降 低敵導彈防禦系統的攔截成功率,最重要 的,可藉由其由高空向下俯衝的重力加速 度及強化鑽地的特殊彈頭對其地下、洞庫 化的彈庫及指揮所等進行打擊,摧毀其第 二擊及指揮管制能力。

4.石墨彈頭

石墨彈頭又稱「電力殺手」,是利 用石墨本身為一超強電導體的特性,將石 墨纖維絲散布在高壓電纜、電塔或是變電 站上,導致高壓電短路,而造成輸電中斷 ,致使受攻擊區域大面積的停電,目的在 造成敵軍的混亂、民心的動盪。如1999年 5月2日夜間,南斯拉夫首都貝爾格勒因停 電突然陷入黑暗,癱瘓其全境 70% 的電 力供應的武器就是石墨彈。61另因石墨彈 頭並非進行大規模的人員殺傷使用,研發 時所受的阻力相對較小,故若能配備國軍 運用,將能大大增加國軍作戰整備時間。

5.特戰滲透作戰武力

國軍可運用高空特勤中隊及兩棲偵 察營等特種部隊,在戰時滲透敵後,實施 偵察與襲擾破壞; 依據美軍特種部隊作戰 經驗,一個特戰小組加上一架滿載彈藥的 F-16, 即能殲滅一支淮入陣地的火箭砲營 或旅級作戰部隊,國軍若採行此戰術,搭 配現有F-16戰機或前述「雄風二E」巡弋 飛彈, 在共軍導彈旅或地面部隊淮入陣地 時,予以攻擊形成重大損失,將可大幅降 低其渡海登島侵犯的企圖;亦可破壞其機 動路線上之重要設施,遲滯其部隊集結、 運用,爭取我備戰時間。

結

二砲部隊更銜為火箭軍後,將邁入下 一個里程碑,在習近平的領導下,依照其 「中國夢、強軍夢」的方針,火箭軍必然 會不斷地攜編,對區域及我國防安全形成 重大壓力;「防衛固守」及「有效嚇阻」 何者應較為著重、何者較能因應中共對我 國的威脅,對臺灣安全政策而言,一直是 兩難的選擇,與臺灣同屬海島國家的英國 在其1957年版的國防白皮書中,即明確指 出:「在核子及飛彈時代,防禦是無用的 」,⁶²前國防部長嚴明曾表示:「若共軍 大舉犯臺,國軍可支撐30天左右」,⁶³顯 現共軍已具備摧毀或重創臺灣的能力,若 臺灣未來仍希望擁有決定自身前途的權利 、確保臺海情勢安全、發展反制武器、建 立「有效的獨立嚇阻能力」無疑是較佳的 選擇。

⁶⁰ 維基百科, 〈雄風二E巡弋飛彈〉, https://zh.wikipedia.org/zh-tw/%E9%9B%84%E9%A2%A8%E4%BA%8 CE%E5%B7%A1%E5%BC%8B%E9%A3%9B%E5%BD%88,2016年3月2日。

百度百科,〈石墨炸彈〉,http://baike.baidu.com/view/50008.htm,2016年3月2日。 61

陳世民,〈飛彈時代臺灣安全的兩難 — 嚇阻或防禦為主〉《臺灣國際研究季刊》(臺北),第6卷第2期 ,2010年夏季號,頁56。

賴映秀, 〈解放軍如果犯臺 嚴明:國軍能守一個月〉, http://www.ettoday.net/news/20140306/331850. htm, 2016年3月1日。