

作者簡介

作者張祐嘉少校,畢業於國防大學中正理工學院 93 年班,歷任排長、 副連長、連長、後勤官、裁判官、教官,現任職陸軍十軍團三六化 學兵群偵消營參謀主任。

提要

- 一、煙幕是人工產生的軍事遮蔽偽裝武器,由於煙幕具有遮蔽與偽裝的雙重特性,故為現代戰場掩護我軍部隊行動或作為的有效屏障。
- 二、煙幕陣地部署圖調製作業與偵檢作業同為化學兵本職學能重要一環,煙幕 作業是否可順利進行,取決陣地部署圖是否可順利完成。
- 三、現今煙幕部隊不論是否配賦M3A3機械發煙器或M56渦輪發煙機,均採用《 化學兵煙幕部隊訓練教範(第二版)》附件15-3及15-4所提供資料,實施陣 地部署圖調製。
- 四、運用《化學兵煙幕部隊訓練教範(第二版)》附15-2渦輪發煙排固定式發煙作業能量參考表所提供資料,計算發煙機發煙線至目標區距離,研判渦發機煙幕陣地位置。

關鍵字:部署圖、煙幕、發煙機

前言

化學兵煙幕部隊測候所調製煙幕預判圖,均依《化學兵煙幕部隊訓練教範(第二版)》附件 15-3(如表 1)及 15-4(如表 2)發煙器及煙幕罐作業能量間隔距離表內資料¹調製,屬機械發煙器之單位運用成效良好,並於部隊測考時,均能活用準則,達成任務需求。

風速 公里/時	位溫梯度	地形類型	(公	距離 尺)	目標區至發煙線距離 (公尺)
			霧煙	毯煙_	,
1-14	逆增/無梯	水面上 開闊地區	90 110 140	45 55 70	$ \begin{array}{c c} 450 \\ 550 \\ 700 \end{array} $

表 1 發煙器作業能量表 (摘錄)

資料來源:如註1。

¹ 國防部陸軍司令部頒,《化學兵煙幕部隊訓練教範(第二版)》(桃園:國防部軍備局第 401 印製廠,民國 97 年 11 月 20 日),附表 15-3,附 15-5 頁。

風速 公里/時	位温梯度	地形類型	間隔距離 (公尺)		目標區至發 煙線距離	
公里/時	正温机火	地形級主	霧煙	毯煙	(公尺)	
	所有	開闊地或水面	50	25	250	
1-14	直減		60	30	300	
	逆增或無坡	樹林	70	35	350	

表2 煙幕罐間隔距離表(摘錄)

資料來源:同註1。

然而,歷次教學研究、基地測考及部隊輔訪所見,配賦 M56 渦輪發煙機單位,於煙幕作業時,仍以相同資料,調製煙幕陣地部署圖,就裝備各項性能及組成而言,顯然不符任務需求;單位應以準則附 15-2-渦輪發煙排固定式發煙作業能量參考表(如表 3)內資料²實施調製,依煙幕陣地周邊的位溫垂直梯度、風速及地形條件,配合發煙線的距離,可產製煙幕的最大寬度及最大下風,調製煙幕陣地部署圖。

然而準則所提供作圖程序,本表缺少-目標區至發煙線距離,導致渦發排測候組無法繪製出煙幕陣地部署圖。本篇主要系以準則條文及三角函數概念,推算 M56 渦輪發煙機-目標區至發煙線距離,修正準則內容,並提供部分更迅速的作圖模式,期使煙幕部隊能順利完成任務。

空			氣	風速	地 形	間隔距離	最大寬度	(公尺)	最大下風	(公尺)
I .	定	狀	態	(公里/小時)	類 型	(公尺)	毯煙	霧煙	毯煙	霧煙
				25	500	600	500	1000		
		88 88 1.L	50	800	900	400	850			
			開闊地	75	1000	1150	300	600		
124	, to	ᆂ	H.	1 11		100	1300	1500	300	550
位	<u>(m</u>	直	減	1-11	4111 =	25	500	550	300	700
						50	800	850	250	800
			樹林區	75	950	1050	250	600		
			100	1100	1250	250	550			

表 3 渦輪發煙排固定式發煙作業能量參考表(摘錄)

資料來源:同註1。

² 同註1,頁1。

化生放核防護半年刊第 101 期

概念分析

分析概念主要是將準則所提供 M56 渦輪發煙機-目標區至發煙線距離,以煙幕階段區分圖示及三角函數- $tan\theta^3$ 的比例概念實施換算。

一、煙幕階段區分4: (如圖1)

(一)個別煙流階段(Individual streamer phase)

當煙幕從發煙器施放出來時,初期煙係以個別煙流的方式行進。每股煙流最終將與其他煙流合併。煙幕合併前行進的距離取決於風速、大氣的穩定性、發煙線與風向的關係、以及發煙線上發煙器的間隔距離。

(二)合併階段(Build-up phase)

發生在煙幕從煙源施放出來後,由個別的煙流開始合併,大約 20 至 30 公尺,煙流在此開始擴散並相互結合。

(三)均勻階段(Uniform phase)

在煙幕行進大約50公尺後發生,此時煙幕濃度開始變得均勻(煙幕任何部份之微粒數量均相同)。煙幕之均勻階段通常在順風狀態下行進,大約可達縱深2至6公里,局部的天氣及地形將決定其遮蔽之實際縱深長度。

(四)終止階段(Terminal phase)

在此階段中煙幕微粒沉降於地面或較小煙幕微粒則飄散於空氣中,此過程中,煙幕變得非常稀薄,以致於無法再降低目視或光電設備。

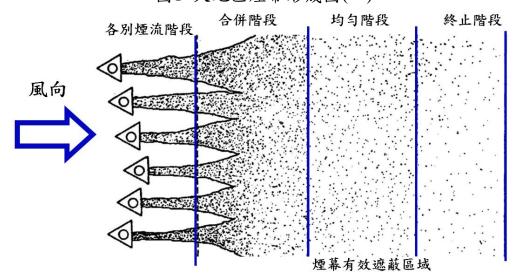
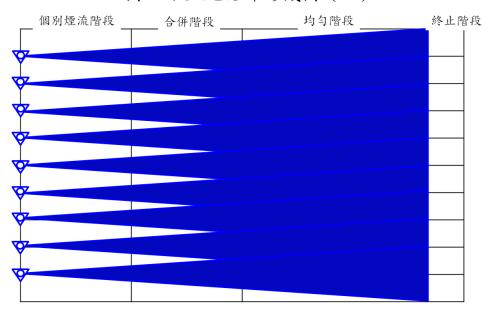


圖1 大地區煙幕形成圖(一)

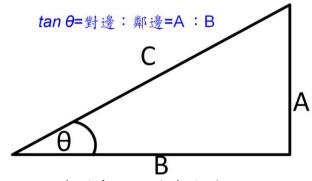

資料來源:《化學兵煙幕部隊訓練教範(第二版)》,頁5-3,05007條。

依準則所提供資料,並配合圖 1 所示,目標區至發煙線距離為個別煙流階段及合併階段之總長,並將圖 1 調製為圖 2。

 $^{3 \}tan \theta$:正切函數,英文 tangent,符號為 \tan ,為角度 θ 對邊及鄰邊之比值。

⁴ 黃景莨, 化學兵煙幕部隊訓練教範(第二版), 第五章, 第 05007 條, 第 5-3 頁, 民國 97 年 11 月 20 日。

圖2 大地區煙幕形成圖(二)



資料來源:作者自繪。

二、三角函數

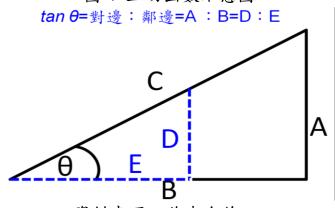

 $tan\theta$:正切函數,英文 tangent,符號為 tan,為角度 θ 對邊及鄰邊之比值(如 圖 3)。角度 θ 相等之三角行,其 $\tan\theta$ 值必定相等(如圖 4)。

圖3 正切函數示意圖

資料來源:作者自繪。

圖 4 正切函數示意圖

資料來源:作者自繪。

化生放核防護半年刊第 101 期

M56 渦輪發煙機發煙線至目標區距離換算:

一、設定準則數據:

依準則提供數據(間隔距離、最大寬度、最大下風及發煙線總長),設定 數據代號(如圖5):

- (一)間隔距離=d
- (二)最大寬度= D
- (三)最大下風=L
- (四)發煙線總長=8d (9部 M56 渦輪發煙機之間有 8 個間距)

圖 5 渦輪發煙排固定式發煙作業能量參考表(摘錄)

空		氣	風速	地	Ħ.	間隔距離	最大寬原	隻(公尺)	最大下風	(公尺)
穩	定狀	態	(公里/小時)	類	型	(公尺)	毯煙	霧煙	越煙	霧煌
					25	500	600	500	1000	
					Z	50	800	900	400	850
						75	1000	1150	300	600
حدا	四去	نلن	1-11	_ u		100	1300	1500	300	550
177	溫直	减	1-11			25	500	550	300	700
Ι,	~ .			hrm ല		50	800	850	250	800
	8d /			樹林區		75	950	1050	250	600
						100	1100	1250	250	550
說		明	發煙器為9部M 霧油形成之煙	[56渦輪發幕僅能應	煙蔽	e機,採固定 及隔離0.7~	定式發煙 1.2μm可	見光譜。		

資料來源:作者自繪。

設定X=目標區至發煙線距離,並將作業能量參考表提供資料繪製為圖6實 施計算。

終止階段 個別煙流階段 合併階段 8d _D 8d

圖 6 渦輪發煙排固定式發煙作業示意圖

資料來源:作者自繪。

第156頁

二、計算二分之一(煙幕最大寬度與煙幕陣地長度差),即為單具渦輪發煙機煙幕最大寬度之二分之一(如圖7)。

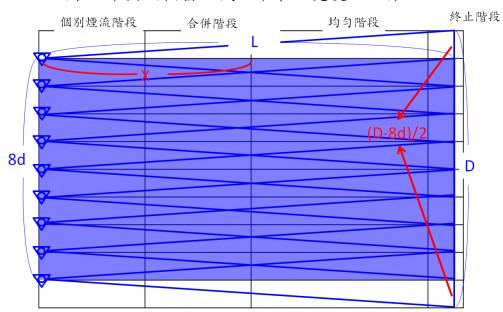
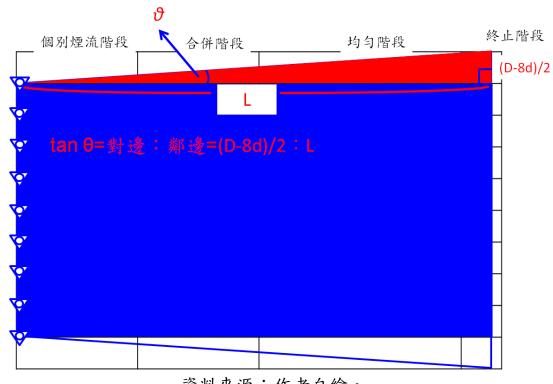


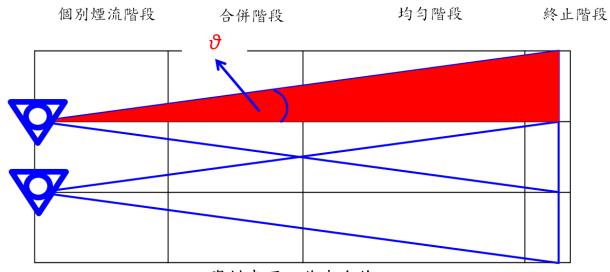
圖 7 單具渦輪發煙機煙幕最大寬度之二分之一

資料來源:作者自繪。

三、推算θ:

將單具渦輪發煙機二分之一角度設定為 θ ,三角函數 $\tan\theta$ =對邊:鄰邊=(D-8d)/2:L(如圖8)。



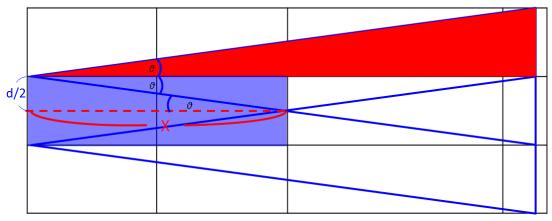

圖 8 正切函數示意圖

資料來源:作者自繪。

第158頁

四、將九具渦輪發煙機簡化為兩具換算(如圖9)。

圖 9 兩具渦輪發煙機示意圖



資料來源:作者自繪。

五、以輔助線,劃分角度及測量區域,可得圖10。

圖 10 以輔助線分割區域

個別煙流階段 合併階段 均勻階段 終止階段

資料來源:作者自繪。

因0角度相同關係,且同為直角三角形,故可得下列方程式:

tan θ=對邊:鄰邊=(D-8d)/2:L=d/2:X

$$X = \frac{Ld}{D-8d}$$

六、範例1(如圖11)

地形類型為開闊地,位溫無梯,風速每小時12-24公里,每具間隔25公尺, 施放毯煙。

- F				最大寬度	(公尺)	最大下風	(公尺)	
空氣		地形		. 10. 3	·	. 1. 1	-E1 1-	
穩定狀態	(公里/小時))	類型	(公尺)	毯煙	霧煙	毯煙	霧煙	
		٠, -	25	500	600	2200	3700	
		U	50	200	950	1800	3450	
	12-24	開闊地	75	0	1350	10	3000	
位溫無梯			100	_ ח	1600	16	2500	
加血無物		樹林區	25		550	18	2000	
			50	800	900	1100	1800	
			75	1050	1300	1100	1800	
			100	1300	1550	1000	1600	
説 明		M56渦輪發煙機,採固定式發煙。 亞幕僅能遮蔽及隔離0.7~1.2μm可見光譜。						
	務油形成之階 	本性能选	敝及隔離	J. /~1.2μm	19 兒光譜	i °		

圖 11 試算範例

$$X = \frac{Ld}{D-8d} = \frac{2200 \times 25}{500 - 25 \times 8} = 183.33 \triangle R$$

資料來源:作者自繪。

七、範例2(如圖12)

地形類型為樹林區,風速每小時25-32公里,每具間隔75公尺,施放霧煙。 圖 12 試算範例

空 氣穩定狀態	風速 (公里/小時))	地 形 類 型	間隔距離 (公尺)	最大寬度 毯煙	(公尺)	最大下風 毯煙	(公尺) 霧煙
		開闊地	25	500	600	1900	3200
			50	800	1050	1500	2950
	25-32	用周地	75	1050	1300	1300	2500
公 四点铂			100	1300	1550	1200	2000
位溫無梯		d	25	500	550	1200	1800
			50	950	1100	1000	1600
		樹林區	75	1300	1500	1000	1400
			100	1800	2200	900	1200
説 明	n發煙器為9部]	M56渦輪貂	餐煙機 ,採	固定式發	煌		
2/1	霧油形成之熠	皇幕僅能遮	蔽及隔離().7~1.2μm	n可 D 謹	1	L _

 $X = \frac{Ld}{D-8d} = \frac{1400 \times 75}{1500 - 75 \times 8} = 116.67 公尺$

資料來源:作者自繪。

煙幕陣地部署圖精進

一、修正作業能量參考表:

將準則附15-2所提供-渦輪發煙排固定式發煙作業能量參考表相關數據套入

公式內,產製出目標區至發煙線距離(如表4),納入準則修訂條文,可減少煙幕部隊測候所人工計算時間,提供部隊迅速查詢相關資料繪製。

		- PC - 11 4 1			_ // // // // /		- (1/1 - 1/1)		
空氣	空氣 風速	地形	間隔 距離	最大寬度 (公尺)		最大下風 (公尺)		目標區至 發煙線距離	
			迎 梅	(公	人)	(公	人)	發煌為	水迎艇
穩定 狀態	(公里/ 小時)	類型	(公尺)	毯煙	霧煙	毯煙	霧煙	毯煙	霧煙
<i>1</i> 5-			25	500	600	500	1000	41.7	62.5
位溫			50	800	900	400	850	50.0	85.0
溫直減	1~11	開闊地	75	1000	1150	300	600	56.3	81.8
滅			100	1300	1500	300	550	60.0	78.6
عدر 10	、 n 1.發煙器為 9 部 M56 渦輪發煙機,採固定式發煙。								
說明	2.霧油	形成之煙	幕僅能 遮蔽	5 及 隔離	0.7~1.2	2um 可見	光譜。		

表 4 渦輪發煙排固定式發煙作業能量參考表 (摘錄)

資料來源:依陸軍煙幕部隊訓練教範(第二版)內容換算結果。

二、作圖程序多元化:

測候所於作業期間,須掌握天候狀況之變化,應每隔5分鐘實施測量一次天候資料,若時間不允許時,可每隔1分鐘實施測量1次資料⁵,如何迅速完成陣地煙幕陣地部署圖,實為部隊長及副排長所面臨的問題,在此針對準則所提供之作圖程序,提出另類的建議,期使部隊可迅速達成任務。

(一)完成要圖調製要求項目:(如圖 13)

先行標註上下保密區分、圖名、時間、地圖北方、比例尺、調製人及調製 日期,並依單位特性製作測候紀錄表,先行張貼透明圖紙或透明膠膜上。

圖 13 完成要圖調製要求項目

⁵ 黃景莨, 化學兵煙幕部隊訓練教範(第二版), 第五章, 第 05048 條, 第 5-30 頁, 民國 97 年 11 月 20 日。

資料來源:作者自繪。

(二)選定煙幕目標區:(如圖 14)

套入作業用地(底)圖,標註測候所位置、遮蔽目標及座標十字註記,繪製一個圓形為煙幕目標區後,並將底圖抽出。

圖 14 選定煙幕目標區

資料來源:作者自繪。

(三)記錄氣象資料,選定左右風切線:

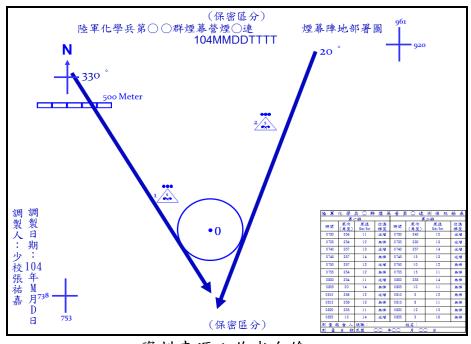

依一、二排測候所測候紀錄表,選定左右風切線(如圖15),將風切線繪製 於煙幕目標區(如圖16)。

圖 15 依各排測候所測候紀錄表,選定左右風切線

陸 軍	化 學	兵 〇 群	煙幕	一	5 ○連	測候紀	錄 表		
	第	一排		第二排					
時間	風向	風速	位溫	時間	風向	風速	位溫		
	(角度)	Km/hr	梯度		∧ (角度)	Km/hr	梯度		
0730	354	11	逆增	0730	340	12	逆增		
0735	354	12	無梯	0735	330	13	逆增		
0740	357	13	逆增	0740	357	14	逆增		
0745	357	14	無梯	0745	15	13	逆增		
0750	357	13	逆增	0750	10	12	無梯		
0755	354	12	無梯	0755	15	11	無梯		
0800	354	-11	逆增	0800	355	14	無梯		
0805	\bigcirc 20	14	無梯	0805	10	11	無梯		
0810	358	12	逆增	0810	0	12	無梯		
0815	359	13	無梯	0815	8	11	無梯		
0820	355	11	無梯	0820	12	15	無梯		
0825	10	14	逆增	0825	5	16	無梯		
測 量	報告人	級職:		姓	名:				
測 量	日期	民國	年		月	目			

資料來源:作者自繪。

圖 16 繪製左右風切線

資料來源:作者自繪。

(四)繪製角平分線:(如圖 17)

計算取左右風切線之中線,通過圓心O點作一角平分線。

圖 17 繪製角平分線

資料來源:作者自繪。

(五)繪製最佳發煙線、遮障及防護發煙線:(如圖 18)

依風速、位溫梯度及地形條件,判斷繪製煙幕陣地部署圖所需資料,完成 最佳發煙線、遮障及防護發煙線繪製,標註發煙器(機)及煙幕罐位置,擦 拭角平分線,並加註風向。

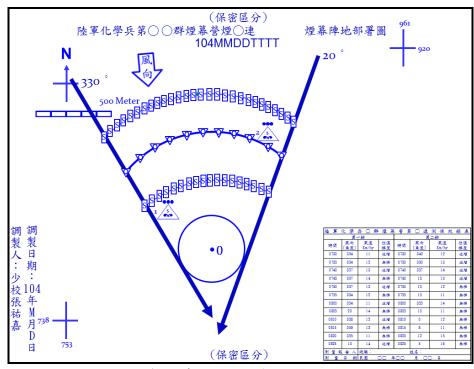


圖 18 繪製最佳發煙線、遮障及防護發煙線

資料來源:作者自繪。

(六)煙幕作業-圖上偵察:

將煙幕陣地部署圖套至原本地(底)圖,圖上偵察各項設施(設施圖例如圖19)及開設位置(如圖20)。

圖 19 煙幕部隊各項設施圖例

資料來源:作者自繪。

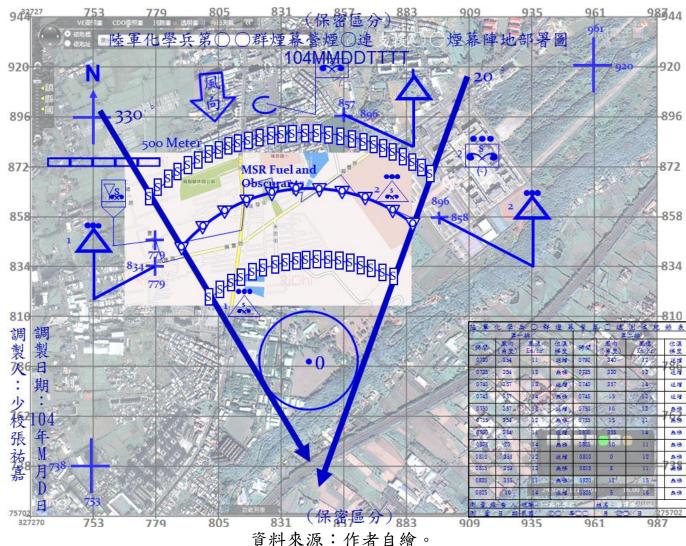


圖 20 煙幕作業-圖上偵察

(七)調製時間及優缺點:

1.所需時間:

完成風速風向儀架設後,依任務時程,決定每隔 5 分鐘測量氣象資料,或每隔 1 分鐘實施測量,本篇陣地部署圖調製與準則附件 14-1 相比,所需時間概算如表 5,詳細時間仍以繪圖士之作圖熟練程度增減。

	衣了煜希阵地音	中者回訴		
內容	淮州佐园士士	時間	+ 签 4 园 七 4	時間
項次	準則作圖方式	(分鐘)	本篇作圖方式	(分鐘)
1	作業前準備。(僅準備透明 圖及相關文具)	0	作業前準備。(註記要圖調 製內容,並依單位特性製作 測候紀錄表,張貼透明圖紙 上。)	0

表 5 煙幕陣地部署圖調製所需時程概算比較

2	測量氣象料。	60/12	測量氣象料。	60/12
3	作圖。(繪製風切線及角平 分線…等內容)	10	作圖。(依數理概念,繪製 相關內容等)	5
4	圖上偵察,選定設施開設位 置。	5	圖上偵察,選定設施開設位 置。	5
5	註記要圖調製內容:標註上下保密區分、圖名、時間、地圖北方、比例尺、調製人及調製日期,張貼測候紀錄表等。		註記要圖調製內容。 (已先行完成)	0
合計		80/32		70/22

資料來源:作者依部隊測考及教學經驗概算。

2.優缺點比較:

準則提供作圖程序較為基礎,大多數學員(生)較能接受,依其作圖程序,可逐步完成煙幕陣地部署圖調製作業;而本篇作圖方式基於學員(生)對準則作圖程序相當熟悉,並運用些微數學原理,簡化部分作圖步驟,採用精簡式的作圖方法,使用時間較短,但難度較高,較適合軍官分科班、士官高級班等高階班隊或資深副排長使用。兩者作圖方式優缺點比較如表6,調製人考量部隊長賦予作業時間,依個人熟練程度、理解程度及個人習慣選用。

表 6 作圖方式優缺點比較表

資料來源:作者自製

3.建立煙幕遮障能量之驗證方法:

煙幕遮蔽目標有其難度,受天候、地表、植被等影響,地形更是限制,加上環保意識抬頭及訓練場地不足,煙幕作業能量驗證工作一直無法順

化生放核防護半年刊第 101 期

利遂行,也造成各級長官對煙幕遮蔽能量不信任的看法,建立煙幕作業能量的驗證方法實乃必需,建議可以選擇適合本島地理環境之擴散模擬系統,或採用單具能量驗證,配合模式計算實施驗證工作。

結語

煙幕陣地部署位置為煙幕作業成敗的關鍵因素之一,如何在期限內完成煙幕作業支援任務,先期須仰賴副排長及氣象兵之測候所作業,及時將成果回饋給部隊長。為了達到支援任務順遂,須努力精進裝備運用及煙幕作業,使煙幕部隊可快速遂行作戰任務,符合時代所需的優秀戰力。