作者簡介

作者呂坤霖上士,畢業於成功大學環醫所工業暨環境衛生組、 陸軍化生放核訓練中心 103-2 期士官高級班,曾任消除 班班長、偵檢班班長、化學裝備保養士,現任職本中心 化學課程組教官。

作者彭義丞士官長,畢業於陸軍專科學校正規班 33 期,曾任班長、化學士、分隊長,現任職本中心化學課程組教官。

提要

- 一、化學遠距遙測偵檢作業為近年發展之「非接觸式」偵檢技術,可安全、早期偵知污染。經歷年教學經驗與武藝競賽成果發現,本軍現用化學遠距遙測裝備,受限裝備性能,導致「靈敏度不佳」、「污染源搜尋不易」、「畫面成像模糊」與「夜間作業困難」等限制,影響作業成效。
- 二、隨科技進步,新式裝備的開發與偵檢技術之精進,藉蒐整相關期刊與文獻,說明遠距遙測裝備之基本原理與組成,以及目前主要運用與作業方式, 目的為使讀者瞭解遠距遙測裝備皆有其適用時機與限制因素。
- 三、簡介新式遠距遙測偵檢器-高光譜顯像儀¹Hyper-Cam-LW,並與國軍現行化學遠距遙測裝備優劣分析,期能有效改善現行作業之窒礙,並作為未來新一代偵檢裝備發展之參考。
- 四、經本文探討,使讀者瞭解就現階段而言,尚無全能之化學遠距遙測裝備, 惟經考量現場環境,選用適當裝備,方能提升遠距遙測之精準。

關鍵字:遠距遙測、高光譜顯像儀、Hyper-Cam、Telops

前言

「化學遠距遙測²」就軍事運用方面,係指化學兵專業部隊之偵檢班在化學 戰或毒性化學物質災害(以下簡稱毒化災)狀況下,運用專業遠距監測裝備,針對 可疑污染區域進行遠距離偵檢(測)與環境監測作業,於安全區域即可偵知毒性化 學危害物質種類與概略污染範圍,提供部隊先期完成相關防護準備或污染迴避 ,減少人員曝露於污染區之時間與風險,並達到長效定點監測之功能。綜整而 言,化學遠距遙測技術具有遠距離偵檢、監偵範圍廣、即時污染檢測、判斷多 種污染種類與預估下風方向等特性,以提供應變作為參考。

目前許多先進國家之專業化學部隊,皆配賦相關化學遠距遙測裝備;各大

^{1.}光譜解析度達3nm,頻譜帶數可達100-250以上之感測儀器。語見李龍正,〈高光譜影像儀發展及影像市場前景〉《科儀新知》,第142期,2004,頁51。

^{2.} 化學遠距遙測:於一定距離之有利位置,針對化學品進行偵檢作業之技術。

型化學物質運作廠址亦設置相關遠距監測設備,針對儲存槽體或管路進行洩漏監測。由此可見,遠距監測是勢在必行之趨勢。

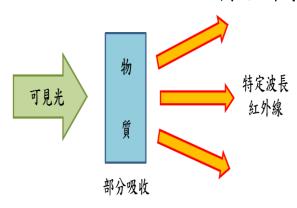
筆者綜整國內外各式化距遙測裝備及目前本軍使用相關裝備經驗,選擇功能與我軍較類似之裝備學遠,就裝備作用原理、組成與性能、使用限制等面向實施探討,並藉由分析、比較,提供運用建議,以供本軍未來裝備發展參考,有效改善現行作業限制,期達「早期偵知、及時應變」之目的。

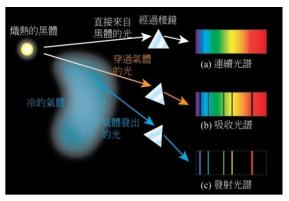
遠距遙測作用原理與方式

一、偵檢原理

根據「黑體輻射理論³」,任何物質溫度高於「絕對零度」時(0K,約-273°C),都會對外輻射各式波長之電磁波,又稱為熱輻射,而電磁波強度與波長之關係,亦會隨物體溫度變化,當物體能量(溫度)高於環境能量(溫度)時,物體能量會自然轉移至環境,能量轉換型式包含熱輻射、熱對流與熱傳導三種(如圖1)

圖1能量轉換型式


資料來源:權信企業股份有限公司網站-紅外線技術與應用。


其中熱輻射所發散電磁波種類很多,其中之一即為紅外線,另包含可見光 與微波等。根據此一特性,當物體表面吸收自然光源後,此時熱能(紅外線能量)會依據其吸收效率提升溫度,再次發散特定波長之紅外線能量(如圖2)。簡言之 ,當物質溫度高於絕對零度時,即會發散特定波長紅外線能量。故每種物質都 有獨特的紅外線放射率(吸收率),因此科學家將其建立成物質的「指紋辨識系統 」,稱為光譜特徵4,透過偵檢儀器進行比對,以利判別物質種類。

^{3.}林庭媛、黃莉雯、柯雅菁、〈黑體輻射理論及應用〉,頁2。

^{4.}林官賢,〈紅外線感測器介紹與應用〉《101年度高瞻計畫》,2011。

圖2紅外線吸收發散原理

資料來源:彭義丞,I-SCAD 化學 遠距遙測偵檢器簡介

資料來源:科技部高瞻自然科學教學資源平台

目前國內外遠距遙測裝備皆以紅外線偵檢為基礎,紅外線依不同波長可區分為三大波段,分別為遠程、中程與近程紅外線。在地表上,除人造光源外,從可見光(波段為0.4至0.75µm)至中程紅外線,通常源自於日光,遠程紅外線則來自於物質發散,如圖3。

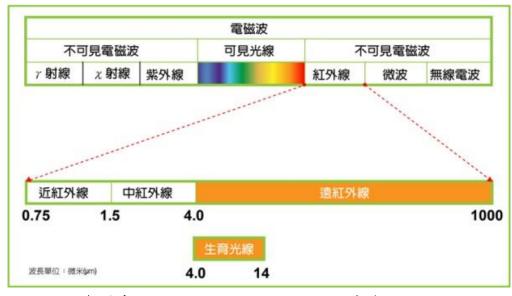
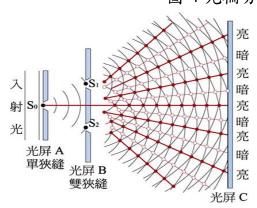
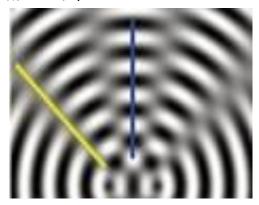


圖3紅外線波段

資料來源:Dayuzen 公司網站-紅外線運用。

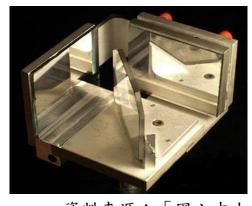
早期遠距遙測原理是利用「光柵分光法⁵」(如圖4)檢測入射的紅外線頻譜,然大氣中包含多種氣體分子或其化合物,其中相對微量的污染氣體分子所發散紅外線能量就顯得十分微弱,因此分析污染氣體非常困難且幾乎無法實行。而在1970年代,光譜學家利用麥克森干涉分光原理⁶與傅立葉轉換技術⁷,將其轉換

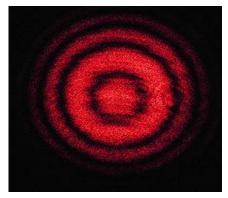

^{5.} 東海大學普通物理實驗室, http://phys.thu.edu.tw/。檢索時間:105年3月26日。


^{6.}國立中央大學普通物理教學實驗室-麥克森干涉儀,http://uep.phy.ncu.edu.tw/general-physics/expcourse/second-semester/michelson/。檢索時間:105年3月27日。

^{7.}韓昊個人部落格,http://blog.xuite.net/lapuda.chen/PaulBlog/221866406/。檢索時間: 105年3月26日。

成頻率函數的紅外光譜,發展出傳立葉轉換紅外線光譜法,簡稱FTIR。後因微型電腦技術問世,使得FTIR光譜技術快速發展與應用,同時提升傅立葉轉換運算速度,遠優於光柵分光法,且具有訊號加強、提升檢測靈敏度之優點,可快速分析氣態毒性化合物之定性與濃度分布。

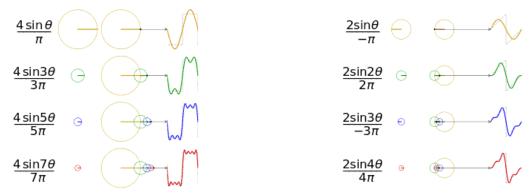



資料來源:「東海大學普通物理實驗室教學講義」內文。

二、裝備基本運作

現有各式遠距遙測裝備通常是由「光源接收裝置」、「干涉儀」與「偵檢裝置」等三大部分組成。光源接收裝置由紅外線接收鏡頭及聚焦透鏡組合而成;偵檢裝置則由感光元件、光譜分析儀及後端微型電腦所組成;其中干涉儀良窳,關係著遠距遙測裝備精準程度⁸。當物質所發散之紅外線通過光源接收裝置進入偵檢器,經「麥克森干涉儀」內部分光鏡將其切割成「反射」與「穿透」兩道光束,分別成為兩道行進波,利用兩個行進波疊加於空間中,即發生干涉原理,顯示如下圖的紅外線干涉圖像,如圖5。

圖 5 麥克森干涉儀內部構造與紅外線干涉圖像


資料來源:「國立中央大學普通物理實驗報告」內文。

上述干涉圖像可視為穩定光譜,經由儀器後端偵檢元件感應,產生訊號至傅立葉轉換光譜儀轉化成連續光譜曲線圖(如圖6),至電腦運算端與現有圖譜資

^{8.}蔡東霖、陳用佛,〈高光譜影像技術在鑑識科學上之應用〉《中央警察大學警學叢刊》, 第43卷,第4期,2013,頁5。

料庫比對,確認物質種類。

圖 6 傅立葉轉換概念

資料來源:韓昊-個人部落格,「傅立葉轉換原理」內文。

三、作業技術簡介

遠距遙測技術精進的主要目的,是隨著科技發展的演進,以彌補現有偵檢 技術之不足,加強輔助,期使遠距遙測技術更臻完善。目前遠距遙測技術有下 列幾種分類⁹:

(一)以偵檢類型區分(如圖 7):

- 1.主動債檢:係利用裝備所發射之電磁波或其他類型能量至目標物,待目標物反射後,再接收目標物反射回波。此種方式的優點在於輸出能量穩定,有效降低雜訊,藉以獲得良好訊號;然在戰場上,目標物往往無法預測位置,效果等同盲測,與被動偵檢無異。
- 2.被動債檢:係利用自然光源之能量,遙測裝備本身不發射任何能量,僅 接收目標物所發散之能量或目標物對自然能量之反射。此種債檢方式構 造簡易,適用於未知狀況下執行偵檢作業。

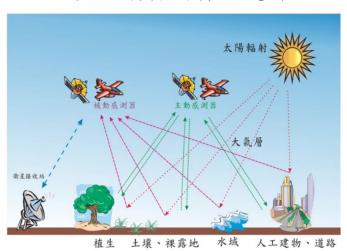


圖7主動與被動偵檢示意圖

資料來源:國立中央大學-蔡富安教授,遙測原理簡介。

^{9.} 同註11。

(二)以載具類型區分:

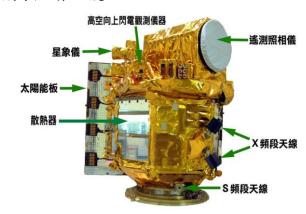
1.地面偵檢:遠距遙測裝備裝置於車輛、船艦、人員手持與固定架設等方式進行偵檢(如圖 8)。

圖 8 地面偵檢

資料來源:國立中央大學-蔡富安教授,遙測原理簡介。

2.空中偵檢:遠距遙測裝備裝置於航空器、熱氣球或無人載具等方式進行 偵檢(如圖 9)。

圖9 空中偵檢



資料來源:國立中央大學-蔡富安教授,遙測原理簡介。

3.衛星偵檢:將遠距遙測裝備搭載於太空衛星上,於太空中對地球進行遠端監測(如圖 10)。

資料來源:國立中央大學-蔡富安教 資料來源:國家實驗研究院-遙測影像 授,遙測原理簡介 概論及應用

表 1 為 地面、空中與衛星偵檢之優缺日	比較
----------------------	----

類型	地面偵檢	空中偵檢	衛星偵檢
單位掃描面積	小	大	最大
空間辨識能力	低	高	最高
載具機動性	中等	最高	低
偵檢穩定性	受大氣影響 程度較小	受大氣影響 程度中等	受大氣影響 程度最大
地表影響程度	最大	小	最小
影像處理能力	處理難度高	處理難度中等	處理難度最低
單位面積成本	最低	中等	最高

資料來源:國立中央大學-蔡富安教授,遙測原理簡介。

作業現況探討

由於化學戰與毒化災威脅與日俱增且複雜,所面臨之危害狀況不再侷限單一化學物質種類,且貿然將兵力投入現場應變,徒增人員傷亡風險。因此,化學兵部隊為強化偵檢(測)作業能力,於民國96年即加入化學遠距遙測裝備應用。僅就目前現有化學遙測裝備—MR170化學遠距遙測偵檢器(以下簡稱為MR170,如圖11)與RAPID德國布魯克化學遠距遙測偵檢器(以下簡稱為RAPID,如圖12)探討如次。

圖 11 MR170 外觀

圖 12 RAPID 外觀

資料來源:ABB 公司網站-商品導覽 資料來源: BRUKER 公司產品簡介

一、MR170化學遠距遙測偵檢器

(一)裝備性能

- 1.配備傅立葉轉換光譜儀及麥克森干涉儀。使用自然光源與望遠鏡接收光 源作為基礎光源。
- 2.麥克森干涉儀為主要分光裝置,具有永久免校正特性,以維系統穩定。

傅立葉轉換光譜儀進行數據轉換。

- 3.光譜解析度¹⁰(波數)可分為 1、2、4、8、16 與 32 等六種選擇。
- 4.採用斯特林冷卻系統11。
- 5.標準鏡頭單位最小瞬時視場¹²為 45 毫弧度角。

(二)作用原理

使用被動式傅立葉轉換紅外光線譜儀分析技術。物質所發散之紅外線,經由麥克森干涉儀穩定紅外線光譜,透過感光元件產生訊號,再由傅立葉轉換光譜儀轉換成連續圖譜,最後由末端電腦比對圖譜資料庫,判斷物質種類。

二、RAPID德國布魯克化學遠距遙測偵檢器

(一)裝備性能

- 1.光學模組:包含干涉光譜模組、偵檢光學元件、光學轉換元件與光學校 準單元。以自然黑體輻射作為背景參考光源,提供系統自我測試校正。
- 2.光譜解析度為 4 波數(cm-1)。
- 3.空間掃描模組:提供水平視角 360°與俯仰視角-10°至 50°之觀測角度。可 視角度為 30 毫弧度角
- 4.電子電路模組:包含各式儀器與單元之電路板。
- 5.採用氣冷式循環冷卻。

(二)作用原理

同屬被動式傅立葉轉換紅外光光譜儀分析技術。惟採用對稱性干涉光譜 擷取技術獲得訊號,再經由傅立葉轉換光譜儀轉換成圖譜,最後由電子 模組運算,於顯示及控制平台或遠端電腦顯示。

三、使用限制

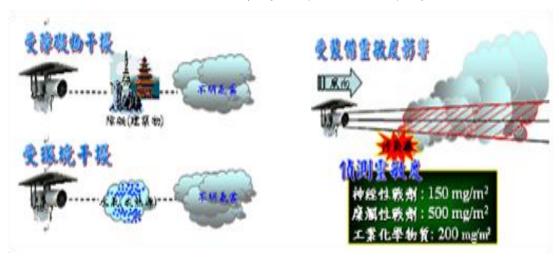
因偵測波長範圍關係著可偵檢物質種類,兩者可偵檢紅外線光譜範圍如表1 所示。

^{10.}光譜解析度係指感測器所選用之波段數量、各波段波長位置與波長間隔而決定。中國科學院網絡化科學傳播平台,http://159.226.2.2:82/。檢索時間:105年4月26日。

^{11.}斯特林冷卻系統:1816年由蘇格蘭的斯特林牧師所發明,系統包括熱氣體通道、斯特林發動機及斯特林制冷機等組成。當熱氣體導入熱氣體通道,藉由熱能驅動斯特林發動機,同時帶動斯特林制冷機,以達降溫之效。

^{12.}瞬時視場:在光學遙測系統中,瞬時視場表示每像素可觀察物體之最小幅寬,其大小取決於感測元件尺寸、焦距與目標物距離等因素。加拿大Telops公司,http://www.telops.com。檢索時間:105年3月26日。

表1 MR170與RAPID偵檢紅外線光譜範圍


儀器型式	MR170	RAPID
偵檢波長範圍(μm)	2至15	7.7 至 14
波數(cm ⁻¹)	670 至 5000	700 至 1300
紅外線類別	近、中程紅外線	中程紅外線

資料來源:筆者參考陸軍核生化偵檢車操作手冊(第一版)與 RAPID 化學遠距遙 測預警器操作/維護技術手冊彙整。

(-)就 MR170 而言,其使用限制如下 13 :

- 1. 偵檢目標僅適用於 2-15 波長(µm)之光譜範圍。
- 2.裝備操作環境溫度以0℃至45℃區間為宜。
- 3. 偵檢距離最遠可達 5 公里。
- 4.目標物與環境背景溫差須達 0.5℃以上才可偵檢。
- **5.偵檢極限:**毒性化學物質為 2ppb。另針對化學戰劑部分,神經性戰劑為 1.5ppb、糜爛性戰劑為 5ppb。
- 6.可偵檢物質種類,包含氯乙烯等 57 種毒性化學物質、11 種化學戰劑。 7.干擾因素
 - (1)顯像儀與目標物間須無障礙物,如建築物、車輛、山脈或密集樹林等。
 - (2)顯像儀與目標物間應避免熱源。
 - (3)起霧或降雨,將導致判讀誤差。
 - (4)負檢精準度隨目標物距離而降低。

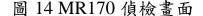
圖 13 MR170 化學遠距遙測偵檢器干擾示意圖

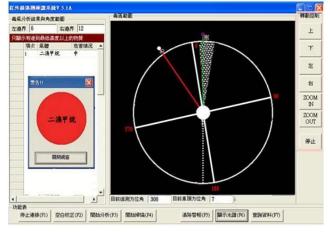
資料來源:陸軍核生化偵檢車操作手冊(第一版)

^{13.} 陸軍核生化偵檢車操作手冊(第一版),頁4-6。

(二)就 RAPID 而言,使用限制¹⁴如下:

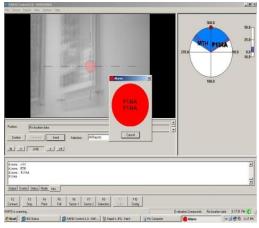
- 1. 偵檢目標僅適用於 7.7-14 波長(µm)之光譜範圍。
- 2.裝備操作環境溫度:機體接合處採特殊塗料處理,為全密封狀態,受大 氣影響程度較小,最高操作溫度可達 55℃。
- 3. 偵檢距離可達 5 至 20 公里。
- 4.目標物與環境背景溫差需達顯著溫差才可偵檢。
- **5.偵檢極限:**毒性化學物質偵檢極限為百萬分之一(1ppm)。另化學戰劑偵測極限最低可達 0.1 ppb。
- 6.可偵檢物質種類,包含三氯甲烷等 17 種毒性化學物質、12 種化學戰劑。 7.干擾因素:同 MR170。


四、運用窒礙


受限於裝備性能,產生部分窒礙,目前化學兵部隊在MR170與RAPID運用上,就教學經驗與實作經驗,提出污染源定位困難、監測畫面難以掌握、反應靈敏度不符作戰實需與夜間監視能力不佳等4項運用窒礙。

(一)污染源定位困難

MR170執行監測作業時,除單獨污染源外,當裝備監測到掃描範圍內有 多點污染源,系統軟體會自動將其劃分為一污染區域,並標定左右邊界,雖 有利於環境監測,但相對造成使用者無法偵知確切污染源位置(如圖14)。


當RAPID監測到污染氣體時,除標定污染左右邊界外,若有多點污染源或多種危害氣體狀況下,雖可標示各污染源之左右邊界分布情形,但透過鏡頭仍無法明確觀察污染源現況(如圖15)。

資料來源:陸軍核生化偵檢車操作手冊 (第一版)

圖 15 RAPID 偵檢畫面

資料來源:筆者拍攝

(二)監測書面難以掌握

^{14.}RAPID化學遠距遙測預警器操作/維護技術手冊,頁3-1至頁3-2。

MR170與RAPID皆使用同軸可見光鏡頭(MR170採同垂直軸,RAPID則採用同水平軸)。多數危害氣體外觀為無色、透明狀態,僅使用可見光鏡頭,是難以察覺的。另MR170同軸影像攝影機只擷取10%進光量,導致畫面對比模糊(如圖16),往往須結合遠距即時影像監視系統的全功能彩色攝影機,協助觀察環境概況,就教學經驗,即使為一熟手,其作業時間約需5至10分鐘左右。而RAPID的問題則在於攝影鏡頭與紅外線接收鏡頭為同水平軸,當進行俯仰掃描時,兩者角度同步,但進行水平掃描時,若距離不足時,將產生角度偏差(如圖17)。

圖 16 MR170 偵檢畫面

資料來源:陸軍核生化偵檢車操作手 冊(第一版)

圖 17 RAPID 偵檢書面

資料來源:筆者拍攝

(三)反應靈敏度不符作戰實需

根據相關裝備操作手冊與資料顯示,MR170與RAPID執行偵檢作業時, 目標物與環境背景溫度需達一定溫差才可偵檢。因此,若污染物質與環 境背景溫差相近時,污染物質難以偵檢。又因其單位最小瞬時視場需求 較大,若以5公里計,目標橫寬皆需100公尺以上,才有顯著反應。

(四)夜間監視能力不佳

MR170與RAPID皆使用可見光鏡頭,且鏡頭進光量較低,於夜間作業時,若無充足光源,將導致畫面能見度不佳,嚴重影響夜間作業能力。

運用高光譜顯像儀之助益

一、高光譜顯像儀簡介

加拿大Telops儀器科技公司(以下簡稱Telops公司)研發出一套名為「FIRST」系列之紅外線遙測高光譜顯像儀(Hyper-Cam),以光譜解析度較高之傅立葉紅外線光譜儀,對某物質之連續光譜波段進行感測,整合物質空間與光譜資訊之系統¹⁵,其偵測原理後續說明。

此系列包含了三種型式之顯像儀(如表2與圖18),而此三種不同型號儀器,

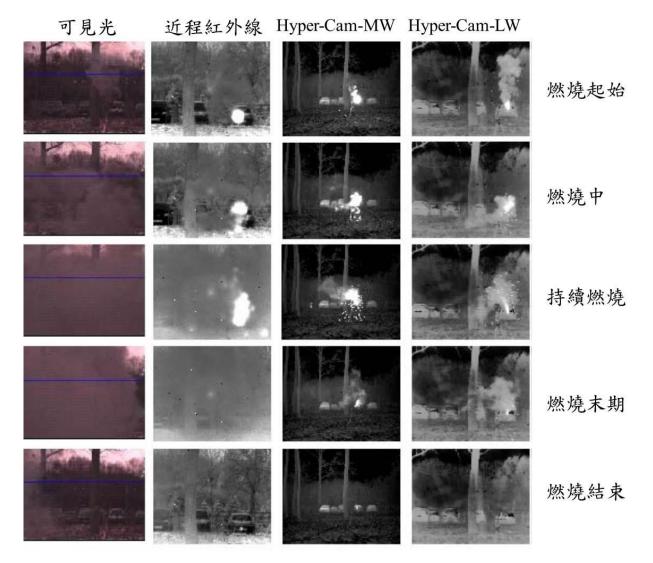
^{15.}同註9,頁1。

除偵檢紅外線波長與光譜範圍差異外,所適用的環境條件也不同(如表3)。

表 2「FIRST」系列各型高光譜顯像儀

儀器型式	Hyper-Cam-LW	Hyper-Cam-MW	Hyper-Cam-MWE
中文譯名	長波型 高光譜顯像儀	中波型 高光譜顯像儀	中波擴展型 高光譜顯像儀
偵檢波長範圍 (μm)	7.7-12	3-5.5	1.5-5
波數(cm ⁻¹)	900-1250	1800-3300	2000-6600
紅外線類別	遠程紅外線	中程紅外線	近、中程紅外線

資料來源: Telops 公司網站-產品簡報 圖 18「FIRST」系列高光譜顯像儀


資料來源:Telops 公司網站-產品簡報 表 3「FIRST」系列各型式高光譜顯像儀適用條件

儀器型式	適用條件		
Hyper-Cam-LW	常溫下環境氣體雲團及部分氣、液體物質之測量		
Hyper-Cam-MW	目標溫度高於環境溫度		
Hyper-Cam-MWE	適用於高溫環境之目標測量		

資料來源:Telops 公司網站-產品簡報

以燃燒煙幕為例,分別於可見光、一般紅外線與Hyper-Cam-MW、Hyper-Cam-LW鏡頭下之影像顯示效果比較(如圖19),可得知成像差異,使用可見光或近程紅外線鏡頭畫面易被煙幕覆蓋,而使用Hyper-Cam-MW鏡頭畫面中,雖可呈現污染源位置,但與環境背景對比相近,不利使用者判斷;惟使用Hyper-Cam-LW鏡頭之畫面,可輕易顯示污染源,利於使用者快速搜尋。

圖 19 各鏡頭下煙幕顯像效果

資料來源: Telops 公司網站-產品簡報

綜上所述,可發現Hyper-Cam-LW長波型高光譜顯像儀(以下簡稱HCL)較適合用於搜尋污染源,故本文僅針對本項裝備進行分析與研討。

遠距遙測技術係指從遠端拍攝含有物體光譜反射資料之影像,再進行光譜 的處理及分析,用以辨別物體種類與變化之一種技術。傳統遙測技術因波段數 只有3~7個,因此稱為多光譜遙測,遙測波段範圍大都落在可見光及近紅外線 上。

HCL係捕捉來自目標物所發散之紅外線,本身不具備紅外線發射源,屬於被動式偵檢方式,其成像原理與HCL內部光學運作原理係將單點的物體光譜觀測組成陣列式影像觀測,所獲得的影像每個像素都包含完整且連續之光譜資料,因此又稱為成像光譜儀。由於獲得的影像通常具有數十至數百個較窄的波段資料,含有豐富且細緻的地物光譜反射資訊。為了與只有數個波段的多光譜影像有所區分,成像光譜儀所獲得的影像又稱為高光譜影像(如圖20)。

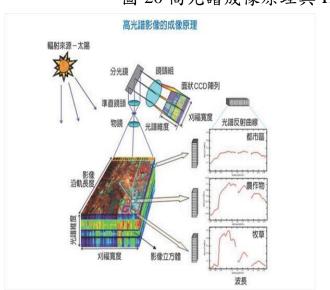


圖 20 高光譜成像原理與 Hyper-Cam-LW 光學原理

移動器

ADC 數據輸出

控制線路

固定-反射鏡

欲測樣本

分光鏡

望遠鏡

偵測器 聚光鏡

景像陣列偵測器

資料來源:科學發展期刊-416期

資料來源:Telops 公司網站-產品簡報

HCL基本配備包含:高光譜顯像儀、攜行箱、3.5倍率鏡頭、電源供應器、強固型筆電、系統軟體、同軸可見光鏡頭、三角固定架等8項,功用說明如後(如圖21)。

圖 21 基本配備圖示

- 1.高光譜顯像儀
- 2.攜行箱
- 3.3.5 倍率鏡頭
- 4. 電源供應器
- 5.强固型筆電
- 6.系統軟體
- 7.同軸可見光鏡頭
- 8.三角固定架

資料來源: Telops 公司網站-產品簡報

(一)Hyper-Cam-LW 長波型高光譜顯像儀

- 1. 具永久免校正特性。
- 2.可自動校正物體與環境背景之溫度,減少紅外線產生偏差。
- 3.光譜解析度為 0.25 至 150 波數(cm-1)。
- 4.背景溫差達 0.1℃即可偵檢。
- (二)攜行箱:具氣密、防掉落、抗撞擊之堅固儲存箱,附有可伸縮把手及滾輪, 利於拖行。

- (三)3.5 倍率鏡頭:可將主機標準配備鏡頭放大 3.5 倍。
- (四)電源供應器: 28 伏特直流電或 120-240 伏特交流電(0-60HZ)。
- (五)強固型筆電:使用複合材質塑料加以包覆,強化筆記型電腦抗摔、抗壓能力。
- (六)系統軟體:包含 RVL Suite 軟體套件與 RVL D&I 軟體 2 種標準軟體。
 - 1.RVL Suite 軟體套件:用於偵檢器與數據資料管理之套件,可顯示圖譜、標定、分析、讀取數據與感測器各項設定。
 - 2.RVL D&I 軟體:用於氣體連續監測。可同時偵檢與顯示多種氣體,進行標色,突顯物質種類與濃度,另可設定偵檢敏感值、偵檢結果顯示方式,且可自動執行參數校正,並可對焦進行裝備操控、光譜資料庫管理與更新及偵檢紀錄檢視。
- (七)同軸可見光鏡頭:為紅外線鏡頭視野之四倍,採用同軸原理,確保目標標定。
- (八)三角固定架:於定點架設時,固定主機使用。

二、應用領域與使用限制

(一)應用領域

高光譜顯像之應用非常廣泛,主要包含異常物偵檢、目標識別與背景物特性分析¹⁶等3類(如圖22)。

- 工具常物偵檢」為在未知區域中搜尋與環境背景有顯著異常之物質,通常使用於軍事應用居多。
- 2.「目標識別」包含目標物偵檢、識別與分類。
- 3.「背景物特性描述」則包含地表、水文及大氣之觀測,如海岸線偵檢、 淺水區地形結構建立等運用。

高光譜影像應用 異常物偵測 目標識別 背景物特性描述 人為目標 天然特徵 偵測 辨識 地表 大氣 濕 搜 狀 改 分 物 地 礦 水 海 天 事 尋 變 質 洋 態 貌 建 監 監 救 異 偵 判 分 辨 汙 校 懸 物 物 援 地 控 測 定 析

圖 22 高光譜顯像應用

資料來源:筆者摘錄於「國家實驗研究院儀器科技研究中心-儀科中心簡訊第

^{16.}魏子軒,2007。高光譜影像分類辨識方法。儀科中心簡訊,第84期,頁14。

84 期」。

目前HCL已投入之應用領域包含實驗或研究應用、機載應用、工業應用、環境保護應用與軍事應用等5類,如表4。

表 4 HCL 應用領域

應用領域	列舉事項
實驗或研究應用	地質或礦物研究、物體表面與發射率研究、大氣雲團研究、 農林產業研究
機載應用	地表探測、大氣探測
工業應用	儲槽或管線監控、作業區管制、火源測量
環境保護應用	有害物洩漏監控、大氣成分監控
軍事應用	氣體雲團檢測、火箭或導彈等目標分析

資料來源:Telops 公司網站-產品簡報

(二)使用限制17

- 1. 偵檢目標僅適用於波長 7.7-12μm 之光譜範圍。
- 2.裝備操作環境溫度為-20℃至40℃區間。
- 3. 偵檢距離可達 5 公里。
- 4.目標物與環境背景溫差須至少相差 0.1℃即可偵檢。
- 5.偵檢極限為十億分之一(1ppb)。
- 6.可偵檢物質種類,包含氯化氫等 101 種毒性化學物質、12 種化學戰劑(如表 5)。
- 7. 干擾因素:同 MR170。

表 5 可偵檢物質種類

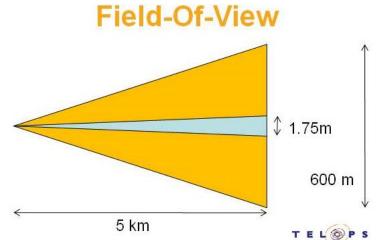
毒性化學物質(共 101 種)				
氯化氫	硝酸	二氧化硫	氨氣	
羧酸	光氣	硫化氫	異氰酸甲酯	
二甲苯	苯環	甲苯	乙硼烷	
氰化氫	乙苯	氟化氫	甲矽烷	
砷化氫	甲鍺烷	甲醛	乙醛	
次氯酸	二氧化硫	三氫化砷	醚類*等7種	
醛類*等2種	醇類*等4種	酯類*等2種	酮類*等3種	

^{17.}加拿大Telops公司,http://www.telops.com。

第 101 頁

烷烴類*等4種	聚合物*等7種	芳香族化合物* 等5種		無機鹽類* 等7種	
磷酸鹽類*/磷化氫* 等3種	胺類*/氨基化合物* 等8種	硫化物*/硫醇類* 等4種		烯烴類*/炔烴類* 等 5 種	
氟氯化烷類*/鹵代甲烷*/鹵化物*等 17 種					
化學戰劑(共 12 種)					
神經戰劑類	泰奔 GA	沙林 GB		梭曼 GD	
	六環沙林 GF	VX 神經戰劑		神經毒劑模擬劑 DMMP	
血液戰劑類	因偵檢波長關係,血液毒劑類多屬於中波,故偵檢可信度 較低。				
糜爛戰劑類	芥氣 HD		路易士劑		
窒息戰劑類	光氣 CG		三氯硝基甲烷 PS		
催淚劑	氰溴甲苯 CA				
喪能劑	BZ 戰劑				

資料來源:筆者彙整


三、分析比較

於化學戰或毒化災狀況下,需快速應變,故檢測污染種類與概略範圍,為 劃分危害區域、啟動防護與應變之重要依據,因此,HCL具下列優點,以彌補 現行化學遠距遙測裝備之不足。

(一)快速標定污染範圍

- 1.掃描模式分為定點或手動監測掃描,掃描範圍為水平±180°、俯仰±90°。
 - (1)定點監測掃描:可針對某一固定角度與方位進行偵檢或監測。
 - (2)手動範圍掃描:若欲偵檢某一區域範圍時,僅可使用手動旋轉三角支 撐架進行掃描,因反應時間幾乎同步,有利於搜尋範圍區域內之污染 源頭。
- 2.鏡頭之單位最小瞬時視場表示偵檢目標物所需最小橫寬。當目標物橫寬 小於單位最小瞬時視場時,將造成無法偵檢情形,而 HCL 之最小瞬時 視場為 0.35 毫弧度角。以 1 公里距離計,目標物約需 35 公分以上,以 5 公里計,目標物則需約 1.75 公尺以上(如圖 23)。

圖 23 HCL 單位最小瞬時視場示意

資料來源:Telops 公司網站-產品簡報

(二)簡易辨識監測結果

若在已知目標物種類狀況下,或欲搜尋某特定種類氣體時,則可利用「RVL D&I軟體」對氣體種類或濃度進行標色,透過畫面即可瞭解各污染氣體空間分布情形,並從顏色深淺程度研判污染源位置與濃度分布,以利使用者直覺判讀,適用於環境監測及複合氣體環境中,尋找某特定或多種有害氣體時(如圖24)。

圖 24 RVL D & I 軟體操作畫面及連續監測畫面

**** The proof the state of the state

資料來源:Telops 公司網站-產品簡報

(三)反應靈敏偵檢精準

- 1.HCL 接收目標光源至反應時間,最短僅需 1.2 秒(128 × 128 影像畫素), 偵檢物質與環境背景溫差達 0.1℃即可偵檢。
- 2.HCL 光譜掃描範圍為 7.7μm 至 12μm,屬於長程紅外線範圍,越精密的 光學系統,接收紅外線波長越精準,光譜間干擾亦越小,惟可能測得的 物質種類會因此變動,但可大幅提升其準確度。
- 3.HCL 可偵檢物質
 - (1)毒性化學物質部分計有氯化氫等 101 種。
 - (2)化學戰劑部分依分類有神經戰劑類(含模擬劑)6種、糜爛戰劑類與窒息戰劑各2種,以及催淚劑與喪能劑各1種,合計共12種。

(四)畫面顯像不分畫夜

HCL除使用同軸鏡頭概念外,另結合紅外線顯像技術,透過RVL D&I軟體運算與分析,使得環境背景與污染氣體同時顯示於畫面,讓使用者一目瞭然,無論日、夜間皆有利於搜尋污染源(如圖24)。

圖 24 HCL 操作主書面

資料來源:Telops 公司網站–產品簡報

結語

化學遠距遙測偵檢器如同偵檢作業人員的千里眼,提早掌握污染物質正確 資訊,對於作業人員越有利。化學遠距遙測之優勢在於:一、不需接觸化學物 質即可監測,減少作業人員暴露風險;二、早期預警,先期準備;三、具機動 性,於戰場環境下,提高作業人員存活率;四、利於劃分危害區域;五、可隨 時監控污染區域變化,隨時應變。

遠距遙測偵檢器的趨勢是朝向高度偵檢精準,因此,越精準的偵檢儀器, 對使用者更顯重要。本文探討之新式高光譜顯像儀,除可突破現行化學遠距遙

測偵檢器之使用限制,更可有效改善反應靈敏度、污染源掌握、畫面成像方式與夜間作業能力等運用窒礙。惟目前 HCL 未具備定向能力,無法標定污染區域之左右邊界,導致難以劃分危害區域。經文獻蔥研,建議可採現行 MR170 車用載台模式加以改善,使 HCL 同樣具備標定方位能力,功能更趨完善,俾利解決現行裝備運用之問題,有效提升化學遠距遙測作業效益。

參考文獻

一、準則、手册

- (一)陸軍核生化偵檢車操作手冊(第一版)
- (二)軍備局中山科學研究院,陸軍司令部核生化偵檢車案-單位操作保養手冊。
- (三)RAPID 化學遠距遙測預警器操作/維護技術手冊

二、期刊、論文

- (一)羅陽青、〈以氣態紅外線光譜儀發展毒氣遙測系統的可行性〉《核生化防護學術季刊》,第67期,2000。
- (二)尤進州、〈化學戰劑遠距遙測技術之發展與運用研析〉《核生化防護學術半 年刊》,第81期,2006。
- (三)彭義丞, 〈I-SCAD 化學遠距遙測偵檢器簡介〉《核生化防護學術半年刊》, 第 91 期, 2011。
- (四)賴維祥、陳菁菘、陳震宇著,〈高光譜遙測影像辨識系統之研發與建置〉 《工程科技通訊》,4月刊,2007。
- (五)王儷蓉,〈高光譜資料之光譜差異分析及量化指標〉《航測及遙測學刊》, 第4卷,第1期。1999。
- (六)徐百輝、〈大地的辨識密碼-高光譜影像〉《科學發展》,第416期,2007。
- (七)蔡東霖、陳用佛,〈高光譜影像技術在鑑識科學上之應用〉《中央警察大學警學叢刊》,第43卷,第4期,2013。
- (八)魏子軒,〈高光譜影像分類辨識方法〉《儀科中心簡訊》,第84期,2007。
- (九)李龍正,〈高光譜影像儀發展及影像市場前景〉《科儀新知》,第 142 期, 2004。
- (十)李龍正,〈高光譜影像儀 ISIS 及 FUHSI〉《科儀新知》,第 161 期,2007。
- (十一)徐百輝,曾義星、《高光譜影像特徵萃取方法之探討》《航測及遙測學刊》, 第5卷,第2期,2000。
- (十二)林宜賢,〈紅外線感測器介紹與應用〉《101年度高瞻計畫》,2011。

三、網站資訊

(一)加拿大 Telops 公司,http://www.telops.com。

- (二)瑞士蘇黎世 ABB 股份有限公司, http://www.abb.com。
- (三)德國 Bruker 生命科學股份有限公司, http://www.bruker.com。
- (四)國立中央大學普通物理教學實驗室-麥克森干涉儀, http://uep.phy.ncu.edu. tw/general-physics/expcourse/second-semester/michelson/。
- (五)泛科學網站, http://pansci.asia/。
- (六)權信企業股份有限公司網站,http://www.jointsecu.com.tw/。
- (七)Dayuzen 公司網站,http://www.dayuzen.com.tw/。
- (八)Telops 公司台灣代理商高田科技有限公司,http://www.kaoten.com/。
- (九)韓昊個人部落格, http://blog.xuite.net/lapuda.chen/PaulBlog/221866406
- (十)國家實驗研究院國家太空中心,http://www.narlabs.org.tw/。
- (十一)國立成功大學衛星資訊研究中心,http://ir.lib.ncku.edu.tw/。
- (十二)東海大學普通物理實驗室,http://phys.thu.edu.tw/。
- (十三)蔡富安-遙測原理簡介, http://gcl.csrsr.ncu.edu.tw/。
- (十四)張慧如-GIS、GPS、RS 原理與應用, http://www2.thu.edu.tw/。
- (十五)中國科學院網絡化科學傳播平台,http://159.226.2.2:82/。