中國大陸空中核武載具的現代化

講師 林宗達

空基、海基與陸基之三位一體的戰略嚇阻力量,乃是中國大陸建立核武嚇阻戰略的重要憑藉。當前,人民解放軍在建構陸基與海基戰略核子武力(land-based and sea-based strategic nuclear force)取得重大突破與成就之時,空基戰略核子武力(air-based strategic nuclear force)亦在積極努力之中,並已有可觀之成果。

基本上,中國大陸的空中核武載具主要可分成兩大部分:一為酬載核子炸彈或核子飛彈(nuclear bomb or nuclear missile)之戰鬥攻擊/轟炸機與戰略轟炸機(strategic bomber);二是可以配備核子彈頭的巡弋飛彈(cruise missile with nuclear warhead)。據此,以下將先從論述中國大陸的戰鬥攻擊/轟炸機、戰略轟炸機與巡弋飛彈,而後再進行其現代化的發展之評論與分析。

在中國大陸的核武載具中,除了陸基之彈道飛彈與攻陸巡弋飛彈(land attack cruise missile, LACM)以及潛射彈道飛彈(submarine-launched ballistic missile, SLBM)與潛射巡弋飛彈(submarine-launched cruise missile, SLCM)之外,事實上,還有空中載具-戰鬥機或轟炸機,如此才能真正構成戰略核子武力之「鐵三角」("iron triangle")。然就當前的核子武器中,最為空中戰鬥機或轟炸機青睞者,則莫過於空射式巡弋飛彈(air-launched cruise missile, ALCM),而此亦是目前中國極力發展的攻陸武器之一。所以,本文以下所要探討的就是中國之戰鬥攻擊/轟炸機、戰略轟炸機與ALCM等核武載具之現代化。

戰鬥攻擊/轟炸機

當前中國大陸可以用於核武作戰之用的 戰鬥攻擊/轟炸機,主要有強五(Q-5,另有一 個英文代號是A-5,後均以A-5統稱之)攻擊 機、殲轟七(JH-7)戰鬥轟炸機與Su-30MKK 戰鬥轟炸機等三者。對此,以下將逐一論述 之。

一、A-5攻擊機

A-5攻擊機是中國大陸自行研發的戰鬥攻擊機,亦是中國大陸第一代超音速攻擊機與目前生產最多的攻擊機(各型A-5攻擊機的生產數量高達1,000架)。此型攻擊機於1958年開始研製,但因技術瓶頸的問題,所以延遲至1969年才服役,而在1970年代才進行量產。基本上,A-5攻擊機雖是以MiG-19戰鬥機的技術為基礎而設計者,但事實上,無論是飛機的外型和氣動力學,乃至於配載的武器,

兩者均有極大之差異。¹

A-5攻擊機的機長15.65公尺,翼展9.68公尺,機高4.33公尺,飛機空重6,400公斤,最大武器酬載量為1,500公斤(A-5I型可達2,000公斤)。此型攻擊機配備兩具渦噴-6(WP-6)渦輪噴氣發動機,這兩具發動機加後燃器的最大推力可達6,500公斤,使其最大水平飛行速度可達1,210公里/時(1.112馬赫),並可以807公里/時進行巡航飛行。除此之外,如果採取低-低-低的攻擊作戰途徑,A-5攻擊機的最大作戰半經最少可以達到400公里,但若是以高-低-高的攻擊作戰途徑,則最大作戰半徑可達600公里。基本上,A-5攻擊機的續航力為1小時55分,最大航程2,000公里以上,但因缺乏空中加油設備,故無法進行空中加油。2

A-5攻擊機的標準武裝配備主要有兩門 Type 23-III型23毫米空用機砲(可配備100發 23毫米砲彈),除此之外,該機最少還有五個 武器掛載點,且最多可增設至10個武器掛載 點。如此之設計,使得A-5攻擊機可以選擇掛 載200公斤、250公斤或500公斤之一般炸彈或 反跑道炸彈,BL755型之600磅的集束炸彈以 及兩枚400公升之可抛式汽油彈。³

事實上,A-5型攻擊機經過多次改良,然在此之中,較受關注的改良機型則有A-5M攻擊機。這是中國大陸與義大利航太(Aeritalia)公司共同對A-5攻擊機進行改良的攻擊機。這項改良計劃於1986年簽約,最重要改進的內容乃是增強航電系統。為此,義大利航太公司將一種類似於AM-X攻擊機所使用的導航攻擊系統,整合於A-5攻擊機之機艙航電系統之中,藉以加強其攻擊性能。4

全新的A-5M攻擊機具有較佳之操作性能、導航設備、武器射控系統,武器酬載量也大幅提升,最大的酬載武器重量可達3,000公斤。5然A-5M攻擊除了具有較佳的對地攻擊能力之外,空戰性能亦有所增強。因為,這種改良型的A-5M攻擊機可以掛載中國大陸自製的PL-2或PL-7兩種空對空飛彈。6這項A-5M攻擊機的改良計畫歷時四年半,直到1991年才開始進入量產。值得關注的是,經過改良的A-5M攻擊機也具有核子作戰的性能,因為在必要之時,此型攻擊機亦可以攜

- 1 〈強-5〉,《維基百科》,最新日期:2012年12月14日, http://zh.wikipedia.org/wiki/%E5%BC%BA-5.
- 2 "Q-5 Ground Attack Aircraft," Sinodefense.com, Last Update: 15 October 2012, http://www.sinodefence.com/airforce/groundattack/q5specifications.asp.
- 3 Ibid.
- 4 陳建德,〈中共空軍戰術打擊部隊〉,《全球防衛雜誌》,第37期(1987年9月),頁97-99。
- 5 〈中共與與義大利歷時四年半合作研製A-5M攻擊機開始生產〉,《中國時報》,1991年1月13日,版十。
- 6 PL-2霹靂二型短程空對空飛彈,其射程約在3公里,水準相當於美國第一代AIM-9B響尾蛇飛彈之戰力, 目前已經停產。而 PL-7霹靂七型短程空對空飛彈是中共仿造法國Magic-R550紅外線導引飛彈,具有全方 位之攻擊能力,最高速度2.5馬赫,最大射程在7公里,性能十分優異,其空戰水平約與臺灣的天劍一型飛 彈相當。林長盛,〈解放軍之機載武器〉,《解放軍的武器裝備》(香港:明鏡出版社,1996),頁207-301。

二、JH-7戰鬥轟炸機

帶一枚具有10萬噸TNT威力的核子彈。綜觀 而論,A-5M攻擊的生產數量高達400架,正 因如此,所以此型攻擊機在中國大陸空軍的 對地作戰任務方面,具有不可輕忽的地位。⁷

自從1990年代中期起,即有許多消息 指出中國大陸已經部署一種新型的戰鬥轟炸 機一JH-7,⁸然依據中國大陸在自1980年代末 和1990年代初時,即已展示此型戰機而論, ⁹事實上,可能在1990年初,JH-7戰鬥轟炸機 早就在人民解放軍中展開測試和相關作戰部 署作業。¹⁰

依據推測,中國大陸研發此型戰鬥轟炸機可能有二十年以上的歷史,而JH-7戰鬥轟炸機所強調的是低空穿透的作戰性能。中國大陸軍方對其期望甚高,寄望此戰鬥轟炸機能夠具有如同西方先進國家戰鬥轟炸機之作戰性能,能以接近音速之高速在數10公尺至100公尺之間的低空進行巡航飛行,藉此躲避敵方防禦雷達之搜索。"北京的軍事專家認

為JH-7戰鬥轟炸機能以接近一馬赫的速度貼 地飛行,故並無亞於一些先進國家同級攻擊 機的作戰性能。然如此之性能,可能會對臺 灣的低空天網雷達防空系統,造成極大的威 脅。¹²

的確,JH-7戰鬥轟炸機是目前中國大陸 自行研發的戰鬥轟炸機中,最為優異的對地 攻擊之戰鬥轟炸機。此型戰鬥轟炸機之作戰 半徑大約1,000~1,500公里,最大航程3,575 公里,最大起飛重量是28,475公斤,最大武 器酬載量高達6,500公斤,最大飛行速度約為 1.7馬赫,最高飛行高度為15,600公尺,起飛 距離約為950公尺,著陸距離為700公尺,最 大G負荷是7g,可以近音速之速度,進行低 空巡航飛行。¹³

JH-7是一種具有強大攻擊火力之中國大陸新一代戰鬥轟炸機,固定武裝為一門110公斤重之改良型6-23型六管23公厘機砲,該機砲最高射速是6,000發/分,這是JH-7戰鬥轟炸機最為重要之對地攻擊武器。此外,JH-7

- 7〈中共與與義大利歷時四年半合作研製A-5M攻擊機開始生產〉,《中國時報》,版十。
- 8〈殲轟七完成部署〉,《中央日報》,1995年4月26日,版七。
- 9 JDW在1988、1990年均曾對JH-7行報導,而其在1988年9月10日之報導中即指出,該機是在西安飛機製造廠、測試,可以攜帶C-801反艦飛彈和PL-5B之短程空對空飛彈,最大速度則在1.7-1.8馬赫左右。JDW, "Chinese B-7 set for November take off," Jane's Defense Weekly, Vol. 10 No. 10 (10 September 1988), p. 505; JDW, "China hopes for Supper-7 restart," Jane's Defense Weekly, Vol. 13 No. 8 (24 February 1990), p. 328.
- 10 JDW, "First flight set for Supper-7," Jane's Defense Weekly, Vol. 18 No. 11 (12 September 1992), p. 9.
- 11 〈飛豹殲轟機殲轟七的外銷型〉,《聯合報》,1998年11月15日,版十三。
- 12 〈飛豹轟炸機 將參加十一閱兵〉,《中國時報》,頁1999年9月21日,版十四。
- 13 〈中共發展新型轟炸機〉,《聯合報》,1988年9月19日,版二;〈民族之鷹—飛豹戰機〉,《航天》(北京),第4期(2000年4月),頁4;編輯部,〈珠海航空展的各型飛行表演機〉,《全球防衛雜誌》,第 173期(1999年1月),頁22-3;〈殲轟-7〉,《維基百科》,最新日期:2012年11月26日,http://zh.wikipedia.org/zh-hk/%E6%AE%B2%E8%BD%9F-7.
- 14 黃河, 〈轟七最新實況大揭密〉, 《全球防衛雜誌》, 第161期(1998年1月), 頁42。

戰鬥轟炸機至少有10個武器掛載點,能夠配備中國大陸自製各型空射式反艦飛彈,包括C-601反艦飛彈、C-801反艦飛彈和C-802反艦飛彈、新型C-803超音速反艦飛彈,和俄製的Kh-65SE次音速巡弋飛彈、Kh-31A高速反艦飛彈(high speed anti-ship missile)和Kh-31P高速反輻射飛彈(high speed anti-radiation missile)、Kh-41蚊式(Mosquito)空射式反艦巡弋飛彈(air launched anti-ship cruise missile)。¹⁴

JH-7除了具有極佳之低空穿透能力和 強大火力之外,此型戰鬥轟炸機亦是中國 大陸現役自製作戰飛機中,航電設備較為 先進的。JH-7戰鬥轟炸機配備數十種中國 大陸最新研製的電子設備,包括全球定位 系統(global positioning system, GPS)之衛星 導航設備系統、電子反制(electrical counter measurement, ECM)和電子反反制(electrical counter-counter measurement, ECCM)裝置、對 空和對地射控雷達,以及對敵破壞雷達與紅 外線設備等。¹⁵

值得關注的是,JH-7未來可能配備中國 大陸新型的I/J-band雷達,以增強其對空作戰 的能力,此型雷達的對空搜距離為104公里, 可以同時追蹤15個目標,並同時攻擊4-6個空中目標。這套雷達系統也可以搭配俄羅斯的AA-10空對空雷達半主動導引飛彈和AA-12空對空雷達主動導引飛彈,使其對空的作戰能力可以延伸至100公里之外。¹⁶

中國大陸人民解放軍空軍和海軍航空 兵在二十一世紀初,就已經計劃採購85架的 JH-7攻擊戰機,並發展電子作戰用的JH-7電 戰機。¹⁷平實論之,中國大陸部署如此之武 力,對其海空軍之攻擊武力的提升,實有 莫大之助益。另外,更值得關注的是,依 據《詹氏防衛週刊》(Jane's Defence Weekly, JDW)之報導,中國大陸在1990年代發展射 程遠達2,000~3,000公里的紅鳥三型(HN-3, Hong Niao-3)艦射和潛射巡弋飛彈,以及依 此發展的HN-3(長劍-20, CJ-20)空射式巡弋飛 彈,應會裝配於殲八II型和殲十一型戰機,¹⁸ 據此論之,JH-7戰鬥轟炸機既是現今中國大 陸海空軍最為主要的攻擊武力之一,所以此 型戰機未來應該也會配備此CJ-20巡弋飛彈 這種長程之對地/對艦攻擊武器。然若是這 種低空穿透能力甚強的攻擊戰機,配合長程 巡弋飛彈(long-range cruise missile, LRCM)攻

- 15 李溪, 〈飛豹略影—中國新型戰機FBC-1〉, 《兵器知識》,總135期(1999年1月),頁6-7。
- 16 Andrei Pinkov, "China unveils two new radar control system," Jane's Defense Weekly, Vol. 30 No. 25/56 (23 December 1998), p. 15.
- 17 〈中共戰機發展現況〉,《國防譯粹》,第27卷第11期(2000年11月),頁103。
- 18 HN-3(Hong Niao-3)紅鳥三型巡弋飛彈,是一種射程介於2,000~3,000公里的長程巡弋飛彈,依照詹氏防衛週刊所述,此型飛彈共有二種型號,其分別為HN-3A和HN-3B,前者為陸射型,而後者則為艦射和潛射型,此二型飛彈的最大飛行速度約在0.9馬赫,巡航高度則是在10~20公尺,1998年時,此型飛彈已經進入服役的作戰評估當中。Duncan Lennox, "More detail on Chinese cruise misile programme'," Jane's Defense Weekly, Vol. 34 No. 10, p. 19; Duncan Lennox, "China's new cruise missile programme 'racing ahead'," Jane's Defense Weekly, Vol. 33 No. 2 (12 January 2000), p. 12.

擊航艦戰鬥群或是重要軍事戰略據點,無疑的,它將會是當前臺灣、日本、駐日美軍與 美國西太平洋之軍事基地,以及航空母艦戰 鬥群等之頭號殺手。¹⁹

三、Su-30MKK戰鬥轟炸機

Su-30MK戰鬥轟炸機是Su-27戰機衍生型中最具對地攻擊威力的戰鬥機。事實上,Su-27系列戰機除了極具優異的空中作戰性能外,亦是一種具有極強大對地攻擊火力的戰鬥轟炸機,而在此之中,Su-30MK雙座戰鬥轟炸機,即是一種類似美國F-15E之對地攻擊型的戰鬥轟炸機。²⁰

的確,Su-30MK戰鬥轟炸機原本許多設計就是針對如美國F-15E戰鬥轟炸/攻擊機(F-15E是一種兼具空優和攻擊雙重任務的戰鬥轟炸機,其任務分配比例空優占30%,攻擊占70%)之攻擊性能,而設計的一戰鬥和攻擊轟炸雙用之戰鬥機。²¹

Su-30MK戰鬥轟炸機之發展是以Su-27UB戰鬥教練機為基礎所研製之雙座攔截 機-Su-30戰鬥機衍生而來的。基本上,俄羅 斯空軍將Su-30戰機的理想標準,乃是設定可 以進行長程打擊作戰任務(能夠進行多次空中 加油,使其滯空時間可超過10小時以上)之空優戰機。1993年此型戰機達到初步作戰能力的要求,並開始服役於俄羅斯空軍。據此,俄國進一步將Su-30戰機發展成為具有12個武器掛載點,以及能夠攜帶8,000公斤武器之多用途Su-30MK戰鬥攻擊機。²²

Su-30MK戰鬥轟炸機需有兩位飛行員操 作之,因此這是一種雙座戰鬥轟炸機。該機 之機身長21.9公尺,翼展寬14.7公尺,機高 6.4公尺,最大起飛重量38,800公斤。在海平 面的最大飛行速率是每小時1,350公里,高 空之最大飛行速度可達每小時2,400公里, 極速超過2馬赫以上,機內攜帶的燃料之最 大航程為3,000公里,使用兩具AL-31FP向 量推力噴射發動機。²³不過,Su-30MK戰鬥 轟炸機如若進行一次空中加油則其航程可延 長至5,200公里。該機有12個武器掛載點, 最大武器酬載量為8,000公斤。基本武裝則 是Gsh-301機砲一門,而其12個武器掛載點 則可攜帶R-73E(AA-11)紅外線導引之短程空 對空飛彈、R-27ER(AA-10C)、R-27ET(AA-10D)和RVV-AE(R-77, AA-12)等中程空對空飛 彈、Kh-29L/T中程雷射或電視導引空對地飛

- 19 林宗達,〈人民解放軍空軍〉,《赤龍爭霸-中共跨世紀的軍事戰略與武力建構》(臺北:軍事迷文化, 2002),頁68。
- 20 于青雲, 〈俄羅斯武器系統現代化-第五代俄式戰機〉, 《尖端科技》, 第161期(1998年1月), 頁59。
- 21 Charles Bickers, "Strike role for Flanker," Jane's Defense Weekly, Vol. 17 No. 10 (7 March 1992), p. 389; JDW, "Sukhoi Su-27 flanker fighter in close-up", Jane's Defense Weekly, Vol. 8 No. 7 (22 August 1987), p. 338. **pp. 338-9.**
- 22 APDR, "Sukhoi's formidable Flanker family," Asia-Pacific Defense Reporter, Vol. XXV No. 3 (April/May 1999), p. 68.
- 23 "Su-30 MKI (Flanker-H) multirole fighter," RIA Novosti, Last Update: 18 March 2014, http://en.ria.ru/infographics/20091125/156980751.html.

彈、Kh-59M空對地長程雷達導引飛彈、Kh-31P(反輻射)和Kh-31A(反艦)等空對地雷達導引飛彈。²⁴

配備兩具AL-31FP向量推力噴射發動機的Su-30MK戰鬥轟炸機,可以採取大角度的攻擊與戰鬥行動,而具有傲視全球第四代戰鬥機之運動性能,且其座艙設備也是在此之前的俄製戰機所不能及。Su-30MK戰鬥轟炸機總共有6具LCD、5具MFD-55和1具MFD-66接受指令與訊息之彩色顯示器,所有的作戰行動均可透過顯示器展現之。²⁵

不僅如此,事實上,Su-30MK戰鬥轟炸機為了突破傳統俄製戰機之航電系統不如西方先進國家戰機的缺陷,特地進行整合國內外航電製造商的航電系統。所以Su-30MK戰鬥轟炸機的航電系統,除了擁有俄製的航電裝備之外,還有來自六個國家之14家外商的航電裝備。26因此,Su-30MK戰鬥轟炸機的航電設備相當先進。另外,此型戰鬥轟炸機還配有先進的衛星導航系統、抬頭顯示器(Head Up Display, HUD)、射控系統與ECM等航空飛行與作戰電子裝備,特別是這種戰鬥轟炸機所配備之武器系統運作機(weapons systems

operator, WSO),更是一種相當精密的配備。 WSO可以讓駕駛員在進行飛行任務之際,還可處理空對空、反戰車導引武器與ECM作戰等任務。因為WSO能夠提供駕駛員相當清楚與更多細節之導航、對地雷達繪圖和標定目標等資訊,以利於駕駛員進行反戰車武器、導引飛彈與ECM任務之執行。而前座之駕駛員則可經由頭盔瞄準器,做為執行作戰任務的傳感器。²⁷此外,不同於以往的俄製戰鬥機,Su-30MK戰鬥轟炸機也更加注重駕駛員的生命安全,而配備安全性更高的K-36D-3.5新型彈射椅。²⁸

Su-30MK戰鬥轟炸機於1997年7月1日, 進行首次試飛,2000年定型生產,直到2009 年9月之際,就已經生產超過120架以上此型 戰鬥轟炸機。Su-30MK戰鬥轟炸機的市價大 約為4,000萬美金。²⁹但相當有趣的是,事實 上,Su-30MK戰鬥轟炸機原先是為出口至印 度空軍而發展者。

依據蘇愷飛機公司(Sukhoi Company)的官方網站資料顯示,該公司於1994年與印度洽談Su-27戰機之後,隨即於1995年就在Su-30戰鬥轟炸機的基礎下,開始進行為印度

- 24 高雄柏, 〈改變空中優勢的戰鷹—Su-27/30戰機(下)〉, 《尖端科技》,第187期(2000年3月),頁50; "Su-30MK purchase on Chinese agenda," Jane's Defense Weekly, Vol. 32 No. 6 (11 August 1999), p. 12.
- 25 "Irkut/HAL Su-30MKI Air Dominance Fighter," Vayusena, Last Update: 19 March 2014, http://vayu-sena. tripod.com/info-su30mki.html#5.
- 26 "Su-30 MK," SUKHOI, Last Update: 18 March 2014, http://www.sukhoi.org/eng/planes/military/su30mk/history/.
- 27 "Irkut/HAL Su-30MKI Air Dominance Fighter," Vayusena, http://vayu-sena.tripod.com/info-su30mki.html#5.
- 28 "Su-30 MK," SUKHOI, http://www.sukhoi.org/eng/planes/military/su30mk/history/.
- 29 "Su-30 MKI (Flanker-H) multirole fighter," RIA Novosti, Last Update: 18 March 2014, http://en.ria.ru/infographics/20091125/156980751.html.

空軍而發展Su-30MK戰鬥轟炸機。1996年11月,雙方達成由俄羅斯的蘇愷飛機公司為印度製造8架Su-30MK雙座戰鬥轟炸機與32架Su-30MKI多用途雙座戰鬥轟炸機,俄羅斯同意在生產此型戰鬥轟炸機後,會逐漸提升該機的航電與武器作戰系統。2000年首架Su-30MK戰鬥轟炸機進行測試,2000年11月26日,首批先導型之3架Su-30MK戰鬥轟炸機出廠。2002年之際,俄羅斯將第一批10架Su-30MK戰鬥轟炸機交給印度;2003年再交給印度空軍12架Su-30MK戰鬥轟炸機,2004年則將其餘的18架Su-30MK和Su-30MK戰鬥轟炸機全數交給印度空軍使用。30

俄國依照Su-30MK戰鬥轟炸機,而發展出的Su-30MKK戰鬥轟炸機。Su-30MKK戰鬥轟炸機具有更為驚人的對地攻擊能力,該戰機配備現代化的多功能射控雷達和數位化的機載航電設備,大幅提升其對地和對空搜索追蹤之能力。尤其是所配載之ZHUK-27射控雷達,可以同時追蹤10個空中或地面目標,並導引空載武器攻擊其中4個目標,其裝置向量推力噴射發動機系統與新型射控雷達的Su-30MKK,在使用雷射導引的精靈炸彈之情況下,對點目標和海面目標的攻擊能力較Su-27的攻擊能力,增強了24倍和17倍,而軍事專家亦認為,此型戰鬥轟炸機的總體作戰效能

優於美國的F-15E戰鬥轟炸機。³¹然此,正是中國大陸所購置的機型。

依據《軍事平衡2012》(The Military Balance 2012)一書所載,中國大陸海軍航空兵所部署已經擁有24架Su-30MKK戰鬥轟炸機。³²不過,事實上,此項交易,早在2000年時,即已敲定。不僅如此,中國大陸還獲得俄羅斯技術轉移與授權製造的合約。

2000年年底,中國大陸獲得俄羅斯製的 Su-30MKK戰鬥轟炸機,並於2001年1月間進 行首次試飛,³³中國大陸將購自俄羅斯的Su-30MKK戰鬥轟炸機,部署於海軍航空部隊 中,以執行反艦作戰為其主要任務。中國大 陸並獲得俄羅斯授權在瀋陽飛機製造廠進行 此型戰機的仿製,北京更在「十五」計劃中 撥款1,200億人民幣給予空軍,用於與此相關 系列戰機的技術轉移之製造工程費用和採購 經費。³⁴

Su-30MKK戰鬥轟炸機在中國大陸的首 航和進行生產,代表著Su-30MKK戰鬥轟炸 機即將進入解放軍的作戰序列之中,並會大 量部署之,以增強中國大陸海空軍對地和對 海之攻擊戰力,然藉由Su-30MKK戰鬥轟炸 機的服役,將更使得解放軍空軍與海軍,已 真正由國土空防型的作戰態勢,邁向攻防兼 備的空中作戰武力。然從中國大陸即將發展

- 30 "Su-30 MK," SUKHOI, http://www.sukhoi.org/eng/planes/military/su30mk/history/.
- 31 蕭雨生,〈雄鷹利爪—Su-30MK-2向量推力戰鬥機〉,《全球防衛雜誌》,第152期(1997年4月),頁65。
- 32 The International Institute for Strategic Studies (IISS), "Asia: China," The Military Balance 2012 (London: Routledge, 2012), p. 237.
- 33 〈中共新一代戰機 首次飛航〉,《聯合報》,2001年1月17日,版十三。
- 34 〈蘇30共軍獲俄授權生產〉,《中央日報》,2000年11月7日,版九。

的CJ-20巡弋飛彈可能配備於Su-30MKK戰鬥 轟炸機來看,日後美國第七艦隊的航空母艦 戰鬥群面臨的威脅,Su-30MKK戰鬥轟炸機 將會甚於JH-7戰鬥轟炸機。

轟六戰略轟炸機

轟六(H-6,後均以此簡稱之)戰略轟炸機是1950年代中國大陸在蘇聯的授權下,以Tu-16獾氏(Badger)戰略轟炸機之藍圖為基礎而仿製的。H-6戰略轟炸機亦是目前中國大陸人民解放軍空軍之最為主要與唯一的戰略轟炸機,而該戰略轟炸機系列之H-6K,更是唯一被英國國際戰略研究所(International Institute for Strategic Studies, IISS)列為中國大陸的空基戰略核子武力。35

1958年,中國大陸與蘇聯簽署協議,由蘇聯的圖波列夫設計局(Tupolev Design Bureau)授權並協助西安飛機公司(Xian Aircraft Industrial Corporation)仿製蘇聯空軍的Tu-16戰略轟炸機,中國大陸將此定名為H-6戰略轟炸機。在蘇聯的技術支援下,一年之後,亦即是1959年時,首架仿製Tu-16之H-6戰略轟炸機進行首航。然好景不長,1960年中蘇交惡後,西安飛機公司因無法獲得與蘇

聯簽署協議中之供應20架仿製Tu-16戰略轟炸機的零件,致使這項戰略工程受到重挫。 不過,中國大陸極為努力地克服這些技術瓶頸,終於在1968年製造出第一架國產H-6戰略 轟炸機。³⁶

1971年時,美國的衛星已經拍攝到正在 進行訓練的H-6戰略轟炸機。1972年3月,美 國的中央情報局(Central Intelligence Agency, CIA)依據衛星資料評估,中國大陸至少已經 製造了32架H-6戰略轟炸機,並且還有19架即 將完成建造工程。³⁷由此可見,中國大陸應該 對H-6戰略轟炸機感到滿意,才會在短短的數 年之間,建造50架以上此型戰略轟炸機。

H-6戰略轟炸機的機長34.8公尺,翼展長33.0公尺,機高10.36公尺,空重37,200公斤,武器酬載量為76,000公斤,最大起飛重量為79,000公斤,作戰升限12,800公尺。H-6戰略轟炸機使用兩具中國大陸國產之渦噴-8(WP-8)渦輪噴射發動機,最高速度每小時可達1,050公里,並可以0.75馬赫(每小時768公里)巡航飛行,作戰半徑1,800公里,最大航程6,000公里。至於武器配備方面,H-6戰略轟炸機主要有兩門23毫米機砲,6枚空射式反艦飛彈,以及9,000公斤的炸彈。38

- 35 "Asia: China," The Military Balance 2015 (London: International Institute for Strategic Studies, 2014), p. 238.
- 36 "Xian H-6 Chinese Bomber," Military Weapons, Last Update: 16 April 2014, http://www.allmilitaryweapons.com/2011/10/xian-h-6-chinese-bomber.html.
- 37 Hans M. Kristensen, Robert S. Norris and Matthew G. McKinzie, "Estimates of Chinese Nuclear Forces," Chinese Nuclear Forces and U.S. Nuclear War Planning (The Federation of American Scientist and The Natural Resources Defense Council, November 2006), pp. 93-4.
- 38 "Xian H-6 Chinese Bomber," Military Weapons, http://www.allmilitaryweapons.com/2011/10/xian-h-6-chinese-bomber.html.

承前所論,中國大陸應該是相當滿意H-6 戰略轟炸機,所以才會從1968年至1990年代 末的三、四十年之間,製造了總計大約160架 H-6戰略轟炸機,且直到2013年時,中國大陸 還有120架相當良好的H-6戰略轟炸機為中國 大陸空軍執行勤務。³⁹

依據上述之論,H-6戰略轟炸機生產的 數量相當多,但這是所有H-6戰略轟炸機的集 總。事實上,中國大陸以最先出廠的H-6戰略 轟炸機為基礎,相繼衍生出多種不同性能的 H-6戰略轟炸機,甚至於有些並非是以對地轟 炸為主要任務,而是以偵察或電子作戰為主 要用途之機型。綜觀而論,以H-6戰略轟炸機 而改良的機種有以配載核子武器為主之H-6A 戰略轟炸機、偵察功能的H-6B轟炸/偵察 機、配備傳統武器的H-6C轟炸機、攜帶反艦 飛彈與攻擊航艦為主要任務之H-6D、進行核 子攻擊與反制作戰任務的H-6E戰略轟炸機。 1990年代起,中國大陸對H-6A和H-6C進行性 能提升,因而有了H-6F戰略轟炸機。與H-6A 和H-6C轟炸機不同的是,H-6F戰略轟炸機擁 有現代先進的導航系統,此包括GPS、都卜 勒導航雷達(Doppler navigation radar)與中途衛 星導航裝置(Intermediate Navigation Satellite, INS)。同時,中國大陸開始製造專門導引 陸基巡弋飛彈(ground-based cruise missile)之 H-6G戰略轟炸機,以及主要是配備ALCM之對陸攻擊作戰任務為主的H-6H戰略轟炸機。 ⁴⁰另外,1990年後生產的H-6S轟炸機中,還有配備以攻擊美國航空母艦為主要任務之 ASCM的H-6M戰略轟炸機。 ⁴¹不過,最令世人關注的是,近年來才公開亮相的H-6K戰略 轟炸機。

H-6K戰略轟炸機之所以引起世人矚目 之處,乃在於此型轟炸機不僅擁有其他H-6 系列之更高效率的俄製D-30KP-2渦輪噴射發 動機,而能夠大幅提升H-6K戰略轟炸機的 作戰半徑,使其從H-6戰略轟炸機之1,800公 里的作戰半徑,擴展至3,000公里。不過,更 為重要的是,H-6K戰略轟炸機加強了射控 系統之配備,以及可以裝載6枚射程2,000~ 3,000公里之長程空射式巡弋飛彈(air lauched cruise missile, ALCM)-CJ-20巡弋飛彈之作 戰能力。如此攻擊作戰性能之提升,讓H-6K 戰略轟炸機的作戰半徑得以擴展至5,000公 里以上,使其不僅具有攻擊美國西太平洋的 駐軍,並已有能力攻擊美國的夏威夷軍事基 地。正因如此,故H-6戰略轟炸機贏得中國 大陸空軍「戰神」之稱號。2013年時,中國 大陸空軍至少已經部署了20架H-6K戰略轟炸

- 39 "The Xian H-6 is essentially nothing more than a Chinese license-produced version of the Soviet Tupolev Tu-16 medium strategic bomber," Military Factory, 29 January 2013, http://www.militaryfactory.com/aircraft/detail. asp?aircraft_id=769.
- 40 "Xian H-6 Chinese Bomber," Military Weapons, http://www.allmilitaryweapons.com/2011/10/xian-h-6-chinese-bomber.html.
- 41 "H-6 Bomber: more dangerous than the Liaoning," Want China Times, 7 October 2013, http://www.wantchinatimes.com/news-subclass-cnt.aspx?id=20131007000002&cid=1101.

機。此軍事作戰部署之舉措,不只嚴重地挑 戰美軍航空母艦戰鬥群掌控西太平洋的軍事 能力,也可能會對美國亞太軍事基地構成極 大的威脅。⁴²

配備電子作戰裝備的H-6K戰略轟炸機,除了是以攻擊美國的西太平洋軍事基地為主要任務之外,事實上,攻擊美軍航空母艦戰鬥群也是中國大陸空軍發展此戰略轟炸機的重要軍事作戰構想,一旦中美爆發戰事,H-6K戰略轟炸機也必將是人民解放軍反制美軍航空母艦的重要武力之一。43

空射式攻陸巡弋飛彈

就中國大陸以戰鬥轟炸機或戰略轟炸機 配備的ALCM,做為核武之發射載具而論, 主要有國產的ALCM與外購之ALCM等兩大 類。

一、國產ALCM

關於中國大陸之國產ALCM,主要有 鷹擊22(Ying Ji-22, YJ-22)巡弋飛彈、鷹擊/ 空地63(Ying Ji/Kong Di-63, YJ/KD-63)巡弋 飛彈、紅鳥三型/東海十A型/長劍二十型 (Hong Niao-3/Dong Hai-10A/Chang Jiang-20, HN-3/DH-10A/CJ-20)巡弋飛彈等三種,以下 將逐一論之。

(一)鷹擊22巡弋飛彈

在C-301的攻陸巡弋飛彈尚未改良完成部署之前,中國大陸所發展的反艦巡弋飛彈中,C-802(Ying Ji-82, YJ-82, 後均以YJ-82稱之)為西方所認定的一種兼具攻陸與攻艦兩用的巡弋飛彈。⁴⁴此型飛彈是以C-801反艦飛彈為基礎進行改良的增大型。⁴⁵然其與C-801不

- 42 The International Institute for Strategic Studies (IISS), "Asia," The Military Balance 2014 (London: International Institute for Strategic Studies, 2014), p. 231; "New Build Xian H-6K Bomber," Chinese Military Review, Last Update: 16 April 2014, http://chinesemilitaryreview.blogspot.tw/2012/03/new-build-xian-h-6k-bomber.html; "Chinese H-6K 'God of War' bomber," WAREYE, Last Update: 16 April 2014, http://www.wareye.com/chinese-h-6k-god-of-war-bomber/; "Can China's New H-6K Strategic Bomber Reach U.S. Hawaii?" China Defense Mashup, 14 August 2014, http://www.china-defense-mashup.com/can-chinas-new-h-6k-strategic-bomber-reach-u-s-hawaii.html; "Kanwa Defence: China Buys 239 D-30 Engines for Lots of H-6K Bomber," Tiananmen's Tremendous Achievements, 5 February 2013, http://tiananmenstremendousach ievements.wordpress.com/tag/h-6k-bomber/; "New Strategic bomber planned to replace Xian H-6K," Want China Times, 12 November 2013, http://www.wantchinatimes.com/news-subclass-cnt.aspx?id=2013111200005 6&cid=1101; "China Bomber-Launched Missile Threatens U.S. Targets," INVESTORS, 11 November 2013, http://news.investors.com/ibd-editorials/111113-678744-china-deploys-bomber-with-nuclear-cruise-missiles. htm; "Chinese Air Force Gets More H-6K Strategic Bombers," Defense Update, 25 June 2013, http://defense-update.com/20130625 h-6k-bombers-delivered-to-pla-air-force.html#.U07sjFWSyE5.
- 43 "H-6K Bomber Can Not Hit the United States, but Can Cover Part of the Overseas Bases," Chinese Military Report, Last Update: 16 April 2014, http://wuxinghongqi.blogspot.tw/2011/05/h6k-can-not-hit-united-states-but-can.html.
- 44 吳弦, 〈中共遠洋戰力之擴展〉, 《國防譯粹》,第25卷10期(1998年10月),頁28。

同的是,YJ-82採用一具渦輪噴射發動機(C-801是採用固體燃料火箭發動機),故雖然彈長增加了0.58公尺,但是重量卻減輕了100公斤,巡航的飛行速度約0.9馬赫,巡航高度在20公尺左右,而其終端的攻擊高度最後可降至5~7公尺的高度飛行,其最大射程120公里。46

1990年此型飛彈進行第一次測試,而一般相信1994年時,YJ-82飛彈即進入中國大陸海軍服役,並可能於1995年有100枚此型飛彈銷售給伊朗,1996年曾進行陸射型的測試。⁴⁷此外,中國大陸對YJ-82飛彈進行改良,而第一階段改良自YJ-82飛彈的鷹擊21(Ying Ji-21, YJ-21, 後均以YJ-21稱之)ALCM,此型飛彈之射程可遠達180公里,是中國大陸第一枚裝配GPS和INS的飛彈,至於第二階段改良發展之鷹擊22(YJ-22, 後均以此簡稱之)ALCM。此型飛彈之射程更長,可達到400公里。YJ-22巡弋飛彈於1997年時,即已有對此之報導。⁴⁸不過可以知道的細節相當有限,只知YJ-22巡

弋飛彈配備GPS、INS與TERCO做為導航系統,擁有相當精準的攻擊能力,CEP可以達到10公尺左右。49儘管如此,但事實上,外界對YJ-22飛彈所知仍甚為有限。

(二)鷹擊/空地63巡弋飛彈

鷹擊63(YJ-63,後均以此簡稱之)巡弋飛彈又稱為空地63(KD-63)巡弋飛彈,雖源自於HY-2與HY-4巡弋飛彈,但卻是中國大陸專門為其空軍而發展之ALCM。雖然YJ-63飛彈首次公開亮相的時間是在2005年。50

YJ-63飛彈是中國大陸專為配備於H-6戰略轟炸機之作戰而設計的ALCM。此型飛彈之彈長約6公尺,彈徑0.76公尺,翼展寬2.4公尺,發射重量約在2,440公斤,可以攜帶513公斤的彈頭,最大射程在300~400公里之間。⁵¹以此論之,YJ-63飛彈應該擁有配備戰術性核子彈頭的能力。

雖言YJ-63飛彈是源自於HY-2與HY-4飛彈,然因其發展的時間較晚,故配備更為精確的導引系統。依據西方報導指出,YJ-63飛

- 45 C-801和C-802的彈體外型極為接近,只是後者彈長比前者長約0.58公尺(艦射式),而彈徑卻都是0.36公尺。 "People Republic of China: Offensive Weapons: CSS-N-4'Sardine' (YJ-1/C-801) and CSS-C-8'Saccade' (YJ-2/C-802)," Jane's Strategic Weapon System 1997-98 (UK: Jane's Information Group, 1997), JSWS-ISSUE 28.
- 46 張立德,〈中共自製反艦飛彈大觀(二)〉,《尖端科技》,第151期(1997年3月),頁32-3。
- 47 "People Republic of China: Offensive Weapons: CSS-N-4'Sardine' (YJ-1/C-801) and CSS-C-8'Saccade' (YJ-2/C-802)," Jane's Strategic Weapon System 1997-98, JSWS-ISSUE 28.
- 48 Ibid.
- 49 "C-802 / YJ-2 / Ying Ji-802 / CSS-C-8 / SACCADE C-8xx / YJ-22 / YJ-82," GlobalSecurity.org., Last Update:14 April 2014, http://www.globalsecurity.org/military/world/china/c-802.htm.
- 50 "KD-63," Missile Threat, Last Update: 14 April 2014, http://missilethreat.com/missiles/kd-63/.
- 51 Ibid.; Shirley A. Kan, "Cruise Missiles under Development," China: Ballistic and Cruise Missile (CRS Report for Congress, 10 August 2000), p. 22.

彈使用衛星支援的慣性中途導引,並配備雷達或反雷達尋標器(radar or anti-radar seeker),以及電子光學尋標器做為終端導引。除此之外,事實上,此型飛彈還配備可以接收來自於H-6戰略轟炸機給予攻擊目標資訊的電視尋標器(TV-seeker),大幅提升YJ-63飛彈的攻擊精準度。52

(三)紅鳥三型/東海十A型/長劍二十型 巡弋飛彈

紅鳥三型(HN-3,後均以此簡稱之)巡弋飛彈,是一種射程介於2,000~3,000公里的LRCM。依照JDW所述,此型飛彈共有二種型號,分別為HN-3A和HN-3B。前者為陸射型,而後者則為艦射和潛射型。這兩種款型飛彈的最大飛行速度約在0.9馬赫,巡航高度則是在10~20公尺。53

依據JDW於1990年代末所載之推判,中國大陸應會將此型潛射巡弋飛彈配備於093核子動力攻擊潛艦上,且很有可能會依此發展出空射式的巡弋飛彈,而裝配於殲八II型

和殲十一型戰機之上。⁵⁴不過,就目前的發展來看,所謂的HN-3飛彈就是中國大陸的空軍戰鬥轟炸機所配載之CJ-20,這是中國大陸為改良HN-3巡弋飛彈之攻擊精準度而發展的LRCM,故而或將其稱為陸射式之DH-10巡弋飛彈的空射版。⁵⁵儘管如此,但事實上,空射式之CJ-20巡弋飛彈與陸射式之DH-10巡弋飛彈之間,仍是有所不同。

相較於DH-10巡弋飛彈,HN-3/DH-10A/CJ-20(後均以CJ-20統稱之)巡弋飛彈配備INS、GPS與TERCOM等先進導航系統,故其攻擊精準度更佳,CEP可以縮小至10公尺以內。不僅如此,為了加強CJ-20巡弋飛彈的隱形能力,中國大陸軍方將其彈體設計為類似美國戰斧Block IV巡弋飛彈之內縮式鼻錐彈體的外型,使其擁有更佳之匿蹤性,如此之設計,將讓敵方更加難以偵測其蹤跡。56

另外, CJ-20巡弋飛彈的射程也更遠, 最大射程至少可達2,200公里。不過,或有軍 事專家評估可能不只如此,而應該能夠達到

- 52 "Chinese Cruise Missile," Sino Defense Forum, Last Update: 14 April 2014, http://www.sinodefenceforum. com/air-force/chinese-cruise-missles-287.html; Carlo Kopp and Martin Andrew, "PLA Cruise Missiles, PLA Air Surface Missiles," Air Power Australia, April 2012, http://www.ausairpower.net/APA-PLA-Cruise-Missiles. html.
- 53 Duncan Lennox, "More detail on Chinese cruise missile programme'," Jane's Defense Weekly, Vol. 34 No. 10, p. 19.
- 54 Duncan Lennox, "China's new cruise missile programme 'racing ahead'," Jane's Defense Weekly, Vol. 33 No. 2, p.12.
- 55 Guy Martin, "Cruise Missiles in the Asia-Pacific Region," Defence Review Asia, 27 April 2012, http://www.defencereviewasia.com/articles/162/Cruise-missiles-in-the-Asia-Pacific-region; "China's CJ-20 Air Launched Cruise Missile to be operational with H-6 Bomber," Pakistan Defence, Last Update: 15 April 2014, http://defence.pk/threads/china%C2%92s-cj-20-air-launched-cruise-missile-to-be-operational-with-h-6-bomber.40868/.
- 56 "Chinese Modernization Hong Niao HN-1 and HN-3 Cruise Missile Technologies," Force Military, Last Update: 25 March 2014, http://forcesmilitary.blogspot.tw/2010/11/chinese-modernization-hong-niao-hn-1.html.

2,500~3,000公里之間。⁵⁷若是如此,則已可涵蓋全亞洲、美國在西太平洋的軍事基地以及俄羅斯在亞洲之烏拉山以東的所有區域。⁵⁸ 然中國大陸部署CJ-20巡弋飛彈對國際軍事安全之威脅,美國堪稱是首當其衝。蓋依據西方的推測與評估,美國在亞太地區的關島海軍基地,應該就是中國大陸發展此型飛彈的主要目標。⁵⁹

CJ-20巡弋飛彈可以配備核子彈頭,乃是中國大陸專為配備於H-6戰略轟炸機之核子攻擊作戰任務而設計的ALCM。早在2004年8月之際,人民解放軍空軍即已成功試射此型飛彈,並將其列為中國大陸空軍H-6H與H-6M戰略轟炸機的重要武器配備。依據評估,每架H-6H與H-6M戰略轟炸機至少可以配載4枚

CJ-20巡弋飛彈。但中國大陸空軍對此仍感不足,而特地修改了20架可以配備更多CJ-20 巡弋飛彈之H-6型轟炸機,此即是H-6K戰略轟炸機配備 CJ-20巡弋飛彈的數量為H-6H與H-6M戰略轟炸機的1.5倍,亦即是,每架H-6K戰略轟炸機可以攜帶6枚CJ-20巡弋飛彈。正因如此,所以中國大陸空軍戰略轟炸機的作戰力量,獲得前所未有的提升。60

根據報導,在2013年之際,中國大陸空軍應該至少已經部署了200枚CJ-20巡弋飛彈,⁶¹且依據西方評估,事實上,CJ-20巡弋飛彈應該也可以配備於中國大陸空軍之JH-7戰鬥轟炸機之上,藉此加強中國大陸空軍對地的打擊能力。⁶²

- 57 "DH-10/CH-10/CJ-10 Land-Attack Cruise Missiles (LACM) Hong Niao/Chang Feng/Dong Hai-10," GlobalSecurity.org., Last Update: 15 April 2014, http://www.globalsecurity.org/wmd/world/china/lacm.htm.
- 58 "Cruise missile threat in Asia," Missile Threat, Last Update: 15 April 2014, http://missilethreat.com/cruise-missile-threat-in-asia-2/.
- 59 "DH-10/CH-10/CJ-10 Land-Attack Cruise Missiles (LACM) Hong Niao/Chang Feng/Dong Hai-10," GlobalSecurity.org., http://www.globalsecurity.org/wmd/world/china/lacm.htm; "CJ-20 missile is PLA's new threat to US bases in Asia-Pacific," Want China Times, 12 June 2013, http://www.wantchinatimes.com/news-subclass-cnt.aspx?cid=1101&MainCatID=11&id=20130612000076; "CJ-20 missile is PLA's new threat to US bases in Asia-Pacific," China Commentary, Last Update: 15 April 2014, http://www.scoop.it/t/china-commentary/p/4003124193/2013/06/12/cj-20-missile-is-pla-s-new-threat-to-us-bases-in-asia-pacific.
- 60 Ian Easton, "The Assassin Under the Radar: China's DH-10 Cruise Missile Program," The Project 2049 Institute, Last Update: 14 April 2014, http://project2049.net/documents/assassin_under_radar_china_cruise_missile.pdf; Dian Barnes, "North Korea, China Pursuing Nuke-Ready Cruise Missile: Air Force," The Nuclear Threat Initiative, 30 May 2013, http://www.nti.org/gsn/article/north-korea-and-china-pursuing-nuke-ready-cruise-missiles-air-force/; "China's CJ-20 Air Launched Cruise Missile to be Operational with H-6 Bomber," China Defense Mashup, Last Update: 15 April 2014, http://www.china-defense-mashup.com/chinas-cj-20-air-launched-cruise-missile-to-be-operational-with-h-6-bomber.html.
- 61 "CJ-20 missile is PLA's new threat to US bases in Asia-Pacific," Want China Times, http://www.wantchinatimes.com/news-subclass-cnt.aspx?cid=1101&MainCatID=11&id=20130612000076.
- 62 "DH-10/CH-10/CJ-10 Land-Attack Cruise Missiles (LACM) Hong Niao/Chang Feng/Dong Hai-10," GlobalSecurity.org., http://www.globalsecurity.org/wmd/world/china/lacm.htm.

二、外購ALCM

在進行軍事現代化之過程,中國大陸透過三種方式來達到提升精確導引系統的科技力:一是引進外國技術;二為聯合發展;三是國內發展。⁶³而中國大陸外購ALCM正是前兩者之範例。然就中國大陸空軍對外購買之ALCM而言,主要有二:一是1990年代中期自俄羅斯購買的Kh-65SE巡弋飛彈;另一為二十一世紀初才購自烏克蘭之Kh-55巡弋飛彈。

(一)俄羅斯之Kh-65SE巡弋飛彈

Kh-65SE飛彈乃是俄羅斯所製造的巡弋 飛彈,首次展示於1993年的莫斯科航空展, Kh-65SE巡弋飛彈可以說是修改自Kh-55巡 弋飛彈的縮小版,除了採用Kh-55慣性/都 卜勒雷達導引與地形匹配導航系統(terrain contour matching navigation system)外,另有 衛星導航系統與一套俄製的全球定位系統一 GLOSNASS做為飛彈的主要導航系統。Kh-65SE巡弋飛彈可以酬載410公斤的傳統彈頭或 核子彈頭,最大射程在500~650公里之間。64

Kh-65SE巡弋飛彈除了配備良好的導航系統之外,且擁有相當優越的ECCM能力,

可以在相當強大的電子干擾環境中,進行攻擊作戰任務。這樣的能力,加上其攜帶的高爆彈(high explosive, HE),擁有超過300平方公尺之爆炸威力,所以相當適合用於攻擊大型目標,特別是戰艦。65因為Kh-65SE巡弋飛彈修改自Kh-55巡弋飛彈,且主要是於攻擊大型軍事目標之戰術用途,所以或將其稱之為Kh-55戰略巡弋飛彈之戰術版(tactical version)。66而中國大陸空軍正式看中此型飛彈對於攻擊諸如戰艦這種大型軍事目標之優越性能,故而在1990年代中期大量引進俄羅斯的軍備之同時,即向俄羅斯購買Kh-65SE巡弋飛彈,從而成為中國大陸空軍之空對面(air-to-land and air-to-sea)打擊目標的重要武器配備。67

(二)烏克蘭之Kh-55巡弋飛彈

中國大陸空軍在1990年代中期從俄羅斯購進的Kh-65SE巡弋飛彈,基於彈頭酬載力與射程之限制,因而是一種戰術與戰略作用較佳的飛彈,具有提升人民解放軍在對抗美國之不對稱戰略(asymmetric strategy)的內涵。不過,就外購巡弋飛彈而言,中國大陸更想要購得的是Kh-55(X-55, NATO代號為AS-

- 63 Office of the Secretary of Defense, "Resources for Force Modernization," Military Power of the People's Republic of China 2005 (US: Office of the Secretary of Defense, 2005), p. 23.
- 64 "Russia strategic cruise missile", Jane's Intelligence Review, Vol. 8 No. 5 (May 1996), p. 200; "KH-55/-55SM/-555/-65SE," Missile Threat, Last Update: 15 April 2014, http://missilethreat.com/missiles/kh-55-55sm-555-65/.
- 65 "Raduga Kh-65/Kh-SD," GlobalSecurity.org., Last Update: 15 April 2014, http://www.globalsecurity.org/military/world/russia/kh-65.htm.
- 66 "K-65 standoff missile," Russia Military Forum, Last Update: 15 April 2014, http://www.russiadefence.net/t1678-kh-65-standoff-missile.
- 67 "Russia strategic cruise missile", Jane's Intelligence Review, p. 200.

15)巡弋飛彈。然出售Kh-55巡弋飛彈給中國 大陸的國家不是俄羅斯,而是烏克蘭。⁶⁸

事實上,蘇聯發展ALCM的構想,早在1960年代末即已有之,並於1971年開始研製。1976年,蘇聯的ALCM進行首次試飛,然因此時美國已經發展出可以進行低空與沿地貌飛行之甚為先進的空射式AGM-86戰斧巡弋飛彈,故而蘇聯空軍要求更新計劃,提升ALCM之性能,發展出蘇聯版的空射式戰斧巡弋飛彈。在努力研發數年之後,空射式之Kh-55巡弋飛彈於1984年服役。此後,Kh-55巡弋飛彈成為蘇聯空軍Tu-95MS和Tu-160戰略轟炸機的重要武器配備。69

Kh-55巡弋飛彈的彈長為6.04公尺,彈徑 0.514公尺,可以攜帶重達410公斤的高爆彈 (high explosive, HE)、集束彈或爆炸威力達20 萬至25萬噸TNT威力的核子彈,發射重量約 為1,250公斤,最大射程可達3,000公里。此型 飛彈配備一具渦輪風扇噴射發動機,最高速

度達每小時930公里,屬於次音速的ALCM。 ⁷⁰不過,目前俄羅斯空軍已經發展出更為先進的超音速ALCM-X-90,藉以取代之。 ⁷¹因此,Kh-55巡弋飛彈已經不是俄羅斯最為先進的ALCM。

但不管如何,中國大陸獲得Kh-65SE與Kh-55巡弋飛彈,這對中國大陸研發新型巡弋飛彈方面,卻有莫大的助益。或認為HN-1巡弋飛彈的彈體構型,就是以Kh-55巡弋飛彈為範本而設計的。⁷²事實上,就HN-1巡弋飛彈的發展時間來看,中國大陸當時應該尚未獲得Kh-55巡弋飛彈,但已經取得Kh-55巡弋飛彈之縮小與戰術版的Kh-65SE巡弋飛彈,就此論之,HN-1巡弋飛彈的研製構想與技術,應該具有Kh-65SE巡弋飛彈成分較大,而不是Kh-55巡弋飛彈。

事實上,目前尚難確切證實中國大陸是何時自烏克蘭購得Kh-55巡弋飛彈,不過,從諸多跡象顯示,中國大陸購得Kh-55巡弋飛彈

- 68 Guy Martin, "Cruise Missiles in the Asia-Pacific Region," Defence Review Asia, http://www.defencereviewasia.com/articles/162/Cruise-missiles-in-the-Asia-Pacific-region.
- 69 "Kh-55 (missile family)," Wikipedia, Last Update: 16 April 2014, http://en.wikipedia.org/wiki/Raduga_Kh-55; "Air-to-Surface Strategic Cruise Missile Kh-55," Enemy Forces, Last Update: 16 April 2014, http://www.enemyforces.net/missiles/kh_55.htm; "Kh-55 Grannat/AS-15 Kent," GlobalSecurity.org., Last Update: 16 April 2014, http://www.globalsecurity.org/wmd/world/russia/as-15.htm.
- 70 "KH-55/-55SM/-555/-65SE," Missile Threat, http://missilethreat.com/missiles/kh-55-55sm-555-65/; "Air-to-Surface Strategic Cruise Missile Kh-55," Enemy Forces, http://www.enemyforces.net/missiles/kh_55.htm.
- 71 X-90巡弋飛彈射程也在3,000公里左右,但具備超音速的飛行能力,以及配備兩顆具有獨立尋標導引系統的核子彈頭,使X-90巡弋飛彈可以分別攻擊相距100公里的目標,這卻是Kh-55巡弋飛彈望塵莫及的。Dmitriy Litovkin, "Russia's hypersonic trump card edges closer to reality," Russia and India Report, 23 October 2013, http://in.rbth.com/economics/2013/10/23/russias_hypersonic_trump_card_edges_closer_to_reality 30325.html.
- 72 "DH-10/CH-10/CJ-10 Land-Attack Cruise Missiles (LACM) Hong Niao/Chang Feng/Dong Hai-10," GlobalSecurity.org., Last Update: 24 March 2014, http://www.globalsecurity.org/wmd/world/china/lacm.htm.

的最早時間可能是1999年,最晚的時間應該不會超過2004年。同時自烏克蘭購得此型武器的國家,還有積極發展彈道飛彈與巡弋飛彈等攻擊性武器的伊朗。⁷³以此論之,加上冷戰後中國大陸與烏克蘭之間的緊密軍事科技合作關係,吾等不難推論,中國大陸空軍現今配備的CJ-20巡弋飛彈,應該就是中國大陸版的Kh-55巡弋飛彈。

綜觀而論,中國大陸自俄羅斯與烏克蘭 購買空射式之LACM對中國大陸發展巡弋飛 彈的戰力之意涵有二:一為直接提升戰力之 意涵。這是指中國大陸自俄羅斯和烏克蘭購 置Kh-65SE和Kh-55巡弋飛彈,對中國大陸 空軍之空對面之作戰能力的提升;二為間接 增進中國大陸戰力之意涵。事實上,向來強 調國防獨立自主的中國大陸,對外購買任何 武器都有引進技術或仿製之意圖,購置Kh-65SE和Kh-55巡弋飛彈。購買Kh-65SE巡弋飛 彈,獲得俄羅斯在研製此型飛彈的技術,進 而發展了HN-1巡弋飛彈。至於購買Kh-55巡 弋飛彈,接受烏克蘭研製此型飛彈的技術轉 移,而有了DH-10和CJ-20巡弋飛彈。這些巡 弋飛彈的服役,對中國大陸當前的飛彈武力 之提升,實有莫大之助益。

綜合評論與分析

關於對中國大陸之戰鬥轟炸機與空射式

之LACM之評論與分析,以下將分而論之。

一、戰鬥轟炸機與戰略轟炸機之評析

儘管英國國際戰略研究所只將H-6K列為中國大陸唯一的空基戰略核子武力,但經由上述之論可知,事實上,中國大陸目前可以進行空中核武投射載具,不僅只有H-6K戰略轟炸機,還有戰鬥轟炸機。因此,以下將對這兩者之現代化進行評論與分析。

首先,就戰鬥轟炸機而言。從對A-5、 JH-7與Su-30MKK等三種款式之戰鬥轟炸機 的發展來看中國大陸核武載具的現代化,吾 等可以明顯得見以下幾點重要特徵:

第一,武器酬載量與自衛能力之強化。中國大陸於1960年代末服役之A-5攻擊機,最大酬載武器量為1,500公斤,即使改良款之A-5M的武器酬載量也只有3,000公斤。但人民解放軍空軍自1990年代中期開始部署之JH-7戰鬥轟炸機更佳,此型戰鬥轟炸機武器酬載為6,500公斤,這是A-5攻擊機的四倍,A-5M的兩倍,至於Su-30MKK戰鬥轟炸機則更強。此型戰鬥轟炸機可以配載8,000公斤的武器,此為A-5攻擊機的5.4倍,A-5攻擊機之2.7倍,JH-7戰鬥轟炸機之1.2倍。

武器酬載量的增強,不僅可增加作戰飛 機之投射武器的量與選項,更為重要的是, 一架優越的戰鬥轟炸機的設計理念就是可以 運用自身對空與對地的武器裝備,以突破敵

"Why would Iran Want Cruise Missile?" Defense Update, 21 December 2005, http://defense-update.com/2005/12/why-would-iran-want-cruise-missiles.html; "Ukraine Reportedly Sold Nuclear-Capable Cruise Missiles to China, Iran," Missile Threat, 2 February 2005, http://missilethreat.com/ukraine-reportedly-sold-nuclear-capable-cruise-missiles-to-china-iran/.

方之空防戰機與防空武器的封鎖,達成攻擊 作戰任務。因此,中國大陸近年來在研製與 購置戰鬥轟炸機之際,均是以此做為選擇的 重要條件。

基本上,JH-7與Su-30MKK戰鬥轟炸機 都擁有極為優越之突破空防戰機與地面防空 武器的性能。暫且不論被認為舉世列為最優 秀的戰鬥轟炸機-Su-30MKK,即以中國大 陸自行研製的JH-7戰鬥轟炸機而言,無論是 在空對空作戰與空對地作戰方面,均非只能 配載兩門機砲與短程空對空飛彈之A-5攻擊機 所能比擬。承前所言,JH-7戰鬥轟炸機配備 的新型雷達可搭配俄製AA-10空對空雷達半 主動導引飛彈和AA-12空對空雷達主動導引 飛彈,進行空對空作戰,且其對空作戰能力 能夠擴延至100公里之外。在對地作戰方面, JH-7戰鬥轟炸機可以配備俄製Kh-31P反輻 射飛彈,用以摧毀敵方地面雷達之「硬殺武 器」(hard-kill weapon)。另外,此型戰鬥轟炸 機還配載ECM和ECCM等電子作戰裝備,用 以干擾敵方之雷達與電子作戰裝備之「軟殺 武器」(soft-kill weapon)。如此對空與對地之 武器,以及硬殺與軟殺武器的配合,大大地 強化JH-7戰鬥轟炸機的自衛力。

第二,作戰快速化與遠距化。所謂「兵貴神速」與「決勝千里」,這不僅僅是口號,也是中國大陸進行軍事現代化的重要趨向,而空軍戰鬥轟炸機亦不例外。就以A-5攻擊機、JH-7戰鬥轟炸機與Su-30MKK戰鬥轟炸機等三者而論,A-5攻擊機之最大飛行速度約1.1馬赫,最大航程為2,000公里;JH-7戰鬥轟炸機的最大飛行速度是1.7馬赫,最大航程

3,575公里;至於Su-30MKK戰鬥轟炸機之最大飛行速度則超過2馬赫,最大航程3,000公里,且Su-30MKK戰鬥轟炸機是這三種戰鬥轟炸機中唯一可以進行空中加油者,而採取空中加油一次,可以延伸最大航程至5,200公里。由此可見,中國大陸空軍在空中投射核武載具方面之作戰快速化與遠距化的現代化趨勢。

第三,投射核彈載具飛彈化與核武投射遠距化。從前述之論可知,儘管A-5M攻擊機具有核子作戰的性能,而在必要之際,可以攜帶一枚具有10萬噸TNT威力的核子彈。然A-5M攻擊機的低空穿透空防能力差,加上速度慢,因此,運用此型攻擊機進行核子作戰可以達成任務的可能性較低,相對的,如此武力的戰略嚇阻力也就不強。然中國大陸在1990年代中期部署之JH-7戰鬥轟炸機與二十一世紀部署之Su-30MKK戰鬥轟炸機就有所不同。

誠如前述所言,JH-7戰鬥機具有極為優越之低空穿透敵人空防之作戰性能,且其所配載的攻陸武器,亦是可以裝配核子彈頭之CJ-20與俄製之Kh-65SE巡弋飛彈。至於Su-30MKK戰鬥轟炸機也是以裝配反艦/攻陸巡弋飛彈為主要武器配備,儘管前文並未論及此型戰鬥轟炸機可否配備CJ-20和Kh-65SE巡弋飛彈,然以Su-30MKK戰鬥轟炸機多於JH-7戰鬥轟炸機的載重量,相信中國大陸空軍亦會將這兩種巡弋飛彈列為可能的武器選項之中。然如此投射核武載具之飛彈化的趨勢,相對的,也拉長了中國大陸空軍之遠距投射核武能力,而形成了核武投射之遠距化

的特點。

其次,就戰略轟炸機而論。基本上,中國大陸在戰略轟炸機的研製與部署並不如戰鬥轟炸機多樣與精彩,而只是以H-6戰略轟炸機為基礎,進行作戰性能或用途之改良而已,而在此之中,又以H-6K的改良最受矚目。據此,以下就從H-6戰略轟炸機及其改良款一H-6K戰略轟炸機為論述對象,並從此之中,提出兩點重要的現代化趨向:

第一,作戰航程遠距化。儘管中國大陸 在部署戰略轟炸機不如戰鬥轟炸機多樣與精 彩,但這並不代表中國大陸不重視戰略轟炸 機的價值效用,相反的,中國大陸的確也相 當用心於此,畢竟這種戰略性武器,不只購 置不易,且技術引進之受限也較多。即使如 此,中國大陸還是在有限的財力、人力與科 技力之下, 進行戰略轟炸機的現代化, 目亦 獲得頗世人關注的成果,而作戰航程之遠距 化即是其現代化的一大成就。原本H-6戰略 轟炸機的作戰半徑1,800公里,最大航程6,000 公里,然更换高效率之俄製D-30KP-2渦輪噴 射發動機之H-6K戰略轟炸機的作戰半徑,則 是H-6戰略轟炸機的1.6倍,可達3,000公里。 然若以作戰半徑的增加比例來推測H-6K的航 程,則可達10,000公里。由此得見,在中國 大陸進行戰略轟炸機之現代化進程中,作戰 航程遠距化是相當顯著的特徵。

第二,加乘效應之攻擊範圍擴大化。 事實上,戰略轟炸機之作戰航程遠距化,相 對的,亦必會推進攻擊範圍之擴大化。只不 過,在此所欲強調的是,這種攻擊範圍擴大 化是一種加上遠距攻陸武器下之加乘效應的 擴大化,而不是只有作戰航程遠距化下之攻擊範圍的擴大而已。然何以當前中國大陸戰略轟炸機之現代化趨向中,會有加乘效應之攻擊範圍擴大化之特徵?此主要在於CJ-20巡弋飛彈的研製與部署之故。

承前所論,中國大陸目前已經將CJ-20 巡弋飛彈列為H-6K戰略轟炸機的主要配備。 相較於1970年代初服役而只能配備核子炸彈 之H-6戰略轟炸機而言,二十一世紀部署之 H-6K戰略轟炸機,不只擁有比1970年代部署 的H-6戰略轟炸機多出1.6倍以上之更長的作 戰半徑與航程,且配載之射程可能遠達3,000 公里以上之CJ-20巡弋飛彈,將可大幅延伸 H-6K的攻擊範圍。在部署地不變的情況之 下,而以作戰半徑之不進行空中加油論之, 原本只能配載核子彈之早期生產的H-6戰略轟 炸機的攻擊作戰範圍,只能侷限於部署地之 1.800公里的半徑節圍之內,但配備CJ-20巡弋 飛彈之二十一世紀服役的H-6K戰略轟炸機則 更大,至少可達部署地之6,000公里的範圍以 內,這是H-6戰略轟炸機的3.3倍。然如若只 是H-6K戰略轟炸機之作戰半徑的延長,則也 只有1.6倍,而不會有加上CJ-20巡弋飛彈之 3.3倍的成果。據此可知,這是一種延長戰略 轟炸機本身作戰半徑與配備長程攻陸巡弋飛 彈下之加乘效果,的確是中國大陸在戰略轟 炸機現代化進程中, 一項甚為值得關注與重 視的特徵與成就。

二、ALCM之評析

基本上,相較於彈道飛彈,空射式之 LACM(亦即是以攻擊陸地軍事硬體建設目標 之ALCM)與陸基LACM之作戰效益相近,都 具有攻擊目標更精確、地面雷達更難偵測與 更難反制、運載發射數量更多與重量輕而射 程更遠等優點。對此,吾人在〈第三章 陸基 攻陸巡弋飛彈〉中,已有詳論,不再贅述。 然不同於陸基之LACM,空射式之LACM則 具有以下幾點優點:

其一,射程更長。就同一款型之巡弋飛 彈而言,相較於陸基LACM,空射式LACM 擁有射程更長之優點。這是因為陸基LACM 的發射起飛,必須藉助自身的發動機之推 力,才能攀升至一定的巡航高度。在此過 程中,必定會消耗LACM的燃料。然空射式 LACM則不同。戰鬥轟炸機或戰略轟炸機配 載LACM,將這類型武器帶至高空中進行發 射攻擊任務之際,LACM可以耗費較少的燃 料,就能進行巡航飛行。相對的,這些節省 的燃料就成了延長巡弋飛彈射程的助力。因 此,同一款型之巡弋飛彈,空射式LACM通 常會比陸基式LACM之射程更遠些。例如中 國大陸的HN-1巡弋飛彈,陸射型之射程為 600公里,至於空射型之射程則更長一些,約 在650公里左右。74

其二,攻擊範圍更大。事實上,同一款型之巡弋飛彈,空射式LACM不僅會比陸基LACM擁有更長的射程,更為重要的是因為發射載具的不同,攻擊的範圍也有所不同。空射式LACM要比陸基LACM的攻擊範圍大得多。即以前述之HN-1巡弋飛彈為例,陸基LACM的射程為600公里,攻擊範圍就只侷

限於這射程的600公里範圍之內。然空射式 LACM就有所不同,其可藉由戰鬥轟炸機或 戰鬥轟炸機之作戰半徑與航程,大大地延伸 射程與攻擊範圍。例如JH-7戰鬥轟炸機的作 戰半徑約為1,000~1,500公里之間,如配備 650公里射程之空射式HN-1巡弋飛彈,則其 可以攻擊的範圍就不只是600公里,而至少是 在1,650公里至2,150公里之間,或者更長(空 中載具進行空中加油就會更長)。由此可知, 就同一款型之巡弋飛彈而言,空射式LACM 擁有比陸基LACM更大的攻擊範圍。

其三,攻擊機動性更佳與速度更快。空 射式LACM因配載於戰鬥轟炸機或戰略轟炸 機,所以擁有攻擊機動性更佳與速度更快之 優勢。

首先,就攻擊機動性更佳而言。因空射 LACM是配載於戰鬥轟炸機與戰略轟炸機上 進行發射之攻擊性武器,故其可由作戰飛機 依照原定之攻擊作戰目標,發射LACM攻擊 之。然由於戰場情況變化無常,因此更換攻 擊目標,亦是無可避免的。就此而論,陸基 LACM就無法與空射式LACM相提並論。因 為LACM可以依據飛機之駕駛員與武器操作 員對戰場之判斷,對我軍威脅較為迫切與較 大之目標,進行變更攻擊目標之作戰任務, 如此之攻擊機動性,自非陸基LACM所能比 擬。

其次,就攻擊速度而言。空射式LACM 不僅擁有比陸基LACM更佳之攻擊機動性,

74 Duncan Lennox, "More detail on Chinese cruise missile programme'," Jane's Defense Weekly, Vol. 34 No. 10, p. 19.

而且攻擊速度更快。即以中國大陸人民解放軍使用次音速之LACM攻擊距離國土外之1,500公里的地面目標而論。北京可以運用二砲部隊所部署之DH-10巡弋飛彈攻擊之,然亦可由空軍之戰鬥轟炸機配備HN-1巡弋飛彈執行之。儘管DH-10巡弋飛彈與HN-1巡弋飛彈的飛行速度甚為接近,但因中國大陸空軍之JH-7和Su-30MKK都是可以進行超音速巡航飛行的戰鬥轟炸機,所以空射式巡弋飛彈能夠以更快的速度達成攻擊目標之作戰行動。

綜合前述之論,吾等可知,空射式

LACM之作戰性能有過於陸基LACM之處, 實為美國之亞太駐軍與航空母艦戰鬥群之一 大威脅。正因如此,所以人民解放軍部署此 型作戰武器必可強化中國大陸對美國之不對 稱作戰之能力,以及提升「區域防衛與區域 阻絕」(Area Defense and Area Denial, A2AD) 的作戰能力。⁷⁵

作者簡介別學

林宗達先生,臺灣大學政治學系博士,現任職於臺灣大學政治學系兼任講師。

經國號戰鬥機(照片提供:葉秀斌)

75 Office of the Secretary of Defense, "Key Development," Military Power of the People's Republic of China 2008 (US: Office of the Secretary of Defense, 2008), p. 2; Office of the Secretary of Defense, "Force Modernization Goals of Trends," Military Power of the People's Republic of China 2009 (US: Office of the Secretary of Defense, 2009), pp. 20-1; Office of the Secretary of Defense, "Force Modernization Goals and Trends," Military and Security Developments Involving the People's Republic of China 2011 (US: Office of the Secretary of Defense, 2011), pp. 27-9.