J Med Sci 2015;35(4):157-161 DOI: 10.4103/1011-4564.163823 Copyright © 2015 JMS

ORIGINAL ARTICLE

Analysis of Anesthesia-controlled Operating Room Time After Propofol-based Total Intravenous Anesthesia Compared with Desflurane Anesthesia in Gynecologic Laparoscopic Surgery: A Retrospective Study

Hou-Chuan Lai, Shun-Ming Chan, Bo-Feng Lin, Tso-Chou Lin, Go-Shine Huang, Zhi-Fu Wu

Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China

Background: Anesthesia technique may contribute to the improvement of operation room (OR) efficiency by reducing anesthesia-controlled time (ACT). We compared the difference between propofol-based total intravenous anesthesia (TIVA) and desflurane (DES) anesthesia for gynecologic laparoscopic surgery undergoing general anesthesia. **Materials and Methods:** We performed a retrospective study using data collected in our hospital to compare the ACT of gynecologic laparoscopic surgery using either TIVA via target-controlled infusion (TCI) with propofol/fentanyl or DES/fentanyl-based anesthesia between January 2010 and December 2011. The various time intervals (waiting for anesthesia, operation time, anesthesia time, emergence time, exit from OR after extubation, total OR time and postanesthesia care unit stay time) and the incidence of prolonged extubation (\geq 15 min) were compared between the two anesthetic techniques. **Results:** We included data from 926 patients, with 377 patients receiving TIVA and 549 patients receiving DES. The only significant difference is emergence time, TIVA was faster than the DES group (7.3 \pm 3.3 min vs. 8.3 \pm 3.1 min; P < 0.001). The factors of prolonged extubation are DES anesthesia, body mass index, surgical time, and anesthesia time. **Conclusion:** In our hospital, propofol-based TIVA by TCI provide faster emergence compared with DES anesthesia in gynecologic laparoscopic surgery.

Key words: Total intravenous anesthesia, propofol, desflurane, emergence, gynecologic laparoscopic surgery

INTRODUCTION

Healthcare systems in current days are facing significant problems of increasing expenditures. As a result of the need to increase efficiency with cost containment, the stress on optimizing operation room (OR) efficiency increased. OR efficiency is regulated by several factors, three factors are anesthesia-controlled time (ACT), surgery-controlled time and between-case time. ACT is the sum of the anesthesia induction time and wake-up time. The wake-up time required between the end of surgery until extubation is of special interests to anesthesiologists because it is affected by anesthetics administrated. Therefore, it is essential for anesthesiologists

Received: April 07, 2015; Revised: June 12, 2015; Accepted: June 24, 2015

Corresponding Author: Dr. Zhi-Fu Wu, Department of Anesthesiology, Tri-Service General Hospital and National Defense Medical Center, #325, Section 2, Chenggung Road, Neihu 114, Taipei, Taiwan, Republic of China. Tel: +886-2-87927128; Fax: +886-2-87927127. E-mail: aneswu@gmail.com

to choose appropriate agents to avoid prolonged extubation in order to improve the efficiency of OR. Total intravenous anesthesia (TIVA) via a target-controlled infusion (TCI) system with combined administration of propofol and fentanyl has been shown to provide more rapid emergence compared with other anesthetic techniques in several kinds of surgeries.⁶⁻¹⁰

However, these studies did not compare the ACT and prolonged extubation time. Therefore, we performed this retrospective study to compare TIVA with desflurane (DES) anesthesia in gynecologic laparoscopic surgery.

MATERIALS AND METHODS

Patients

This study was approved by the Ethics Committee (TSGHIRB No.: 100-05-168) of Tri-Service General Hospital, Taipei, Taiwan (Chairperson, Professor Pauling Chu) on August 29, 2011.

This retrospective study retrieved information from the electronic database and the medical records of Tri-Service General Hospital (TSGH; Taipei, Taiwan, Republic of China). We enrolled 926 patients (ASA class I-III) who received

Faster emergence and lower incidence of prolonged extubation in gynecologic laparoscopic surgery

elective gynecologic laparoscopic surgery under TIVA or DES from January 2010 to December 2011. Exclusion criteria were patient age younger than 18 years, emergent surgeries, combined inhalation anesthesia with TIVA, other inhalation anesthesia besides DES, failure to extubate, patient not sent to the postanesthesia care unit (PACU), or incomplete data.

Patient groups

No medication was administered prior to induction of anesthesia; however, regular monitoring, such as electrocardiography (lead II) and measurement of pulse oximetry, noninvasive blood pressure, respiratory rate, and end-tidal carbon dioxide pressure (EtCO₂), was performed. In all patients, anesthesia was induced with propofol and fentanyl. The patients were then intubated and maintained with DES or propofol and the analgesic fentanyl.

TIVA was induced using intravenous (i.v.) fentanyl (2 μg/kg) and 2% lidocaine (1.5 mg/kg). Subsequently, continuous infusion of propofol (Fresfol 1%) was delivered using Schneider's kinetic model of TCI (Fresenius Orchestra Primea; Fresenius Kabi AG, Bad Homburg, Germany) with the effect-site concentration (Ce) of 4.0 µg/mL. For DES anesthesia, the patients were induced with i.v. fentanyl (2 µg/kg), 2% lidocaine (1.5 mg/kg), and propofol (1.5-2 mg/kg). When patients lost consciousness, 0.6 mg/kg of rocuronium was administered, followed by endotracheal intubation and administration of i.v. dexamethasone (5 mg) to prevent postoperative nausea and vomiting (in all patients). For TIVA, anesthesia was maintained using TCI with a propofol Ce of 3-4 µg/mL under an oxygen flow of 300 mL/min. In patients anesthetized with DES, anesthesia was maintained using 8-12% DES (inhaled concentration) in an oxygen flow of 300 mL/min under a closed system without nitrous oxide. Ce for TCI propofol was adjusted at the range of 0.2 µg/mL and DES 0.5% according to the hemodynamics. If two increments or decrements were unsuccessful, the range of Ce for TCI propofol and DES was increased to 0.5 µg/mL or 2%, respectively. Ventilation rate and maximum airway pressure were adjusted to maintain the EtCO2 pressure at 35-45 mmHg. Cisatracurium (2 mg) or rocuronium (10 mg) was administered as required to antagonize the return of neuromuscular function.7,8,11

At the end of the operation, DES or propofol was discontinued, and the lungs were ventilated with 100% oxygen at a fresh gas flow of 6 L/min. When the patient regained consciousness with spontaneous and smooth respiration, the endotracheal tube was removed after i.v. administration of neostigmine 2 mg and atropine 1 mg.^{7,8} An emergence time equal or longer than 15 min is considered as prolonged extubation.

Static analysis

Data are presented as the mean and standard deviation, the number of patients, or percentage. Demographic and perioperative data were compared using Student's t-test. Categorical data were compared using Chi-square test. P < 0.05 was considered as statistically significant. Multiple linear regression analysis was performed to assess the association between variables influencing extubation time

RESULTS

Ninety-five patients were excluded from the analysis. Of those excluded, 10 patients received combined inhalation anesthesia with propofol, 62 patients received sevoflurane anesthesia, and 26 patients had incomplete data [Figure 1].

Our study included 926 patients, of which 377 were received DES and 549 were received TIVA anesthesia. There were no significant differences in patient demographics. The emergence time was faster for TIVA group $(7.3 \pm 3.3 \text{ min vs. } 8.3 \pm 3.1 \text{ min; } P < 0.001)$. The percentage of prolonged extubation was higher in DES group (3.4% vs. 2%; P = 0.251) despite no statistically significant difference. The waiting for anesthesia, operation, anesthesia, exit from OR after extubation, total OR and PACU time showed no differences between groups [Table 1].

The result of multiple linear regressions comparing emergence time between several variants is shown in Table 2. Group, body mass index (BMI), surgical time and anesthesia time are factors that contribute to emergence time. The results showed that patients with DES, higher BMI, longer anesthesia time, and shorter surgical time have a slower emergence. Age of the patients had no significant influence.

DISCUSSION

The major findings in this retrospective study show that propofol-based TIVA by TCI reduced the emergence time relative to DES anesthesia and the factors of prolonged

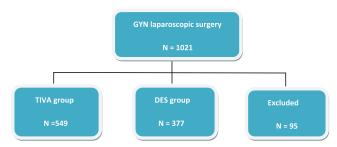


Figure 1. Flow diagram GYN = Gynecologic; TIVA = Total intravenous anesthesia; DES = Desflurane anesthesia

Table 1: Patient's characteristics and OR time measurement between DES and TIVA group

	Group DES $(n = 377)$	Group TIVA $(n = 549)$	P
ASA I/II/III	255/122/15	363/161/25	0.57
Age (years/old)	44.3±9.0	45.3±9.9	0.11
Height (cm)	160.0±6.4	160.3±6.6	0.65
Weight (kg)	59.3±8.9	59.8±8.6	0.44
BMI	23.1±3.2	23.3±3.0	0.59
Waiting for anesthesia time (min)	7.9±3.4	7.7±3.3	0.26
Surgical time (min)	87.9±28.7	87.3±31.1	0.76
Anesthesia time (min)	115.7±29.8	114.2±33.0	0.47
Emergence time (min)	8.3±3.1	7.3±3.3	< 0.001
Exit from OR after extubation (min)	6.5±2.0	6.4±2.3	0.61
Total OR time (min)	130.1±30.2	128.2±32.9	0.38
PACU stay time (min)	49.8±14.0	49.6±13.0	0.84
Prolonged extubation	13 (3.4)	11 (2.0)	0.251

Prolonged extubation was defined as extubation time ≥15 min; Data shown as mean ± SD. OR = Operation room; PACU = Postanesthesia care unit; SD = Standard deviation; BMI = Body mass index; ASA = American society of anesthesiologists; DES = Desflurane; TIVA = Total intravenous anesthesia

Table 2: Comparisons of extubation time between variants by multiple linear regression

	β	SE	P
Group	-0.829	0.168	< 0.001
Age	0.00764	0.00866	0.378
BMI	0.0178	0.00811	0.028
Surgical time	-0.0375	0.0137	0.006
Anesthesia time	0.0968	0.0130	< 0.001

 β : Difference between each variant using emergence time as dependent variable. Group: DES = 0, TIVA = 1; P < 0.05 were considered significant; DES = Desflurane; TIVA = Total intravenous anesthesia; BMI = Body mass index; SE = Standard error

extubation are group, BMI, surgical time and anesthesia time in patients undergoing gynecologic laparoscopic surgery.

The first finding was consistent with several previous studies showing that general anesthesia using TCI system with propofol could achieve faster extubation than using DES in different surgeries.⁶⁻¹⁰ In our previous large case number retrospective study, we show that propofol-based TIVA by TCI reduced the mean time to extubation (14%) relative to DES in patients undergoing ophthalmic surgery.⁸ Because the awakening time can be predicted by TCI system.¹² However, there are many studies compared inhalation anesthesia with propofol-based TIVA and failed to show any significant clinical difference in terms of extubation.¹³⁻¹⁵ The three studies showed that there was no significance in extubation

time between propofol group and DES group in laparoscopic cholecystectomy, ¹³ otological surgery ¹⁴ and ear, nose and throat surgery, ¹⁵ respectively. These were different from our retrospective study and other previous studies. ⁷⁻¹⁰ The reason might be due to the DES maintenance flow rate of oxygen was different: 1-4 L/min versus 300 mL/min in our study. Using close circuit anesthesia in the DES group would also prolong the neuromuscular blockade and delay the extubation time. ¹⁶ In another study, Dolk *et al.* ¹⁷ had reported that there were shorter emergence time for DES anesthesia compared with propofol delivered by TCI in knee surgery. The differences may have been caused by using nitrous oxide as an adjuvant to anesthetics, which reduce the requirement of inhalation anesthetics during the maintenance period and facilitate early emergence

Prolonged extubation is an incident that would decrease OR efficiency. Prolonged extubation time would cause slowing of workflow, having OR members staying idly waiting for extubation, and the surgeon have to wait longer for next operation. Epstein *et al.* Concluded that prolonged extubation time should be treated as resulting in proportionally increased variable costs. Therefore, monitoring the incidence of prolonged extubation was recommended as an economic measure. In this study, we showed the incidence of prolonged extubation was no significant difference between TIVA and DES groups, this might be due to the same gender, similar BMI, surgical time, and anesthesia time. Since many gynecologic laparoscopic surgical cases are of brief durations and are performed supine, likely there were not many cases with prolonged extubations.

Previous studies showed that the risk factors of prolonged extubation including prone position, prolonged surgical time, significant blood loss, larger volume of crystalloid and colloid infusion, procedure, or surgeon.²¹⁻²³ We showed shorter surgical time contributes to delay awaken, it result might be due to the prolonged duration of neuromuscular relaxants resulting from the close circuit anesthesia, 16 the surgical time less than initial estimation by the surgeon in many cases. Sanford et al.24 had reported that emergence time was longer in high BMI patients. However, Anastasian et al.23 showed that BMI was not the factor contribute to emergence time. In their report, patients' BMI was 28.2 and the total incidence of prolonged extubation was 44% (126/289). In our study, patients' BMI was 23.2 and the total incidence of prolonged extubation was 2.6% (24/926). It also seemed to reveal that emergence time was longer in higher BMI patients against the report of Anastasian et al.23 The result might be due to the longer surgical and anesthesia time of multilevel spinal decompressions and fusions (≥8 h) in the prone position compared with our brief gynecologic laparoscopic surgery in the supine position. The

Faster emergence and lower incidence of prolonged extubation in gynecologic laparoscopic surgery

reduction in direct cost will be largest for facilities at which all ORs consistently are used for more than 8 h daily. Among those ORs, each 1-min reduction in OR time results in an overall 1.1-1.2 min reduction in regularly scheduled labor costs. Consequently, small reductions in OR time achieved by reducing the extubation time, as reported in this study, would reasonably be treated as having economic benefit, since our OR workday is longer than 8 h.^{25,26} Therefore, in our study, TIVA group reduced total OR time is 1.9 min relative to DES group will have an economic impact on increasing OR productivity and reducing labor costs because our ORs are consistently used for more than 8 h daily despite no statistic difference.

A retrospective study may lead to bias considering standardization and comparability of study groups. However, retrospective analysis of data offered the anesthetic management was performed by attending anesthesiologist according to clinical demands and was not by a study protocol. It reflects more precisely the clinical relevant benefit that may be expected with the use of new drugs or devices.

CONCLUSION

Our results showed that propofol-based TIVA by TCI significantly reduce the emergence time in gynecologic laparoscopic surgery with clinical economic benefit.

REFERENCES

- Overdyk FJ, Harvey SC, Fishman RL, Shippey F. Successful strategies for improving operating room efficiency at academic institutions. Anesth Analg 1998;86:896-906.
- Dexter F, Coffin S, Tinker JH. Decreases in anesthesiacontrolled time cannot permit one additional surgical operation to be reliably scheduled during the workday. Anesth Analg 1995;81:1263-8.
- Apfelbaum JL, Grasela TH, Hug CC Jr, McLeskey CH, Nahrwold ML, Roizen MF, et al. The initial clinical experience of 1819 physicians in maintaining anesthesia with propofol: Characteristics associated with prolonged time to awakening. Anesth Analg 1993;77:S10-4.
- 4. Dexter F, Bayman EO, Epstein RH. Statistical modeling of average and variability of time to extubation for meta-analysis comparing desflurane to sevoflurane. Anesth Analg 2010;110:570-80.
- Wachtel RE, Dexter F, Epstein RH, Ledolter J. Meta-analysis of desflurane and propofol average times and variability in times to extubation and following commands. Can J Anaesth 2011;58:714-24.
- 6. Chan SM, Horng HC, Huang ST, Ma HI, Wong CS, Cherng CH, *et al.* Drug cost analysis of three anesthetic

- regimens in prolonged lumbar spinal surgery. J Med Sci 2009:29:75-80.
- Chen JL, Kuo CP, Chen YF, Chen YW, Yu JC, Lu CH, et al. Do anesthetic techniques affect operating room efficiency? Comparison of target-controlled infusion of propofol and desflurane anesthesia in breast cancer surgery. J Med Sci 2013;33:205-10.
- Wu ZF, Jian GS, Lee MS, Lin C, Chen YF, Chen YW, et al.
 An analysis of anesthesia-controlled operating room time after propofol-based total intravenous anesthesia compared with desflurane anesthesia in ophthalmic surgery: A retrospective study. Anesth Analg 2014;119:1393-406.
- Horng HC, Kuo CP, Ho CC, Wong CS, Yu MH, Cherng CH, et al. Cost analysis of three anesthetic regimens under auditory evoked potentials monitoring in gynecologic laparoscopic surgery. Acta Anaesthesiol Taiwan 2007;45:205-10.
- 10. Lu CH, Yeh CC, Huang YS, Lee MS, Hsieh CB, Cherng CH, *et al.* Hemodynamic and biochemical changes in liver transplantation: A retrospective comparison of desflurane and total intravenous anesthesia by target-controlled infusion under auditory evoked potential guide. Acta Anaesthesiol Taiwan 2014;52:6-12.
- 11. Lin BF, Ju DT, Cherng CH, Hung NK, Yeh CC, Chan SM, *et al.* Comparison between intraoperative fentanyl and tramadol to improve quality of emergence. J Neurosurg Anesthesiol 2012;24:127-32.
- 12. Chan SM, Lee MS, Lu CH, Cherng CH, Huang YS, Yeh CC, *et al.* Confounding factors to predict the awakening effect-site concentration of propofol in target-controlled infusion based on propofol and fentanyl anesthesia. PLoS One 2015;10:e0124343.
- Grundmann U, Silomon M, Bach F, Becker S, Bauer M, Larsen B, et al. Recovery profile and side effects of remifentanil-based anaesthesia with desflurane or propofol for laparoscopic cholecystectomy. Acta Anaesthesiol Scand 2001;45:320-6.
- Fombeur PO, Tilleul PR, Beaussier MJ, Lorente C, Yazid L, Lienhart AH. Cost-effectiveness of propofol anesthesia using target-controlled infusion compared with a standard regimen using desflurane. Am J Health Syst Pharm 2002;59:1344-50.
- Mahli A, Coskun D, Karaca GI, Akcali DT, Karabiyik L, Karadenizli Y. Target-controlled infusion of remifentanil with propofol or desflurane under bispectral index guidance: Quality of anesthesia and recovery profile. J Res Med Sci 2011;16:611-20.
- Yeh CC, Kong SS, Chang FL, Huang GS, Ho ST, Wu CT, et al. Closed-circuit anesthesia prolongs the neuromuscular blockade of rocuronium. Acta Anaesthesiol Sin 2003;41:55-60.

- Dolk A, Cannerfelt R, Anderson RE, Jakobsson J. Inhalation anaesthesia is cost-effective for ambulatory surgery: A clinical comparison with propofol during elective knee arthroscopy. Eur J Anaesthesiol 2002;19:88-92.
- Dexter F, Macario A. Decrease in case duration required to complete an additional case during regularly scheduled hours in an operating room suite: A computer simulation study. Anesth Analg 1999;88:72-6.
- 19. Masursky D, Dexter F, Kwakye MO, Smallman B. Measure to quantify the influence of time from end of surgery to tracheal extubation on operating room workflow. Anesth Analg 2012;115:402-6.
- Epstein RH, Dexter F, Brull SJ. Cohort study of cases with prolonged tracheal extubation times to examine the relationship with duration of workday. Can J Anaesth 2013;60:1070-6.
- 21. Dexter F, Epstein RH. Increased mean time from end of surgery to operating room exit in a historical cohort of cases with prolonged time to extubation. Anesth Analg 2013;117:1453-9.

- 22. Li F, Gorji R, Tallarico R, Dodds C, Modes K, Mangat S, *et al.* Risk factors for delayed extubation in thoracic and lumbar spine surgery: A retrospective analysis of 135 patients. J Anesth 2014;28:161-6.
- 23. Anastasian ZH, Gaudet JG, Levitt LC, Mergeche JL, Heyer EJ, Berman MF. Factors that correlate with the decision to delay extubation after multilevel prone spine surgery. J Neurosurg Anesthesiol 2014;26:167-71.
- 24. Sanford JA, Kadry B, Brodsky JB, Macario A. Bariatric surgery operating room time-size matters. Obes Surg 2015;25:1078-85.
- 25. Dexter F, Macario A, Manberg PJ, Lubarsky DA. Computer simulation to determine how rapid anesthetic recovery protocols to decrease the time for emergence or increase the phase I postanesthesia care unit bypass rate affect staffing of an ambulatory surgery center. Anesth Analg 1999;88:1053-63.
- 26. Dexter F, Epstein RH. Typical savings from each minute reduction in tardy first case of the day starts. Anesth Analg 2009;108:1262-7.

