

組合式掩體運用效益之研析

作者簡介

吳奇諭少校,陸軍官校87年班、工校正規班139期;曾任排 長、副連長、連長、營訓練官、教官;現任陸軍工兵訓練中 心戰工組教官。

提 要 >>>

- 一、「組合式掩體(HESCO)」目前已經運用於世界上許多國家,不論是在戰時的作戰防禦工事掩體構築,或是平時的國土災害防救,都發揮了極大的功用與效能,甚至連對岸的中共也都因其具備多效能的功用,而自行研發組合式掩體,並且運用於國內各大災害救援上。
- 二、「組合式掩體(HESCO)」可作為軍事裝備,能應用於作戰部隊,使用於防爆、排爆的臨時碉堡、堡壘、戰前指揮所,以代替傳統的人工戰壕,形成一防禦堡壘,有效阻擋槍砲、子彈的襲擊,有利減少士兵及人員傷亡。
- 三、「組合式掩體(HESCO)」具有便於運輸、可移動性強、安裝簡易、效果突出、利於回收等性能,可滿足作戰及災防需求,有別於以往傳統(如沙包、沙袋等)掩體效能之限制,具實質防禦效能,可完成國家交付之任務。

關鍵字:組合式掩體、災害防救、防禦堡壘

前 言

近年來全球氣候劇變,導致每年颱風、暴雨、土石流等災害威脅不斷。由此顯示在溫室效應之影響下,全球各地水災及颱風的發生機率,已經有不斷增加之趨勢,所以在無外敵入侵狀況下,天災地變的無預警奇襲,早已經成為世界各國國土安全的最大威脅來源。以98年莫拉克風災(88風災)為例,國軍總計投入約56萬多人次、飛機5,500多架次;這些難能可貴的善舉,在在都顯示國軍持續貫徹「防災重於救災,離災優於防災」的要領,充分展現了「軍民一家」精神,也見證官兵與民同在、戮力達成保家衛國神聖使命的決心。1

全球各國不論在戰時或平時,針對軍 隊安全防禦及國土災害防救上,如何才能 有效降低其傷害的議題,都做了相關深 入的研究。「組合式掩體(HESCO)」就 是在這樣的環境之下,所研發出來的一種 產物,不僅在防禦效能、機動能力、架設 速度等,都具備了極優質的能力,滿足了 作戰及災防需求,有別於以往傳統(如沙 包、沙袋等)掩體效能之限制,具備了實 質防禦效能,可完成國家交付之任務。組 合式掩體在許多國家都發揮了極大的效能 ,甚至連對岸中共也都已經自行研發,並 運用於災害防救上,利用其強大功用與效 能來提升防護之能力,目近年國軍人員在 不斷組織調整與人員精簡狀況下,在時間 、人力及效能上,明顯有所不足。「組合 式掩體」運用於國內戰時作戰工事及平時 災害防救上,能否有效發揮其效能,提升 整體防護能力,更是我國迫切必須重視的 議題。

組合式掩體之概述

一、沿革

「組合式掩體」是由單一防爆網所串 聯組合而成、研發者為美國商人吉米・赫 塞爾登,他曾在礦場工作,後來遭到公司 解雇,他利用遣散費創辦了國防裝備公 司「HESCOBastions」,為在阿富汗和伊 拉克前線作戰的美國十兵提供保護。「 HESCOBastions L公司於1990年創立,為 此「組合式掩體」的主要製造商,而此項 產品被喻為第二次世界大戰結束以來,公 認是最重要的防禦掩體。²美國最初在運 用於作戰時,乃是作為美軍在外作戰之基 地防禦堡壘,為各項軍事武器、裝備、生 活設施及人員生活提供重要之保護,而平 時也在災害防救上,扮演重要的角色(例 如墨西哥灣原油外漏事件中的攔油牆)。 因「組合式掩體」性能效果顯著,架設迅 速又實用,近年來,許多國家天然災害不 斷,尤其以颱風及暴雨所造成的「複合式 災害」為多數,各國均參考了美軍運用成 效,更是相繼引進「組合式掩體」,使其 演變為平時天然災害防護時,將其架設於 河道邊、房屋周邊及重要處所等周邊做為 防護使用,全球運用之國家更是與日俱增 。截至目前為止,在世界各地許多國家, 包括中共、泰國、阿富汗、伊拉克、波斯 尼亞、科索沃、斯里蘭卡、約旦及土耳其 等國家,均將「組合式掩體」作為平時防

¹ 國家災害防救科技中心,〈莫拉克颱風之災情勘查與分析【摘要本】〉,2010年3月9日,頁7。

² 維基百科, http://zh.wikipedia/wiki/艾斯科防爆組。

護屏障,而美軍、英軍及北約 等國家,則作為戰時基地防禦 掩體。

二、組合式掩體之組成與特性

(一)組成

組合式掩體是由數個「防爆網」所組合而成,而「防爆網」之構造乃是運用優質低碳鋼絲焊接,精湛鍍鋅防鏽,並利用螺旋絲將一定尺寸的網片連接在一起,組成特定尺寸的網箱,外加優質土工布包裝,再進行組裝及折疊,組合式掩體結構如圖一所示。

組合式掩體規格共計有 資料來源 12種型式(如表一、圖二),可因 應場地環境及規格不同選擇運用,並有土 灰色、土黃色、綠色等多種顏色,可供選 擇使用,以結合現地環境背景,達到戰場 掩蔽的效果。

不論是戰時或平時運用,時間是最須 掌握的重要一環,而為降低作戰掩體構築 所需耗費的時間,組合式掩體更是提供了 一個解決方案,可以滿足適用範圍廣大、 縱深較長的結構要求。它們可以依不同的 規格運輸載運,將已堆疊包裝完成運送或 直接垂直堆疊於輸具內,架設作業人員只 須在架設地點等待掩體送至後,用人力方 式將其展開或以機具方式拖曳架設,將掩 體包裝內所提供的連接銷插入,再運用各

圖一 「防爆網」結構圖

資料來源:HESCO Barrier,http://hescobarrier.diytrade.com/,2015年3月18日。

項機具裝載土方(如裝土機、挖土機),並 將土方倒至組合適掩體內,即可完成各項 掩體設置(如圖三)。

(二)特性

防爆網內部,可放置泥土、沙子 及碎石等物質,就地取材,將其組合成較 大的防禦掩體時,防禦效果更加倍增,依 戰況或任務需要作組合變換,主要功能在 戰時能防恐防爆,具有抗防爆衝擊波能力 ,將爆炸的破壞作用限制在一定的範圍內 。平時能抗洪防險,可架構成防波牆(堤) 、臨時堤防等,有效的將水流阻擋於掩體 內,以保持住原有河道。防爆網與傳統蛇 籠不同,不僅可以裝石頭,甚至可以裝更

表一 「組合式掩體」系統12種型式標準規格

Mil-1:1.37m×1.06m×10m	Mil-2:0.61m×0.61m×1.22m	Mil-3:1.0m×1.0m×10.0m
Mil-4:1.00m×1.05m×10m	Mil-5:0.61m×0.61m×3.05m	Mil-6:1.68mx0.61mx3.05m
Mil-7:2.21m×2.13m×27.74m	Mil-8:1.37m×1.22m×10.0m	Mil-9:1.0mx0.76mx9.14m
Mil-10:2.12m×1.52m×30.5m	Mil-1.9:2.74m×1.06m×3.3m	EPW-1:2.1m×1.06m×33m

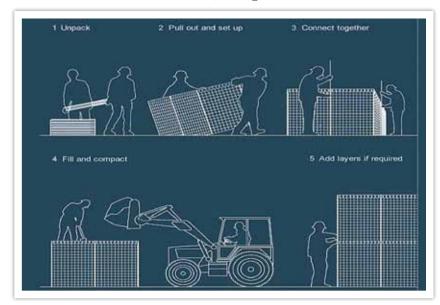
資料來源:FNSS,http://www.army-technology.com/contractors/infrastructure/hesco/,2015年3月18日。

QS 1 QS 2 4'6" (1.37m) (0.61m) 32' (10m) Length 4' (1.21m) Le (0.61m) 3'6" (1.06m QS 3 QS 4 (1.0m) 3'3" (1.0m) 32' (10m) Length (1.5m) 32' (10m) Length 10 cells (2x5) (1.0m) QS 5 QS 6 5'6" (1.68m) (0.61m) 10' (3.05m) L 10' (3.05m) Length (0.61m) (0.61m) QS 7 QS 8 4'6" (1.37m) 7'3" (2.21m) 32' (10m) Length (1.22m QS 9 QS 10 (2.12m) (1.0m) (0.76m) (1.52m) EPW 1 QS 1.9 (2.74m) 11'3" (3.3m) Length 3 cells 108' (33m) Length 30 cells (6x5)

圖二 「組合式掩體」系統12種標準圖

資料來源:FNSS,http://www.army-technology.com/contractors/infrastructure/hesco/, 2015年3月18日。

細的泥沙,填裝材料就地取材,尤其適合 在石料缺乏的江河下游或者海濱使用。防 爆網具有便於運輸、可移動性強、安裝簡 易、效果突出、利於回收等性能,性能倍 受矚目,其特性如下:³


1.便於運輸

組合式掩體在尚未拉開之前,其設計是以折疊成箱的方式呈現,體積約為原體積的10分之1(如圖四),不論是飛機、船艦、火車、卡車等,甚至到一般民用貨車,皆可實施組合式掩體之載運,且裝載量大,若遇地形環境無法順利以車裝的方

³ FNSS , http://www.army-technology.com/contractors/infrastructure /hesco/

圖三 「組合式掩體」構築流程圖

資料來源:LVHUA,http://www.gabionwall.org/img/hesco-barrier-process.jpg, 2015年3月18日。

圖四 「組合式掩體」搬運圖

資料來源:HESCO Barrier, http://hescobarrier.diytrade.com/, 2015年3月18日。

式送至救援場地時,亦可將掩體以工程重 機械或人工徒手接替運搬的方式來實施運 送,運輸方式多樣化,且極為便利。

2.安裝簡易

單一組合式掩體只需兩員兵力即可 完成設置(如圖五),若須架設長度較長之 範圍,如基地圍牆掩體、河 道(川)護坡等,則可利用各 式車輛將已折疊之掩體, 用拖拉之方式實施架設, 員只需在車後做些微調整, 完成架設後,再以工兵機 (如挖土機、裝土機、多 車等裝載機具)實施土方機 體內,即可完成組合式掩體 之構築。

3.可移動性強

組合式掩體可依架設 方式與需求,先將其網架完 成架設,若發現設置地點不 適合,或是架設方式錯誤, 可立即將組合式掩體直接搬 運,或再行折疊搬移至所需 架設的正確地點。網架完成 架設後,再行土方(或沙、 礫石)填充,以降低因架設 錯誤而造成人力、時間等浪 費,以及救援效能不彰等狀 況。

4.效果突出

組合式掩體內部可放 置土方、碎石、沙子等物體 ,掩體環環相扣,不僅抵抗 外壓破壞能力強(可防止車 輛衝撞),其架構範圍大, 組合方式多,外層包覆聚丙

稀土工布,使其防水渗透力之效果更佳(如圖六)。

5.利於回收

組合式掩體在使用完畢後,可將掩 體側邊之鐵絲旋出,將其網面打開,將掩 體內之土方(石頭)倒出掩體外,再以架設 掩體順序反向折疊回收,若有遭遇破壞之掩體,則將該處剪斷, 再依上述方式折疊,待下次再行利 用(如圖七)。

三、小結

組合式掩體本身已具備相當之 支撐力及防禦力,倘若再將其組合 成大型掩體,效果更是強大,相對 效益都來的更加有效。因天然災害 發生之頻率日益繁多,對於現今颱 風、暴雨所造成的土石流、河川潰 堤、街道淹水等災害,都必須在極 短的時間內,達到救援的功效,使 災害能降至最低程度之防護作為, 有效完成防(救)災任務,已成為世 界各國相繼使用之主要因素。

各國組合式掩體發展與運 用現況探討

組合式掩體在許多國家都已經 成為主要的防護掩體,依各國國情 不同之需要,運用於多重任務之 防護,且均能架構出屬於該國需 要的掩體型式,達到其防護之目 的。不論是在戰時之防禦掩體或平 時災害防救,皆能有效降低災害的 發生與人員、財產的損失,尤其是 在災害救援方面,各國近年天然災 害不斷,造成人員、財產損失慘重

。然而組合式掩體的運用,在各國均能達到國家災害防救的目標,使其各國相繼購買及研發此項產品。世界各國運用與發展如下:⁴

一、美國發展與運用探討

圖五 「組合式掩體」兩人設置作業

資料來源:HESCO,http://www.hesco.com/recoverable-unitxs/,2015年 3月18日。

圖六 「組合式掩體」防水效能佳

資料來源: FNSS, http://www.army-technology.com/contractors/infrastructure/hesco/, 2015年3月18日。

(一)源起

美軍長年在外爭戰,因軍隊之人 員、武器、裝備數量較多,防禦基地常建 立於空曠處,使其較容易暴露於敵人火力

⁴ GlobalSecurity.org , http://www.globalsecurity.org/military/intro/hesco.htm/

圖七 「組合式掩體」回收圖

資料來源: FNSS, http://www.army-technology.com/contractors/infrastructure/hesco/, 2015年3月18日。

下,易遭受敵部隊之突襲與砲擊,進而造成嚴重損傷。美國為保護軍隊在境外作戰人員、武器及裝備安全,故於1990年由國內廠商自行研發組合式掩體,並且大量生產支援軍隊使用,有效提供了美軍在海外作戰防護上之最大的保障。

(二)運用

美軍在阿富汗及伊拉克戰場上, 因地理環境與位置關係,鮮少有天然障 礙及遮蔽物可供運用,容易遭受叛軍攻 擊,故作戰防禦能力備受重視,因而運用 組合式掩體之高機動力、高防禦力等特 性,將其構築於戰場上,組合成所需要 的各種不同防禦型式,從人員掩體(如休 息區、辦公區、哨所等)、武器掩體、裝 備掩體(如直升機、戰車、砲陣地等)、爆 破掩體等,到整座防禦基地周圍防護牆 ,都將其運用得淋漓盡致,且均能有效的 降低敵砲彈對基地之威脅, 達到基地整體防護目的。⁵ 另於墨西哥灣原油漏油事件 中,也運用組合式掩體於 海上島嶼周圍及海岸邊線, 作為攔油牆之用(如圖八), 以防生態遭受破壞,成功的 將油汙阻擋於掩體外,降 低海洋汙染面積。其運用 如下:

1.基地防禦堡壘

美軍在境外作戰時, 將作戰基地裡所有武器、裝備、寢室等建築物,運用組 合式掩體架設於周邊作為防 護,再設置於整座防禦基地

周圍,形成巨大之基地防禦堡壘,防止敵人攻擊,以維護整座基地安全(如圖九)。

2.人員掩體

(1)休息區

美軍以往在作戰時,乃運用貨櫃 作為士官兵寢室,然而貨櫃之防護能力較 差,敵人之砲彈碎片或子彈皆能輕易貫穿 而造成人員傷亡,故美軍現行做法為在貨 櫃外側構築組合式掩體,來提升其防護能 力(如圖十)。

(2)辦公區

美軍為防止辦公室內之人員及設備遭受敵砲彈攻擊破壞,會先運用組合式掩體構築出一間密閉式的掩體辦公室,並在其上方加蓋屋頂,以確保辦公室內之人員作業及設備安全(如圖十一)。

(3)哨所

美軍在基地防禦堡壘內,運用組

⁵ 安道爾,《美軍防禦系統與HESCO之研究》,2010年11月3日,頁5-8。

合式掩體堆疊架設方式,架構出一制 高點,作為人員哨所使用,以防止 哨所遭敵破壞及保障執勤人員安全(如圖十二)。

3.武器、裝備

美軍為防止作戰中使用之武器及裝備遭受攻擊破壞,便將組合式掩體構築成各區塊,作為武器或裝備固定停放位置,除可降低遭敵攻擊所造成之傷害外,亦可達到隱蔽、掩蔽之效果,有效提升戰場存活率(如圖十三)。

4.爆破

將未爆彈放置於組合式掩體構築範圍內,實施爆破作業,能使爆破碎片阻擋於掩體內,避免產生誤傷人員之情況,可作為臨時之爆破場(如圖十四)。

(三)效能

- 1.有效阻擋槍砲子彈的襲擊,可 降低敵砲彈攻擊所造成之傷害。
 - 2.可作為未爆彈摧爆區。
- 3.可即時架設河道護堤或當做攔油牆,降低災害發生。

二、泰國發展與運用探討

(一)源起

泰國因長年遭受颱風、大雨之侵襲,導致水患災情不斷,因而於2012年向美軍購買組合式掩體,期藉此解決淹水問題。

(二)運用

泰國自1942年以來,國內水患不斷,造成嚴重的傷害,該國想盡一切辦法降低水患發生,運用過沙包、蛇籠,甚至增建排水系統,但連續暴雨來臨,依然無法逃過淹水的災害,就在2012年時,面對被稱為泰國近70年來最嚴重水患,造成全

圖八 墨西哥灣漏油事件之攔油牆

資料來源:WBRZ,http://www.wbrz.com/images/news/2011-05-06/ HESCObaskets.jpg/,2015年3月18日。

圖九 美軍基地防禦堡壘

資料來源: FNSS, http://www.army-technology.com/contractors/infrastructure/hesco/, 2015年3月18日。

國上下幾乎都有水患發生,當地政府官員 則向美國HESCO公司購置組合式掩體, 並請美軍協助泰國皇家陸軍架設,構築了 長達2公里的掩體,圍繞於機場周圍及約5 公里長,從機場到曼谷的主要路線,成功 的將流水阻擋於掩體外(如圖十五),到目 前為止,泰國官員已計畫運用於其他重要 地點,如歷史悠久的古城、廟宇、宮殿及 行政區域等,以防止暴雨來臨時,再次遭 受破壞。

(三)效能

- 1.可防止重要道路、設施遭 受侵襲。
- 2.可即時架設護堤,降低災 害發生。

三、伊拉克運用探討

(一)源起

因應伊拉克戰事頻繁, 國內常有反叛份子作亂,故於美 軍在伊拉克作戰時,協請美軍支 援組合式掩體作為防護之用後, 發現其效益能力強大,因而向美 軍購置組合式掩體。

(二)運用

伊拉克因國家內部較為 混亂,常有反叛份子會在無預 警的情況下,對政府機關或軍隊 基地進行突襲攻擊,造成嚴重之 人員傷亡,因而向駐守於當地 的美軍購買組合式掩體,並構築 於各交通管制點、大使館、總統 府附近要道及高風險選舉投票 站等地(如圖十六),保護當地敏 感設施,以防止反叛軍突襲發 生。

(三)效能

- 1.可降低叛亂份子恐怖攻擊 所造成之損傷。
- 2.可提高機敏處所之防護能 力。

四、中共運用探討

(一)源起


因應中共國內河川眾多且水流湍急,常因一陣暴雨侵襲之後,導致河川水位暴漲,因而於2008年參照美國之組合式掩體製造技術,自行研發出性能相似之組合式掩體,運用至今,並銷售至其他國家。

圖十 休息區掩體

資料來源: FNSS, http://www.army-technology.com/contractors/infrastructure/hesco/, 2015年3月18日。

圖十一 辦公區掩體

資料來源: FNSS, http://www.army-technology.com/contractors/infrastructure/hesco/, 2015年3月18日。

(二)運用

中共境內河川眾多且水流湍急, 常在颱風、暴雨來臨期間,致使下游水流 加速與河水暴漲。河川沿岸堤防因承受不 住水流強大之沖擊壓力,因而導致潰堤, 或是在河道轉彎處,沖刷出新支流,造成 河水亂竄。種種狀況常年發生,迫使中共 不得不研討出一套妥善且有效的治水方法 ,進而參考了世界各國在防範水患上的運

圖十二 哨所掩體

資料來源: FNSS, http://www.army-technology.com/contractors/infrastructure/hesco/, 2015年3月18日。

用後,認為美國之組合式掩體對於防範水 患最具效能,並開始進行研究,而自行研 發出相同性能之組合式掩體,將其構築於 各危險河道及堤防(如圖十七),以有效降 低淹水災害發生。

(三)效能

可即時架設護堤,降低災害發生。

五、組合式掩體特、弱點分析

綜合世界各國對於「組合式掩體」之 運用結果可知,「組合式掩體」除了具有 便於運輸、可移動性強、安裝簡易、效果突出、利於回收等性能外, 其作業所需人員少,所需花費不高 ,且具抗炸(射)能力;惟「組合式 掩體」必須配合機具實施作業,使 可突顯其作業快速之效能。另其在 平時之災害防救亦可具有防洪、攔 油之效果。故不論是戰時之作戰防 禦,或是平時之災害防救,均具備 相當大之功用,可說是一運用效能 極高之裝備。

組合式掩體運用效益分析

在今日高科技的現代武器、裝備之中,組合式掩體很可能為現今防護裝備上,最簡單且最有效的防護系統之一,並能依照每個國家之國情與作戰需求不同,運用組合式掩體多重高效益性能,組合出適合該國運用方式,而不再是以傳統堆沙包、疊沙袋的方式來實施掩體之構築,其組合式掩體效益如下:

一、人員效益

組合式掩體構築時,所須運用到之作業兵力不多,大部分均可利用車輛與機具

圖十三 武器、裝備掩體

戰車掛體

資料來源:FNSS,http://www.army-technology.com/contractors/infrastructure/hesco/,2015年3月18日。

圖十四 未爆彈爆破之臨時爆破場

資料來源: FNSS, http://www.army-technology.com/contractors/infrastructure/hesco/, 2015年3月18日。

,即可完成大部分的掩體架設,而人力只 須針對組合式掩體實施簡單調整與固定, 掩體之基本構築作業有以下兩種方式:

(一)人員配合機具(裝土)作業

將折疊包裝好之組合式掩體搬運 至正確之架設位置,以2~3員兵力,將組 合式掩體拉開,再配合機具操作手實施土 方裝填作業,即可完成單一規格之掩體架 設,使用人數(含操作手)3~4員,倘若須 架設較長之範圍,則可以同時間,採多組 人員架設方式,再以連結銷將每個掩體網 架相互做連結,即可完成架設,相對效益 依然不變(如圖十八)。

(二)車輛配合機具(裝土)作業

架設前,將組合式掩體垂直堆疊 於車後,運用車輛或機具拖曳方式,將掩 體拉出展開,再以2員兵力跟隨於後方實 施簡單之調整,拉出所需要之設置長度, 同時機具則可在後方實施土方裝填作業, 一次作業量,可構築20公尺以上之範圍, 使用人數3~4員(如圖十九)。

二、時間效益

以構築QS1型式(如圖二十,長:10

公尺、寬:1.06公尺、高:1.37公尺)時間 作分析,只須以人力展開,不到5分鐘的 時間,即可完成框架架設,剩餘時間只須 實施土方裝填作業,組合式掩體即能迅速 完成架設。

三、防護效益

組合式掩體內部,因其設計特性可容 納堅硬物體及細小沙粒,甚至可以直接以 灌水泥方式等,架設所須厚度、高度及長 度,皆可依現況所需,選擇不同防護效益 之架構類型。若需要更加強化掩體強度, 也可以在螺旋絲裡打入鋼筋,使其更加牢 固,避免遭受河水沖毀或車輛等裝備衝撞 而造成損壞,組合式掩體已在許多狀況測 試下證明其實力。美國陸軍工程師研究及 發展中心對其進行測試,發現組合式掩體 系統較其他系統有顯著優勢,美國工程兵 部隊(USACE)運用位在維克斯堡・密西西 比的洪水實驗室設備實施測試, "結果如

En. Wikipedia , http://en.wikipedia/wiki/Unieed_ States corp of Engineers

圖十五 防洪掩體

資料來源:FNSS,http://www.army-technology.com/contractors/infrastructure/hesco/,2015年3月18日。

下所述:

(一)洪水測試

將洪水傾瀉而出,沖向組合式掩體,除越過掩體高度之水浪,其餘超過80%的水,都可以有效阻止於組合式掩體外,顯示出掩體之滲水度低,掩體間連貫無間隙,有效使水無法從掩體縫隙中滲透。

(二)波模擬器測試

設置不同強度的震波, 使水流依

不同強度衝向組合式掩體,水漫頂掩體系統,但掩體依然保持完整,無受到破壞及移動,幾乎不受水流衝擊影響,顯示出組合式掩體對於水流衝擊之抵抗力充足。

(三)車輛測試

拉出QS8型式(如圖二十一) ,將重達15,000磅,以50KM/H的速 度前進之卡車阻擋在外,並在組合式 掩體螺旋絲裡打入鋼筋後,將重達 65,000磅,以相同速度前進之卡車, 阻擋於掩體外。以上兩項測試雖然都 造成了組合式掩體拉扯變形,但整體

防護線依然存在,並無造成缺口,也能達 到阳絕防禦之目的。

(四)抗炸(射)測試

將組合式掩體內部裝滿土方(沙)並夯實後,經測試當掩體厚度達60公分(含以上)時,可防步槍子彈、砲彈碎片等;厚度達150公分(含以上)時,則可防火箭筒、槍榴彈之攻擊,亦可當做未爆彈之臨時爆破場,能將爆破碎片阻擋於組合式掩體內。

圖十六 管制掩體

交通要道掩體

交通管制點掩體

資料來源:HESCO, http://www.hesco.com/recoverable-unitxs/, 2015年3月18日。

圖十七 河道防護堤

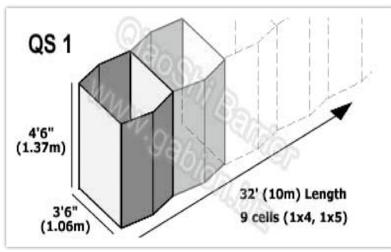
資料來源:HESCO, http://www.hesco.com/recoverable-unitxs/, 2015年3月18日。

圖十八 人員配合機具構築

資料來源:FNSS, http://www.army-technology.com/contractors/infrastructure/hesco/, 2015年3月18日。

四、組合式掩體對我軍之影響

(一)平時


臺灣地處歐亞大陸板塊及菲律賓 海板塊交界處,地質破碎多斷層,且位處 於南太平洋颱風肇生密集帶上,氣溫高、 濕度大,每受颱風侵襲後,由於短淺徒降 之河流無法有效調節颱風或豪雨所夾帶而 來之豐沛雨量,往往造成市區街道積水或 引發山區土石流爆發等災害,故近年來臺 灣地區仍以天然災害為主要威脅。依據災 害防救法規定,災害防救乃地方政府權責 ,當直轄市、縣(市)政府及中央災害防救 業務主管機關,無法因應災害處理時,得 申請國軍支援,但發生重大災害時,國軍

圖十九 車輛配合機具構築

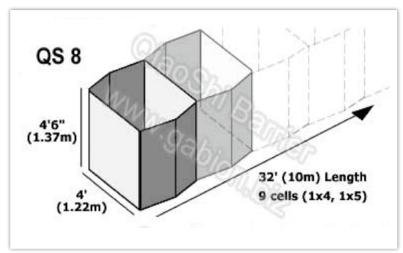
資料來源: FNSS, http://www.army-technology.com/contractors/infrastructure/hesco/, 2015年3月18日

圖二十 QS1類型圖

資料來源: FNSS, http://www.army-technology.com/contractors/infrastructure/hesco/, 2015年3月18日。

部隊應主動協助災害防救。臺灣目前所運用之防護掩體,大多為沙包及太空包等,實質效益較無法克服現今天然災害之特性,國軍在協助災害防救時,倘若能有效運用「組合式掩體」,將可對因河川潰堤或街道淹水所造成之影響,有效的予以消彌或降至最低程度,來完成防救(災)任務。其重點運用方式如下所述:

- 1.危險山坡地設置:在颱風來臨前夕,對發現已鬆動之土質山坡地區實施組合式掩體架設,可有效防止土石流發生時之破壞程度,以及增加災民撤離家園與應變時間。
- 2.危險河流(河道)段設置: 在長期發生或現況判斷可能會造 成潰堤或河川水位暴漲區域組合 式掩體實施架設,可有效降低淹 水災害發生。
- 3.長期淹水地區設置:在容易造成淹水地區周圍實施組合式掩體架設,以有效降低淹水程度,增加災民應變時間,提高災害


搶救效能。

(二)戰時

臺灣與中共僅一海之隔,作戰預 警短,而且臺灣幅員小,缺乏縱深與彈性 ,另共軍登陸戰役強調採廣正面正規與非 正規戰結合,運用萬船齊發、多點登陸方 式,由於其先期作戰將造成我全面性之威 脅,使我兵力抽調及轉用困難,倘若再配

資料來源: FNSS, http://www.army-technology.com/contractor/infrastructure/hesco/, 2015年3月18日。

合其破障及工程保障,必能迅速突破我防禦陣地,對我影響威脅增大,因而在發現敵軍事徵候時,若能立即構築組合式掩體,並置重點於以下幾點,將可有效達到作戰防護之目的。

- 1.針對重要武器及裝備實施掩體架設 :主要目的在維持防衛作戰中之反登陸作 戰各項武器、裝備之戰力,達到有效實施 反擊任務。
- 2.針對重要設施實施掩體架設:如雷達站、機場、飛彈陣地、作戰指揮所等, 以維持戰場之作戰效能。
- 3.針對敵可能登陸地區加強掩體架設 :主要在加強我反擊部隊作戰防護能力, 以及遲滯、阻止敵登陸部隊之行動遂行。
- 4.針對損壞之掩體障礙立即補強:主要目的在彌補遭敵砲彈破壞所造成之掩體缺口,使敵無法有效利用此缺口,遂行人員與戰(甲)車輛等裝備之登陸行動。
- 5.針對沿海登陸海灘作掩體障礙:主要在誘導敵登陸部隊進入我預想殲滅區域 ,以有效發揮我火力效能。

五、小結

全球近年因氣候變遷及受到地球暖化效應影響,極端氣候導致天然災害與日驟增,直接衝擊各國環境生態、經濟與國土安全,使人民住居與生命財產受到嚴重威脅;據挪威地緣科技研究與重威脅;據挪威地緣科技研究報告指出。至於炎難熱點:全球炎難熱點:全球炎難熱點:全球炎,之研究報告指出。下水災難為大地與人民暴露在三種或更多天災危險因子中行如風、水震災)」。目前在各國所共同與方方,大地的反撲造成人類的災難,尤其是暴風雨所帶來的

「複合式災害」,而相較於我國災害現況 亦是如此,我們或許現階段無法改變它, 但卻必須要以最有效的方法來降低損害程 度,組合式掩體雖然不能達到完全防範災 害所造成的傷害,但直到目前為止,它確 實為防災扮演了重要的角色。

結論與建議

一、結論

臺灣屬防衛作戰國家,兩岸表面上已平靜數十年,但在暗地裡鬥爭不斷,面對中共對我「不放棄武力犯臺」政策,何時會發動攻擊,無從得知,我們只能隨時做好備戰準備,以最迅速、最有效的裝備來來抵抗中共的突擊,在發現敵軍行動徵候時,組合式掩體或許是最能在第一時間裡,保障我國家安全之掩體。

近年來全球由於氣候變遷,因而造成 天然災害日趨頻繁。根據統計指出,臺灣 地區所發生之災害尤以地震、颱風、水災 及土石流為最多,工兵部隊平時除戮力戰 備訓練外,更須肩負災害防救等任務, 然工兵部隊執行任務時常受兵力、空間 、時間及裝備等因素限制,考量在有限資 源及兵力狀況下,如何將部隊有效且充分 運用達成救災最大效用,即為現今之重要 課題。

二、建議

綜合臺灣目前所面對的衝擊可瞭解到 ,不論是在戰時或平時,總是在與時間競爭,而組合式掩體之運用,較能符合現況 需要,若能購置此項裝備,甚至研發相同性能之掩體,加強人員訓練,有效利用與 運用,必能在短時間內,達到國家安全保障目標,進而得到國人的認可。因而提出 建議如下:

(一)籌購建置掩體,驗證實質能量

1.未來可納入建案籌購,並在國軍各 重大演訓中,加入組合式掩體架設項目, 以人力搭配機具架設,驗證運用於戰場上 之機動力、防護力等效能,能否於時間限 制內,完成所需要之掩體類型,達到實質 防護效果。

2.因應國內災情不斷,組合式掩體是 否有效的發揮於災害防救上,實質效益尚 未驗證,但在國外運用研討上,都有許多 成功的例子,效益備受矚目。建議我國應 立即購置組合式掩體,驗證掩體各項防護 能力,是否適合運用於臺灣地理環境,並 適時納入「防衛作戰」及「災害防救」之 規劃之中。

> (二)納入災防演練,擴充救援能量 有效的救災行動可降低人員傷亡及

減少財產損失,無效的救災行動,非但無 法達到效果,反而會導致二次傷害,⁸工 兵部隊為執行救災行動之主力,具有各項 工兵機械與特種車輛,能即時支援災害救 援任務;為有效提升災害救援效能,可依 「平時共同訓練,災時並肩救難」思維, 將組合式掩體納入各項常態性之災防演練 ,使部隊訓練與中央、地方機制接軌,並 納入「聯合搜救」、「萬安演習」等災害 防救訓練裡,藉以強化工兵救災能力,確 保人民財產安全。

(三)結合動員體系,建立後備能量

國防部於100年10月21日修訂「 國軍經常戰備時期突發狀況處置規定-第 陸童災害防救與管制-第四項救災兵力派 遣運用原則:後備、新訓部隊於發生重大 災害,得適時支援救災,並以一般災害防 救為主」。9面對複合式災害頻繁,以及 部隊組織調整、人員精簡,民(物)力能否 有效動員支援,已成為災害救援之關鍵。 而民間機具資源可觀,工兵部隊除以現有 之機具(裝土機、挖土機)協助實施組合式 掩體之架設救援,亦須針對民間機械型式 與類別加以蒐整、運用,方能於未來動員 徵用時,妥慎指揮編組,迅速發揮救援之 最大能量。未來若能利用動員教召時期, 加強人員架設訓練,澈底瞭解組合式掩體 構築方式及特性,再配合機具實施訓練, 以利於戰時能運用動員人力協助構築,提 升架設能量,適時發揮掩體之最大效能(本篇選錄自工兵半年刊第146期)。

⁷ 張中勇,〈災害防救與我國國土安全管理機制之策進〉《國防雜誌》(桃園:國防大學發行),第24卷第6期,2009年12月,頁7。

⁸ 周敦仕,〈聯合災害防救工兵部隊運用之研析〉,《工兵半年13期》,2011年5月27日,頁9。

^{9 《}國軍經常戰備時期突發狀況處置規定》,2011年10月21日。