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ABSTRACT
The shifting function method is developed to find the exact solution for the one dimensional heat conduction with time-dependent boundary condition at one surface and general time-dependent heat transfer coefficient at the other surface. The proposed method is shown to be simple and accurate via the example with constant initial temperature. A general form of time-dependent temperature boundary condition is used to simulate the variable heat flux. To overcome numerical divergence, the obtained exact solution has been informed. The convergence rate of the present analysis is very fast.
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一維具時間相依混合型邊界條件且具時間相依熱對流係數之熱傳問題具有工程應用，本文利用轉移函數法求得其解析解。文中舉具常數起始溫度之平板熱傳為例，由數值結果顯示本法簡單且具快速收斂性。此外，本文推導的公式解，只有一小項可能須藉由數值積分求解，其餘，大部份必歐數型式，皆可導得明確解析型式。
關鍵詞:熱傳導, 時間相依邊界條件, 時間相依熱對流係數, 轉移函數法
1. Introduction 
Due to many engineering applications, much work has been performed in predicting the heat transfer with variable heat conduction coefficient and/or heat transfer coefficient. The problem of heat conduction with mixed type boundary condition and time-dependent heat transfer coefficient is considered of great importance in engineering practice, but it can not be solved by the analytic methods, such as: separation of variable, integral transform method, Laplace transform method, and etc, in the existing literature [1]. Therefore, the problem was studied by various approximated and numerical methods. Recently, Caffagni, Angeli, Barozzi, and Polidoro [2] enforced the classical Green’s and Duhamel’s integral formulas to obtain the solution of one dimensional heat conduction in a slab under general time-dependent boundary conditions of the first kind. To increase the convergence of series, they utilized two alternative numerical approximation methods. 

Moreover, different approximation methods such as the iterative perturbation method, the eigenfunction expansion method and the Lie point symmetry analysis were also used to study the kind of problems. 
Because the complexity and difficulty of the solution, the study on the heat conduction with mixed type time-dependent boundary condition and time-dependent heat transfer coefficient is unsatisfactory in the existing literature. So far, most of the studies are restricted in the problems with Biot functions in a rational combination of sines, cosines, polynomials and exponentials. In addition, the way to obtain the approximated solution is always crumbly and tedious [3-4]. A simple and accurate analytic form solution for wide class of one dimensional heat conduction with zero heat flux at one face and the third boundary condition with general time-dependent heat transfer coefficient at the other face had been proposed by Lee and his colleague [5] and Tu [6]. Their solution methods are an extension of the shifting function method developed by Lee and Lin [7]. By setting the Biot function in a new form and introducing a particularly chosen shifting function, the system is transformed into a partial differential equation with homogenous boundary conditions. Consequently, it can be solved by a series expansion and the orthoganal property of eigenfunctions.
In this paper, the same solution method of [5-6] is utilized to develop the analytic closed form solution for the heat transfer of a slab with variable heat flux at one boundary and the third boundary condition with time-dependent heat transfer coefficient at the other boundary for the first time. 

2. Mathematical Modeling

Consider the heat conduction in a slab with mixed type boundary condition at two faces as shown in Figure 1. For times 
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The boundary conditions are 
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and the initial condition is 
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Here, 
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is the temperature, 
[image: image16.wmf]0

T

 is the initial temperature, 
[image: image17.wmf]T

is a time-dependent heat flux function, 
[image: image18.wmf]a

is the thermal diffusivity, 
[image: image19.wmf]k

is the thermal conductivity, 
[image: image20.wmf])

(

t

h

 is the time-dependent heat transfer coefficient, 
[image: image21.wmf]t

 is the time and 
[image: image22.wmf]L

is the thickness of the slab. In terms of the following dimensionless quantities:


[image: image23.wmf]L

x

X

=

,  
[image: image24.wmf]r

T

T

=

q

,  
[image: image25.wmf]2

L

t

a

t

=

, 
[image: image26.wmf]k

L

t

h

Bi

)

(

)

(

=

t

,  
[image: image27.wmf]r

T

L

t

T

)

(

)

(

=

t

y

, 
[image: image28.wmf]r

T

T

0

0

=

q

,


  (5)

where 
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The boundary conditions are 
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and the initial condition is 
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To simplify the analysis and increase the accuracy, one sets the Biot function be a constant 
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where
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It is obvious that 
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3. The Shifting Function Method

3.1 Change of variable

To find the solution for the partial differential equation with two different time-dependent conditions at two sides, one extends the shifting function method developed by Lee and Lin [7] by taking
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where
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Here 
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Substituting equations (14) into equations (6, 7, 13, 9), one has the following partial differential equation
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together with the boundary conditions and initial condition
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3.2 Shifting Functions

To simplify the problem, one specifies two particular shifting functions 
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and the following boundary conditions 
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Therefore, the shifting functions 
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Substitution the functions 
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Setting 
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Rearranging  
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With equations (23, 26), the function variables in governing differential equation (16) is reduced from two to one and expressed in terms of the function variables 
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The associated boundary conditions of transformed function 
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3.3 Series Expansion

To find the solution for the partial differential equation (27) with boundary conditions (28-29) and initial condition (30), one uses the method of series expansion with try functions 
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satisfying the boundary conditions (28-29). Here the characteristic values 
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The inner products of the try functions are 
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where  
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Using the expansion theorem we can assume a solution of equation (27) in the form
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where 
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To uncouple the above equation, we multiply both sides of the equation by 
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where 
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and 
[image: image101.wmf]n

n

n

g

b

b

,

,

1

 are computed as follows : 


[image: image102.wmf],

2

2

sin

)

1

(

1

n

n

n

n

n

n

N

l

l

b

f

b

=

=



          (39)


[image: image103.wmf],

sin

)

(

1

0

1

n

n

n

n

n

n

N

N

dX

X

l

l

f

b

=

=

ò


          (40)


[image: image104.wmf]2

1

0

1

cos

sin

)

(

n

n

n

n

n

n

n

n

N

N

XdX

X

l

l

l

l

f

g

-

+

=

=

ò

.










                                (41)

The associated initial condition is 
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As a result, the solution for 
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where 
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and 
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After substituting the transformed function 
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When we set 
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The solution is exactly the same as that obtained in Tu [6].

3.4 Verification and Example
To illustrate the previous analysis and the accuracy the one term approximation solution, one examines the following case. The problem of heat conduction with the types of time-dependent boundary and Biot functions considered has never been studied before.

Consider the heat conduction in a slab with initial constant temperature 
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According to equations (10-12, 15), we obtain
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The time-dependent boundary condition 
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hence, differentiating 
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Consequently, the temperature distribution in the slab is 
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Where the 
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In this example, 
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where 
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The associated 
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When the Biot function is 
[image: image144.wmf]t

t

-

-

=

e

Bi

2

.

1

)

(

, i.e., 
[image: image145.wmf]2

.

1

=

a

, 
[image: image146.wmf]1

=

b

, 
[image: image147.wmf]1

=

s

, and we set 
[image: image148.wmf]1

=

r

T

, 
[image: image149.wmf]0

)

(

=

t

y

, and 
[image: image150.wmf]664

.

0

0

-

=

q

, the case is the one discussed by Ivanov and Salomatov [3], and Chen, Sun, Huang, and Lee [4], who calculated the heating of an infinite plate. It shows the results are very consistent. Due to the fact that for large values of 
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Consider the Biot function is 
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. Figure 2 depicts the temperature variation along the slab at different times 
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Figures 5 and 6 depict the effect of the parameters 
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 parameter. Finally, all the temperatures will reach to the same limiting values.
4. Conclusions

In this paper, the shifting function method is employed to develop the exact analytic solution for the heat conduction of a slab with time variable heat flux boundary condition and general time-dependent heat transfer coefficient at both surfaces. It is shown that the solution is simply accurate and fast convergence rate via numerical example. Numerical results are shown to be consistent with those in the existing literature. 
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Figure 1: One-dimensional heat transfer system of a   slab with different time-dependent conditions.
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Figure 2: Temperature variation along the slab at 
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Figure 3: Temperature variation of the slab at 
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Figure 4: Temperature variation of the slab with respect to 
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Figure 5: Temperature variation along the slab at 
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Figure 6: Temperature variation of the slab at 
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