航空技術學院學報 第十三卷 第一期（民國一○三年）
 航空技術學院學報 第十三卷 第一期 第57－66頁（民國一○三年）

Journal of Air Force Institute of Technology, Vol. 13, No. 1, pp. 57-66, 2014

公開密碼系統快速模指數演算法設計應用與複雜度數論分析研究
Fast Modular Exponentiation and Number Theoretical Complexity Information Analyses for Public-Key Cryptosystems
吳嘉龍
Chia-Long Wu
空軍航空技術學院一般學科部航空通訊電子系上校教授兼任資圖中心主任

Director of Library Center, Professor of Aeronautic Communication Electronics Department, Air Force Institute of Technology

摘要

　　資訊安全研究專家認為公鑰密碼體制的安全性是建立在計算上不可能的資訊安全角度的特性，但是依靠這種計算不能推導出密鑰，公開金鑰的特點的基礎上，本論文將探討研究這個資訊保密應用快速模運算算法設計以及數論複雜性分析。接收與密鑰交換系統的用戶在現代密碼體制加密消息必須生成一對加密和解密密鑰。在本文中，我們將研究和分析，探討有效的二進制法，最小二乘法，並簽署位重新編碼算法，高效的模塊化與二元演算運算。我們數論研究分析和設計有效的方法的技術以進一步減少冗餘計算乘法量。找出這些演算法之優缺點，以期更有效加以改進現存的快速演算法或者設計出更快速有效的模指數演算法。
關鍵字：資訊安全、演算法複雜度、模運算、公開金鑰密碼系統、數論分析。
Abstract

　　Information security research experts assume that the security of public key cryptosystem is built on the property of computation infeasible for information security point of view, however, is to rely on this calculation can not be deduced on the basis of secret key, public key the characteristics of the system make this password confidential papers will be explored and studied for fast modular arithmetic algorithm design and complexity analysis. To receive encrypted messages in modern cryptosystem with the key exchange system users have to generate a pair of encryption and decryption keys. In this paper, we will study and analysis to explore efficient binary method, square method and signed-digit recoding algorithm for efficient modular arithmetic. In order to further improve the existing modular algorithm, we research the technique of number theory and design effective method to further reduce the redundant computation, hence the amount of multiplication.
Keywords: Computer security、complexity analyses、modular arithmetic、public-key cryptosystem、number theory
Introduction

To compute modular exponentiation
[image: image1.wmf]mod,

E

CMN

º

 where C, M, E, and N are ciphertext, plaintext, public key, and modulus respectively is very time-consuming because the bit-length of E is usually up to 1024 bits. Efficient algorithms that can speed up software implementation of modular exponentiation are often considered as practical significance for practical cryptographic applications such as the RSA [1] and the ElGamal [2] cryptosystems.

In order to accelerate modular exponentiation
[image: image2.wmf]mod,

E

CMN

º

 where
[image: image3.wmf]å

=

´

=

k

i

i

i

e

E

1

2

 and
[image: image4.wmf]{

}

1

,

0

Î

i

e

, is very useful for public-key cryptosystems. There are several well-known algorithms for speeding up the exponentiations and the multiplications such as binary exponentiation method (the square-and-multiply method) [3], signed-digit recoding method [4-11], folding-in-half method [12-13], Montgomery reduction method [14-15], look-up table (LUT), common-multiplicand multiplication (CMM) method [16-19], and multi-exponentiation method [20-21], and so on.

The number of 1’s in the binary representation plays an important role for the computational efficiency. An efficient method for speeding up modular exponentiation by using binary exponentiation method, complement recoding method, and signed-digit recoding method is proposed in this paper. We can efficiently speed up the overall performance of modular exponentiation. The rest of this paper is organized as follows. Some related methods are introduced in Section 2. In Section 3, the proposed algorithm for fast modular exponentiation is described. Then, the computational complexity based on number theory of the proposed algorithm is analyzed in Section 4. Finally, we conclude this work and future works in Section 5.
Number Theoretical Preliminaries
The binary method [3] also called square-and-multiply method is a generally method for exponentiation. It can convert the modular exponentiation of
[image: image5.wmf]N

M

C

E

mod

º

 [23] into a sequence of modular multiplications. Let the exponent E have the binary representation
[image: image6.wmf]å

=

´

=

k

i

i

i

e

E

1

2

, where
[image: image7.wmf]{

}

1

,

0

Î

i

e

and k is the bit- length of the exponent E. It can be divided into two kinds of methods. One is the right to left binary exponentiation method; the other is the left to right binary exponentiation method. The right to left binary exponentiation method scans the exponent E from the least significant bit (LSB) toward the most significant bit (MSB). It performs one multiplication operation and one square operation when the exponent bit ei is 1 and performs one square operation when the exponent bit ei is 0. It will be shown as Algorithm 1.

Algorithm 1: R-L Binary Algorithm (The right to left binary exponentiation algorithm)

Input: Message: M;

Exponent: E = (ekek-1…e2e1)2;

Output: Ciphertext: C = ME;

begin

C = 1;

S = M;

for i = 1 to k do /*scan from right to left */

{ if (ei = 1) then C = C
[image: image8.wmf]´

S; /*multiply*/

S = S
[image: image9.wmf]´

S;} /*square*/

endfor

end.

The left to right binary exponentiation method scans the exponent E from the most significant bit (MSB) toward the least significant bit (LSB). It performs one multiplication operation when the exponent bit ei is 1 and performs one square operation when the exponent bit ei is 0. It will be shown as Algorithm 2.

Algorithm 2: L-R Binary Algorithm (The left to right binary exponentiation algorithm)

Input: Message: M;

Exponent: E = (ekek-1…e2e1)2;

Output: Ciphertext: C = ME;

begin

C = 1;

S = M;
for i = k to 1 do /*scan from left to right */

{C = C
[image: image10.wmf]´

C; /*square*/

if (ei = 1) then C = C
[image: image11.wmf]´

S;} /*multiply*/

endfor

end.

 The computational complexity of both algorithms expresses as follows. On an average, we assume the occurrence probabilities for both bit “1” and bit “0” are the same i.e. {S
[image: image12.wmf]´

S} and {S
[image: image13.wmf]´

S, C
[image: image14.wmf]´

S} with the same probability. Then, the expectation value for bits “1” and “0” is the same “
[image: image15.wmf]2

k

”, where k is the bit-length of the exponent E. Therefore, the computational complexity for both algorithms is 1
[image: image16.wmf]´

(
[image: image17.wmf]2

k

) + 2
[image: image18.wmf]´

(
[image: image19.wmf]2

k

) = 1.5k multiplications.
The Complement Recoding Method
To compute the modular exponentiation of
[image: image20.wmf]N

M

C

E

mod

º

, we express the exponent E as a binary representation
[image: image21.wmf]121

...

kk

eeee

-

. Performing complements is advantageous in the speed up of exponential computations [24-26]. The equation and example will be shown as Equation 1 and Example 1.

[image: image22.wmf]å

=

´

=

k

i

i

i

e

E

1

2

= (ekek-1…e2e1)2
[image: image23.wmf]1

)

0

...

10

(

bits

)

1

(

-

-

=

+

E

k

, (1)

where
[image: image24.wmf]11

...

kk

Eeee

-

=

and
[image: image25.wmf]i

e

= 0 if
[image: image26.wmf]i

e

 = 1;
[image: image27.wmf]i

e

= 1 if
[image: image28.wmf]i

e

= 0, for i = 1, 2, …, k.

Example 1:

Let E=249, evaluate the 1’s complement of E.

Sol. Because
[image: image29.wmf]10

)

249

(

=

E

,
[image: image30.wmf]2

)

11111001

(

=

E

EMBED Equation.3[image: image31.wmf]1

)

0

...

10

(

bits

)

1

8

(

-

-

=

+

E

EMBED Equation.3[image: image32.wmf]1

)

11111001

(

)

0

...

10

(

2

bits

)

1

8

(

-

-

=

+

EMBED Equation.3[image: image33.wmf].

)

00000110

(

2

=

From Example 1, we know the Hamming weight of E can be reduced clearly. Therefore, the exponential computations will be speeded up while complement recoding method is used.

The Signed-Digit Recoding Algorithm
In a signed-digit number with radix 2, three symbols {
[image: image34.wmf]1

, 0, 1} are allowed for the digit set, in which 1 and
[image: image35.wmf]1

 in bit position i represented
[image: image36.wmf]2

i

+

 and
[image: image37.wmf]2

i

-

 respectively [3]. It shows that the average Hamming weight of a k-bit canonically recorded binary number approaches
[image: image38.wmf]3

k

 as k (([4-5, 22]. We should note that a number using the digit {
[image: image39.wmf]1

, 0, 1} is not uniquely represented in binary signed-digit notation [6]. The equation and example will be shown as Algorithm 3, Example 2, and Example 3.
Algorithm 3: Signed-Digit Recoding Algorithm (The S-D Recoding Algorithm)

Input: E = (ekek-1…e2e1)2;
Output: ESD
begin

c1 = 0; rn+2=0; rn+1=0;

for i = 1 to k do

[image: image40.wmf]1

1

2

iii

i

cee

c

+

+

++

êú

=

êú

ëû

;

[image: image41.wmf]1

2

iiii

ecec

+

=+-

endfor

return ESD
end.

Example 2:

Assume A = 3038, compute A by using the signed-digit recoding method to obtain B.

Sol.

We get A = (3038)10 = (0101111011110)2, then we can obtain (10
[image: image42.wmf]1

0000
[image: image43.wmf]1

000
[image: image44.wmf]1

0)SD = B by using Algorithm 3.

Example 3:

Assume C = (28606)10, we compute the number C by using the signed-digit recoding method to obtain D.

Sol.

We get C = (28606)10 =
[image: image45.wmf]2

)

111110

0110111110

(

, then we can obtain C =
[image: image46.wmf]SD

)

0

1

0000

1

00000

1

100

(

.

Note that in Example 2, the number A contains nine zero bits and the number B contains only four nonzero digits. In Example 3, the number C contains twelve nonzero bits and the number D contains only four nonzero digits. We should note that a number using the digit {
[image: image47.wmf]1

, 0, 1} is not uniquely represented in binary signed-digit notation [6].

Proposed Signed-Digit Algorithm
In Section 2, we describe the binary exponentiation method, complement recoding method, and signed-digit recoding method respectively. We combine these methods to accelerate the exponentiation and the proposed method is described as Algorithm 4.

Algorithm 4: Signed-Digit Recoding Binary Algorithm (The S-D Binary Algorithm)

Input: Message: M;

Exponent: E = (ekek-1…e2e1)2;

Output: Ciphertext: C = ME;

begin

C = 1;

S = M;

for i = 1 to k do /*scan from right to left */

{if
[image: image48.wmf])

1

(

=

i

e

then
[image: image49.wmf];

mod

)

(

N

C

S

C

´

º

 /*multiply*/

if
[image: image50.wmf])

1

(

=

i

e

then
[image: image51.wmf];

mod

)

(

1

N

C

S

C

´

º

-

[image: image52.wmf].

mod

)

(

N

S

S

S

´

º

 /*square*/

end.

Algorithm 5: Proposed Signed-Digit Recoding Binary Algorithm (The proposed S-D Binary Algorithm)

Input: Message: M;

Exponent: E = (ekek-1…e2e1)2;
Modulus: N;

Output: Cipher-text:
[image: image53.wmf]N

M

C

E

mod

º

begin

Count the Hamming weight of E, denote as Ham(E).

if Ham(E)>
[image: image54.wmf]2

k

Perform the complement recoding of E is
[image: image55.wmf]E

.

Perform the signed-digit recoding of
[image: image56.wmf]E

is
[image: image57.wmf]SD

E

.

C = 1;

S =
[image: image58.wmf]1

-

M

;

for i=1 to k do

{if
[image: image59.wmf])

1

(

=

i

e

then
[image: image60.wmf];

mod

)

(

N

C

S

C

´

º

if
[image: image61.wmf])

1

(

=

i

e

then
[image: image62.wmf];

mod

)

(

1

N

C

S

C

´

º

-

[image: image63.wmf]()mod;}

SSSN

º´

else

Perform the signed-digit of
[image: image64.wmf]E

is
[image: image65.wmf]SD

E

.

Call Signed-Digit Binary algorithm (M, E, N): C;

Output C;

end.

In the following, we will illustrate how the proposed algorithm works in Example 4 and Example 5.
Example 4:

Assume E=
[image: image66.wmf]2

)

1111100001

(

 and we evaluate
[image: image67.wmf]N

M

C

E

mod

º

 by using Algorithm 5.

Sol.

We know the bit-length of E is 10. Since the Ham(E)>
[image: image68.wmf]2

10

, we consider 1’s complement recoding of E as
[image: image69.wmf]2

)

0000011110

(

=

E

 and the signed-digit recoding of
[image: image70.wmf]E

 as
[image: image71.wmf]SD

SD

)

0

1

00001000

(

=

E

. Then we have the result of exponentiation as Equation (2).

[image: image72.wmf]N

M

N

M

C

E

mod

mod

2

)

1111100001

(

º

º

[image: image73.wmf](101)bits

11bits

(100000000000)1

(100000000000)00000111101

modmod

E

MNMN

+

--

--

ºº

EMBED Equation.3[image: image74.wmf](101)bitsSD

11bits

(100000000000)1

(100000000000)00001000101

modmod

E

MNMN

+

--

--

ºº

EMBED Equation.3[image: image75.wmf]11bits

(100000000000)

100001000101

(*()*)mod

MMMN

--

º

 (2)

In Example 4, the number E contains six nonzero bits and the number
[image: image76.wmf]E

 contains four nonzero bits, but
[image: image77.wmf]SD

E

 only contains two nonzero digits by using signed-digit recoding method. So, the Hamming weight of
[image: image78.wmf]E

can be reduced, we can speed up the modular exponentiation. Then, the
[image: image79.wmf]1

-

M

can be pre-computed by using Euclidean algorithm or Euler theory [3].

Example 5:

Assume E=
[image: image80.wmf]2

)

0111110000

(

 and we evaluate
[image: image81.wmf]N

M

C

E

mod

º

 by using Algorithm 5.

Sol.

We know the bit-length of E=10. Since the Ham(E)
[image: image82.wmf]£

EMBED Equation.3[image: image83.wmf]2

10

, the signed-digit recoding of E is
[image: image84.wmf]SDSD

(1000010000)

E

=

. We have the result of exponentiation as Equation (3).
[image: image85.wmf]N

M

N

M

C

E

mod

mod

2

)

0111110000

(

º

º

EMBED Equation.DSMT4[image: image86.wmf]SDSD

(1000010000)

modmod

E

MNMN

ºº

. (3)

In Example 5, the number E contains five nonzero bits and
[image: image87.wmf]SD

E

 only contains two nonzero digits by using signed-digit recoding method. Therefore, the Hamming weight of E can be reduced. From Example 4 and Example 5, by combining complement recoding method and signed-digit recoding method, the Hamming weight of the exponent can be reduced. Therefore, the proposed algorithm can speed up the modular exponentiation.

Numerical Complexity Analyses
In this section, we will describe the computational complexity of the proposed algorithm. We assume there are k bits in exponent E. There are two cases:

Case 1: Ham(E)>
[image: image88.wmf]2

k

 and Case 2: Ham(E)
[image: image89.wmf]2

k

£

.

The computational complexity of
[image: image90.wmf]N

M

C

E

mod

º

= (the computational complexity of Step 1)+ (
[image: image91.wmf]´

2

1

the computational complexity of Step 2) + (
[image: image92.wmf]´

2

1

the computational complexity of Step 3).

The second and the third items “
[image: image93.wmf]2

1

” in the above equation mean the probabilities of Ham(E)>
[image: image94.wmf]2

k

 and Ham(E)
[image: image95.wmf]2

k

£

.

Now we describe the computational complexity of Step 1, Step 2(Case 1) and Step 3 (Case 2) respectively. First, we define
[image: image96.wmf]SD

E

 a binary signed-digit representation for
[image: image97.wmf]E

 and
[image: image98.wmf]SD

E

 a binary signed-digit representation for
[image: image99.wmf]E

 respectively. Then, the computational complexity using number theory is counted on the number of k-bit multiplication.

Step 1: scan E from LSB to MSB

We scan E from the least significant bit (LSB) toward the most significant bit (MSB) to sum them up and check if Ham(E)>
[image: image100.wmf]2

k

. The computational complexity of this step is much less than that of multiplication.

Step 2: Ham(E)>
[image: image101.wmf]2

k

We consider 1’s complement of E as
[image: image102.wmf]E

, i.e. Ham
[image: image103.wmf]2

)

(

k

E

<

. We can replace
[image: image104.wmf]N

M

C

E

mod

º

 by
[image: image105.wmf](1)bits(1)bitsSD

(10...0)1(10...0)1

modmod.

kk

EE

CMNMN

++

ºº

 On an average, the Hamming weight of
[image: image106.wmf]SD

E

is
[image: image107.wmf]6

3

1

2

k

k

=

´

, where “
[image: image108.wmf]3

1

” is non-zero digit probability for
[image: image109.wmf]SD

E

 by using signed-digit recoding method.

[image: image110.wmf]N

M

N

M

C

E

mod

mod

2

)

1111100001

(

º

º

[image: image111.wmf](1)bits

11bits

(100)1

(100000000000)00000111101

modmod

k

E

MNMN

+

--

--

ºº

K

[image: image112.wmf](1)bitsSD

11bits

(100)1

(100000000000)00001000101

modmod

k

E

MNMN

+

--

--

ºº

K

EMBED Equation.3[image: image113.wmf]11bits

(100000000000)

100001000101

(())mod

MMMN

--

º´´

, (4)

where k is the bit-length of the exponent and E=(1111100001)2.
In this case, the Hamming weight of
[image: image114.wmf]SD

E

is also
[image: image115.wmf]6

k

 while Case 1 is executed. So, we have to compute {
[image: image116.wmf]S

S

C

S

´

´

,

} or {
[image: image117.wmf]S

S

C

S

´

´

-

,

1

} for
[image: image118.wmf]6

k

 times and
[image: image119.wmf]}

{

S

S

´

 for
[image: image120.wmf]k

6

5

times in Algorithm 4. The computational complexity of Case 1 is
[image: image121.wmf]2

6

7

2

6

5

1

6

2

+

=

+

´

+

´

k

k

k

 multiplications. The
[image: image122.wmf]1

-

M

can be pre-computed by using Euclidean algorithm or Euler theory. Since E is always k bits, we can also compute
[image: image123.wmf]bits

)

1

(

)

0

10

(

+

k

M

K

 in previous works.

Step 3: Ham(E)
[image: image124.wmf]2

k

£

In this case, the exponent E can be replaced with
[image: image125.wmf]SD

E

, i.e.,
[image: image126.wmf]N

M

C

E

mod

º

can be replaced by
[image: image127.wmf]SD

mod

E

CMN

º

. On an average, the Hamming weight of
[image: image128.wmf]SD

E

 is Ham
[image: image129.wmf]SD

E

EMBED Equation.3[image: image130.wmf]6

3

1

2

k

k

=

´

=

, where “
[image: image131.wmf]3

1

” is non-zero digit probability of binary signed-digit recoding for
[image: image132.wmf]SD

E

. For example,

[image: image133.wmf]N

M

N

M

C

E

mod

mod

2

)

0111110000

(

º

º

EMBED Equation.3[image: image134.wmf]N

M

N

M

E

mod

mod

SD

SD

)

0000

1

10000

(

=

º

,

where E=(0111110000)2. The Hamming weight of
[image: image135.wmf]SD

E

is also
[image: image136.wmf]6

k

 while Case 2 is executed. So, we have to compute {
[image: image137.wmf]S

S

C

S

´

´

,

} or {
[image: image138.wmf]S

S

C

S

´

´

-

,

1

} for
[image: image139.wmf]6

k

 times and
[image: image140.wmf]}

{

S

S

´

 for
[image: image141.wmf]6

5

k

times. The computational complexity of Case2 is
[image: image142.wmf]k

k

k

6

7

6

5

1

6

2

=

´

+

´

 multiplications.

From the above Step 1, Step2 (Case 1), and Step3 (Case 2) depicted in the proposed method, we can therefore get the overall computational complexity of modular exponentiation
[image: image143.wmf]N

M

C

E

mod

º

is
[image: image144.wmf]2

6

7

6

7

2

1

)

2

6

7

(

2

1

1

+

=

´

+

+

´

+

k

k

k

 multiplications.

Moreover, if we use common-multiplicand multiplication technique to compute
[image: image145.wmf]}

{

C

S

´

,
[image: image146.wmf]}

{

S

S

´

 and
[image: image147.wmf]}

{

1

C

S

´

-

, the computational complexity of modular exponentiation can be further reduced to
[image: image148.wmf]2

12

13

)

6

5

1

6

2

3

(

2

1

)

2

6

5

1

6

2

3

(

2

1

1

+

=

´

+

´

´

+

+

´

+

´

´

+

k

k

k

k

k

 multiplications, since common-multiplicand multiplication method takes
[image: image149.wmf]2

3

 multiplications in each iteration on average.

Conclusions and Future Works
In this paper, we have proposed a new method to fast evaluate modular exponentiation, which combines the binary method, complement recoding method, and signed-digit recoding method. The computational complexity of the proposed method is
[image: image150.wmf]k

k

167

.

1

2

6

7

»

+

 multiplications that are faster than
[image: image151.wmf]k

k

375

.

1

8

11

=

 in Lou-Chang’s method [12],
[image: image152.wmf]k

k

3

.

1

10

13

=

 in Yen’s method [17] and
[image: image153.wmf]k

k

25

.

1

2

4

5

»

+

 in Chang-Kuo-Lin’s method [24]. Let k=1024 bits, it costs 1282 multiplications for Chang-Kuo-Lin’s method but only 1197 multiplications are required for our proposed method. Let common-multiplicand multiplication method be used to compute the exponentiation. The computational complexity of the proposed method can be effectively reduced to
[image: image154.wmf]k

k

083

.

1

2

12

13

»

+

 multiplications that are faster than
[image: image155.wmf]k

k

125

.

1

2

8

9

»

+

 in Chang-Kuo-Lin’s method. Let k=1024 bits, it costs 1154 multiplications for Chang-Kuo-Lin’s method but only 1112 multiplications are required for our proposed method. Comparing our proposed algorithm with other various methods, it’s clear that our proposed method can efficiently speed up the overall performance of the modular exponentiation [25-30].

References
[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public key cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp. 120-126, Feb. 1978.
[2] T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete logarithms,” IEEE Transactions on Information Theory, vol. 31, no. 4, pp. 469-472, July 1985.
[3] D. E. Knuth, The Art of Computer Programming. Volume 2: Seminumerical Algorithms, 3rd Edition, MA: Addison-Wesley, 1997.
[4] W. C. Yang, D. J. Guan, and C. S. Laih, “Algorithm of asynchronous binary signed-digit recording on fast multi-exponentiation,” Applied Mathematics and Computation, vol. 167, no. 1, pp. 108-117, Aug. 2005.
[5] C. K. Koc and S. Johnson, “Multiplication of signed-digit numbers,” Electronics Letters, vol. 30, no.11, pp. 840-841, May 1994.
[6]
A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE Transactions on Electronic Computers, vol. 10, pp. 389-400, Sept. 1961.
[7]
S. Arno and F. S. Wheeler, “Signed digit representations of minimal Hamming weight,” IEEE Transactions on Computers, vol. 42, no. 8, pp. 1007-1010, Aug. 1993.
[8]
M. Syuto, E. Satake, K. Tanno, and O. Ishizuka, “A high-speed binary to residue converter using a signed-digit number representation,” IEICE Transaction on Information and Systems, vol. E85-D, no. 5, pp. 903-905, May 2002.
[9]
C. Heuberger and H. Prodinger, “Carry propagation in signed digit representations,” European Journal of Combinatorics, vol. 24, no. 3, pp. 293-320, April 2003.
[10]
M. Joye and S.-M. Yen, “Optimal left-to-right binary signed-digit recoding,” IEEE Transactions on Computers, vol. 49, no. 7, pp. 740-748, July 2000.
[11]
I. Koren, Computer Arithmetic Algorithms, 2nd Edition, MA: A. K. Peters, 2002.
[12]
D.-C. Lou and C.-C. Chang, “Fast exponentiation method obtained by folding the exponent in half,” Electronics Letters, vol. 32, no. 11. pp. 984-985, May 1996.
[13]
D.-C. Lou, C.-L. Wu, and C. Y. Chen, “Fast exponentiation by folding the signed-digit exponent in half,” International Journal of Computer Mathematics, vol. 80, no. 10, pp. 1251-1259, Oct. 2003.
[14]
P. L. Montgomery, “Modular multiplication without trial division,” Mathematics of Computation, vol. 44, no. 170, pp. 519-521, April 1985.
[15]
A. F. Tenca and C. K. Koc, “A scalable architecture for modular multiplication based on Montgomery's algorithm,” IEEE Transactions on Computers, vol. 52, no. 9, pp. 1215-1221, Sept. 2003.
[16]
S.-M. Yen and C.-S Laih, “Common-multiplicand-multiplication and its applications to public key cryptography,” Electronics Letters, vol. 29, no. 17, pp. 1583-1584, Aug. 1993.
[17]
S.-M. Yen, “Improved common- multiplicand-multiplication and fast exponentiation by exponent decomposition,” IEICE Transaction on Fundamentals, vol. E80-A, no. 6, pp. 1160-1163, Jun. 1997.
[18]
T. C. Wu and Y. S. Chang, “Improved generalization common -multiplicand-multiplications algorithm of Yen and Laih,” Electronics Letters, vol. 31, no. 20, pp. 1738-1739, Sept. 1995.
[19]
J. C. Ha and S. J. Moon, “A common-multiplicand method to the Montgomery algorithm for speeding up exponentiation,” Information Processing Letters, vol. 66, no. 2, pp. 105-107, 1998.
[20]
V. S. Dimitrov, G. A. Jullien, and W. C. Miller, “Complexity and fast algorithms for multi-exponentiations,” IEEE Transactions on Computers, vol. 49, no. 2, pp. 141-147, 2000.
[21]
C.-C. Chang and D.-C. Lou, “Parallel computation of multi-exponentiation for cryptosystems,” International Journal of Computer Mathematics, vol. 63, no. 1-2, pp. 9-26, Jan. 1997.
[22]
C.-L. Wu, D.-C. Lou, J.-C. Lai, and T.-J. Chang, “Fast modular multi-exponentiation using modified complex arithmetic,” Applied Mathematics and Computation, vol. 186, no. 2, pp. 1065-1074, March 2007.
[23]
W. Stallings, Cryptography and Network Security Principles and Practice 3rd Edition, NY: Prentice-Hall, 2002.
[24]
C.-C. Chang, Y.-T. Kuo, and C.-H. Lin, “Fast algorithms for common multiplicand multiplication and exponentiation by performing complements,” Proceeding of 17th International Conference on Advanced Information Networking and Applications, pp. 807-811, March 2003.
[25]
C.-L. Wu, “Complexity analyses and design for cryptographic modular algorithm,” 2011 Symposium on Communication Information Technology on Management and Application, A2: Communication Theory, pp. 1-6, 2011.
[26]
C.-L. Wu, “Fast Montgomery binary algorithm for information security,” 2011 International Symposium on NCWIA, D6: Information Systems and Innovative Computing, pp. 1-5, 2011.
[27]
C.-L. Wu, “Modular exponentiation arithmetic and number theory for modern cryptographic security applications,” 8th Conference of Crisis Management, pp. 169-176, 2010.
[28]C.-L. Wu, “High performance of modular arithmetic and theoretical complexity analyses,” Proceedings of the 7th Pacific Symposium on Flow Visualization and Image Processing (PSFVIP-7), pp. 18-35, 2009.
[29]
C.-L. Wu, “Information security and fast algorithm for RSA,” National Symposium on Telecommunications (NST2013), Tainan, Taiwan, Nov. 15-16, 2013, pp. 1-6.
[30]
C.-L. Wu, “Reduced modular arithmetic and analyses for modern public-key cryptographic systems and network security applications,” International Journal of Crisis Management, vol. 2, no. 2, pp. 1-6, Feb., 2014.
58
57

_1448863944.unknown

_1448863979.unknown

_1448863997.unknown

_1448864014.unknown

_1448864023.unknown

_1448864032.unknown

_1448864037.unknown

_1448864039.unknown

_1448864041.unknown

_1448864044.unknown

_1448864045.unknown

_1448864042.unknown

_1448864040.unknown

_1448864038.unknown

_1448864034.unknown

_1448864036.unknown

_1448864033.unknown

_1448864028.unknown

_1448864030.unknown

_1448864031.unknown

_1448864029.unknown

_1448864025.unknown

_1448864026.unknown

_1448864024.unknown

_1448864019.unknown

_1448864021.unknown

_1448864022.unknown

_1448864020.unknown

_1448864016.unknown

_1448864018.unknown

_1448864015.unknown

_1448864005.unknown

_1448864010.unknown

_1448864012.unknown

_1448864013.unknown

_1448864011.unknown

_1448864008.unknown

_1448864009.unknown

_1448864007.unknown

_1448864001.unknown

_1448864003.unknown

_1448864004.unknown

_1448864002.unknown

_1448863999.unknown

_1448864000.unknown

_1448863998.unknown

_1448863988.unknown

_1448863992.unknown

_1448863994.unknown

_1448863996.unknown

_1448863993.unknown

_1448863990.unknown

_1448863991.unknown

_1448863989.unknown

_1448863983.unknown

_1448863985.unknown

_1448863987.unknown

_1448863984.unknown

_1448863981.unknown

_1448863982.unknown

_1448863980.unknown

_1448863961.unknown

_1448863970.unknown

_1448863974.unknown

_1448863977.unknown

_1448863978.unknown

_1448863976.unknown

_1448863972.unknown

_1448863973.unknown

_1448863971.unknown

_1448863966.unknown

_1448863968.unknown

_1448863969.unknown

_1448863967.unknown

_1448863963.unknown

_1448863965.unknown

_1448863962.unknown

_1448863953.unknown

_1448863957.unknown

_1448863959.unknown

_1448863960.unknown

_1448863958.unknown

_1448863955.unknown

_1448863956.unknown

_1448863954.unknown

_1448863948.unknown

_1448863950.unknown

_1448863952.unknown

_1448863949.unknown

_1448863946.unknown

_1448863947.unknown

_1448863945.unknown

_1448863909.unknown

_1448863926.unknown

_1448863935.unknown

_1448863939.unknown

_1448863942.unknown

_1448863943.unknown

_1448863940.unknown

_1448863937.unknown

_1448863938.unknown

_1448863936.unknown

_1448863930.unknown

_1448863933.unknown

_1448863934.unknown

_1448863932.unknown

_1448863928.unknown

_1448863929.unknown

_1448863927.unknown

_1448863918.unknown

_1448863922.unknown

_1448863924.unknown

_1448863925.unknown

_1448863923.unknown

_1448863920.unknown

_1448863921.unknown

_1448863919.unknown

_1448863914.unknown

_1448863916.unknown

_1448863917.unknown

_1448863915.unknown

_1448863912.unknown

_1448863913.unknown

_1448863910.unknown

_1448863892.unknown

_1448863900.unknown

_1448863905.unknown

_1448863907.unknown

_1448863908.unknown

_1448863906.unknown

_1448863902.unknown

_1448863904.unknown

_1448863901.unknown

_1448863896.unknown

_1448863898.unknown

_1448863899.unknown

_1448863897.unknown

_1448863894.unknown

_1448863895.unknown

_1448863893.unknown

_1448863883.unknown

_1448863888.unknown

_1448863890.unknown

_1448863891.unknown

_1448863889.unknown

_1448863886.unknown

_1448863887.unknown

_1448863884.unknown

_1448863879.unknown

_1448863881.unknown

_1448863882.unknown

_1448863880.unknown

_1448863877.unknown

_1448863878.unknown

_1448863876.unknown

