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摘要

　　資訊安全研究專家認為公鑰密碼體制的安全性是建立在計算上不可能的資訊安全角度的特性，但是依靠這種計算不能推導出密鑰，公開金鑰的特點的基礎上，本論文將探討研究這個資訊保密應用快速模運算算法設計以及數論複雜性分析。接收與密鑰交換系統的用戶在現代密碼體制加密消息必須生成一對加密和解密密鑰。在本文中，我們將研究和分析，探討有效的二進制法，最小二乘法，並簽署位重新編碼算法，高效的模塊化與二元演算運算。我們數論研究分析和設計有效的方法的技術以進一步減少冗餘計算乘法量。找出這些演算法之優缺點，以期更有效加以改進現存的快速演算法或者設計出更快速有效的模指數演算法。
關鍵字：資訊安全、演算法複雜度、模運算、公開金鑰密碼系統、數論分析。
Abstract

　　Information security research experts assume that the security of public key cryptosystem is built on the property of computation infeasible for information security point of view, however, is to rely on this calculation can not be deduced on the basis of secret key, public key the characteristics of the system make this password confidential papers will be explored and studied for fast modular arithmetic algorithm design and complexity analysis. To receive encrypted messages in modern cryptosystem with the key exchange system users have to generate a pair of encryption and decryption keys. In this paper, we will study and analysis to explore efficient binary method, square method and signed-digit recoding algorithm for efficient modular arithmetic. In order to further improve the existing modular algorithm, we research the technique of number theory and design effective method to further reduce the redundant computation, hence the amount of multiplication.
Keywords: Computer security、complexity analyses、modular arithmetic、public-key cryptosystem、number theory
Introduction

To compute modular exponentiation 
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 where C, M, E, and N are ciphertext, plaintext, public key, and modulus respectively is very time-consuming because the bit-length of E is usually up to 1024 bits. Efficient algorithms that can speed up software implementation of modular exponentiation are often considered as practical significance for practical cryptographic applications such as the RSA [1] and the ElGamal [2] cryptosystems. 

In order to accelerate modular exponentiation 
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, is very useful for public-key cryptosystems. There are several well-known algorithms for speeding up the exponentiations and the multiplications such as binary exponentiation method (the square-and-multiply method) [3], signed-digit recoding method [4-11], folding-in-half method [12-13], Montgomery reduction method [14-15], look-up table (LUT), common-multiplicand multiplication (CMM) method [16-19], and multi-exponentiation method [20-21], and so on.

The number of 1’s in the binary representation plays an important role for the computational efficiency. An efficient method for speeding up modular exponentiation by using binary exponentiation method, complement recoding method, and signed-digit recoding method is proposed in this paper. We can efficiently speed up the overall performance of modular exponentiation. The rest of this paper is organized as follows. Some related methods are introduced in Section 2. In Section 3, the proposed algorithm for fast modular exponentiation is described. Then, the computational complexity based on number theory of the proposed algorithm is analyzed in Section 4. Finally, we conclude this work and future works in Section 5.
Number Theoretical Preliminaries
The binary method [3] also called square-and-multiply method is a generally method for exponentiation. It can convert the modular exponentiation of 
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 [23] into a sequence of modular multiplications. Let the exponent E have the binary representation
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and k is the bit- length of the exponent E. It can be divided into two kinds of methods. One is the right to left binary exponentiation method; the other is the left to right binary exponentiation method. The right to left binary exponentiation method scans the exponent E from the least significant bit (LSB) toward the most significant bit (MSB). It performs one multiplication operation and one square operation when the exponent bit ei is 1 and performs one square operation when the exponent bit ei is 0. It will be shown as Algorithm 1.

Algorithm 1: R-L Binary Algorithm (The right to left binary exponentiation algorithm) 

Input: Message: M;

Exponent: E = (ekek-1…e2e1)2;

Output: Ciphertext: C = ME;

begin

C = 1;

S = M;

for i = 1 to k do     /*scan from right to left */

{ if (ei = 1) then C = C
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S;       /*multiply*/

S = S
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S;}                      /*square*/

endfor

end.

The left to right binary exponentiation method scans the exponent E from the most significant bit (MSB) toward the least significant bit (LSB). It performs one multiplication operation when the exponent bit ei is 1 and performs one square operation when the exponent bit ei is 0. It will be shown as Algorithm 2.

Algorithm 2: L-R Binary Algorithm (The left to right binary exponentiation algorithm)

Input: Message: M;

Exponent: E = (ekek-1…e2e1)2;

Output: Ciphertext: C = ME;

begin

C = 1;

S = M;
for i = k to 1 do     /*scan from left to right */

{C = C
[image: image10.wmf]´

C;                     /*square*/

if (ei = 1) then C = C
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S;}        /*multiply*/

endfor

end.

 The computational complexity of both algorithms expresses as follows. On an average, we assume the occurrence probabilities for both bit “1” and bit “0” are the same i.e. {S
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S} with the same probability. Then, the expectation value for bits “1” and “0” is the same “
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The Complement Recoding Method 
To compute the modular exponentiation of 
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, we express the exponent E as a binary representation
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. Performing complements is advantageous in the speed up of exponential computations [24-26]. The equation and example will be shown as Equation 1 and Example 1.
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where 
[image: image24.wmf]11

...

kk

Eeee

-

=

and 
[image: image25.wmf]i

e

= 0 if 
[image: image26.wmf]i

e

 = 1; 
[image: image27.wmf]i

e

= 1 if 
[image: image28.wmf]i

e

= 0, for i = 1, 2, …, k.

Example 1:

Let E=249, evaluate the 1’s complement of E.

Sol. Because
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From Example 1, we know the Hamming weight of E can be reduced clearly. Therefore, the exponential computations will be speeded up while complement recoding method is used. 

The Signed-Digit Recoding Algorithm
In a signed-digit number with radix 2, three symbols {
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, 0, 1} are allowed for the digit set, in which 1 and 
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 respectively [3]. It shows that the average Hamming weight of a k-bit canonically recorded binary number approaches 
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 as k ( ( [4-5, 22]. We should note that a number using the digit {
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, 0, 1} is not uniquely represented in binary signed-digit notation [6]. The equation and example will be shown as Algorithm 3, Example 2, and Example 3.
Algorithm 3: Signed-Digit Recoding Algorithm (The S-D Recoding Algorithm)

Input: E = (ekek-1…e2e1)2;
Output: ESD 
begin

c1 = 0; rn+2=0; rn+1=0;

for i = 1 to k do
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endfor

return ESD
end.

Example 2:

Assume A = 3038, compute A by using the signed-digit recoding method to obtain B.

Sol.

We get A = (3038)10 = (0101111011110)2, then we can obtain (10
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0)SD = B by using Algorithm 3.

Example 3:

Assume C = (28606)10, we compute the number C by using the signed-digit recoding method to obtain D.

Sol.

We get C = (28606)10 =
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Note that in Example 2, the number A contains nine zero bits and the number B contains only four nonzero digits. In Example 3, the number C contains twelve nonzero bits and the number D contains only four nonzero digits. We should note that a number using the digit {
[image: image47.wmf]1

, 0, 1} is not uniquely represented in binary signed-digit notation [6].

Proposed Signed-Digit Algorithm
In Section 2, we describe the binary exponentiation method, complement recoding method, and signed-digit recoding method respectively. We combine these methods to accelerate the exponentiation and the proposed method is described as Algorithm 4. 

Algorithm 4: Signed-Digit Recoding Binary Algorithm (The S-D Binary Algorithm)

Input: Message: M;

Exponent: E = (ekek-1…e2e1)2;

Output: Ciphertext: C = ME;

begin

C = 1;

S = M;

for i = 1 to k do    /*scan from right to left */

{if 
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 /*multiply*/

if 
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                /*square*/

end.

Algorithm 5: Proposed Signed-Digit Recoding Binary Algorithm (The proposed S-D Binary Algorithm)

Input: Message: M;

Exponent: E = (ekek-1…e2e1)2;
Modulus: N;

Output: Cipher-text: 
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begin

Count the Hamming weight of E, denote as Ham(E).

if Ham(E)> 
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Perform the complement recoding of E is
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Perform the signed-digit recoding of 
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C = 1;

S = 
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else

Perform the signed-digit of 
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Call Signed-Digit Binary algorithm (M, E, N): C;

Output C;

end.

In the following, we will illustrate how the proposed algorithm works in Example 4 and Example 5.
Example 4:

Assume E=
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 by using Algorithm 5.

Sol. 

We know the bit-length of E is 10. Since the Ham(E)>
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In Example 4, the number E contains six nonzero bits and the number 
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 contains four nonzero bits, but 
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 only contains two nonzero digits by using signed-digit recoding method. So, the Hamming weight of 
[image: image78.wmf]E

can be reduced, we can speed up the modular exponentiation. Then, the 
[image: image79.wmf]1

-

M

can be pre-computed by using Euclidean algorithm or Euler theory [3].

Example 5:

Assume E=
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Sol.

We know the bit-length of E=10. Since the Ham(E)
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In Example 5, the number E contains five nonzero bits and 
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 only contains two nonzero digits by using signed-digit recoding method. Therefore, the Hamming weight of E can be reduced. From Example 4 and Example 5, by combining complement recoding method and signed-digit recoding method, the Hamming weight of the exponent can be reduced. Therefore, the proposed algorithm can speed up the modular exponentiation.

Numerical Complexity Analyses
In this section, we will describe the computational complexity of the proposed algorithm. We assume there are k bits in exponent E. There are two cases:

Case 1: Ham(E)>
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Now we describe the computational complexity of Step 1, Step 2(Case 1) and Step 3 (Case 2) respectively. First, we define 
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 respectively. Then, the computational complexity using number theory is counted on the number of k-bit multiplication. 

Step 1: scan E from LSB to MSB

We scan E from the least significant bit (LSB) toward the most significant bit (MSB) to sum them up and check if Ham(E)>
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Step 2: Ham(E)>
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We consider 1’s complement of E as 
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 On an average, the Hamming weight of 
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where k is the bit-length of the exponent and E=(1111100001)2.
In this case, the Hamming weight of 
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Step 3: Ham(E)
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In this case, the exponent E can be replaced with 
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where E=(0111110000)2. The Hamming weight of 
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From the above Step 1, Step2 (Case 1), and Step3 (Case 2) depicted in the proposed method, we can therefore get the overall computational complexity of modular exponentiation 
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Moreover, if we use common-multiplicand multiplication technique to compute
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Conclusions and Future Works
In this paper, we have proposed a new method to fast evaluate modular exponentiation, which combines the binary method, complement recoding method, and signed-digit recoding method. The computational complexity of the proposed method is 
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 multiplications that are faster than 
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 in Lou-Chang’s method [12], 
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 in Yen’s method [17] and 
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 in Chang-Kuo-Lin’s method [24]. Let k=1024 bits, it costs 1282 multiplications for Chang-Kuo-Lin’s method but only 1197 multiplications are required for our proposed method. Let common-multiplicand multiplication method be used to compute the exponentiation. The computational complexity of the proposed method can be effectively reduced to 
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 multiplications that are faster than 
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 in Chang-Kuo-Lin’s method. Let k=1024 bits, it costs 1154 multiplications for Chang-Kuo-Lin’s method but only 1112 multiplications are required for our proposed method. Comparing our proposed algorithm with other various methods, it’s clear that our proposed method can efficiently speed up the overall performance of the modular exponentiation [25-30].
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