航空技術學院學報  第十二卷  第一期（民國一○二年）
航空技術學院學報  第十二卷  第一期  第211－220頁（民國一○二年）

Journal of Air Force Institute of Technology, Vol. 12, No. 1, pp. 211-220, 2013

針對現代資訊安全密碼學快速模運算演算法複雜度分析設計與探討
Efficient Modular Algorithm Design for Modern Cryptosystems and Complexity Analyses on Information Security Applications
吳嘉龍1、胡明強2
Chia-Long Wu and Ming-Chiang Hu
1空軍航空技術學院一般學科部航空通訊電子系專任教授兼任系主任

2樹人醫護管理專科學校資訊管理科專任助理教授
1Department of Aeronotic Communication Electronics, Air Force Institute of Technology
2Department of Information Management, Shu-Zen College of Medicine and Management
摘要

資訊安全學者與研究專家假設公開金鑰密碼系統的安全性是建立在幾乎無法由公開金鑰計算推導出秘密金鑰的基礎上，然而針對於資訊安全的觀點上，也就是靠這種計算不可行的特性才得以使此密碼系統保密，本論文將針對快速模運算演算法設計與複雜度分析加以探討與研究。在現代資訊安全RSA密碼系統與Diffie-Hellman金鑰交換系統中希望接收到加密訊息的使用者都必須自行產生一對加密與解密用的金鑰，我們將深入分析探討快速模演算法中之二元法模指數演算法、模平方法以及蒙哥馬利模等乘演算法技術模運算演算法，探討現在演算法中的運算複雜度，找出這些演算法之優缺點，以期進一步加以改進現存的快速演算法精簡冗餘運算量並結合數論技術以設計出更快速有效的模指數演算法。
關鍵字：運算複雜度分析、公開金鑰密碼系統、數論分析、演算法設計。
Abstract

Information security experts and researchers know that modular multiplication and reduction are the fundamental operations in the evaluation of modular exponentiation as required in many cryptosystems and authentication schemes. The motivation of studying high-speed and space-efficient algorithms for modular exponentiation comes from the applications in cryptography such as RSA and Diffie-Hellman key exchange scheme. Fast computation of the modular exponentiations and its designs are very crucial and useful for cryptography. Modular multiplication is the fundamental operation in implementing circuits for cryptosystem, as the process of encrypting and decrypting a message requires modular exponentiation which can be decomposed into multiplications. By performing complement representation and canonical recoding technique, the number of partial products can be further reduced. We can therefore efficiently speed up the overall computing performance of multiplication operation.

Keywords: Complexity mathematical analysis, public-key cryptosystem, number theory, 
modular arithmetic, algorithm design.
Introduction

Many public-key algorithms require the implementation of modular multiplication for operands of 1024 bits or more in length. Taking the RSA cryptosystem for example, the public and private keys are functions of a pair of large prime numbers [1-8]. The encryption and decryption operations are accomplished by modular exponentiation and can be described as follows. Given M (plain text), E (public key), D (private key), and N (modulus), compute ciphertext C=ME mod N for encryption and M=CD mod N for decryption. These operations are realized by multiple modular multiplications based on the value of the exponents E and D where D
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E mod ψ(N) = 1 and ψ(N) is an Euler’s totient function [1-8]. 

The rest of this paper is organized as follows. Some related modular arithmetic methods are introduced in Section 2, Section 3 and Section 4. Then, the computational complexity for modular arithmetic algorithms are analyzed in Section 5. Finally, we conclude this work and future works in Section 6.
Modular Arithmetic
Modular arithmetic (including exponentiation, squaring and multiplication) of large integers with large exponent and modulus is one of the most important operations in several well known modern cryptographic algorithms. Key agreement protocols are multi-party protocols in which entities exchange public information allowing them to create a common secret key that is known only to those entities and which cannot be predetermined by any party. Key agreement can be achieved using a public key infrastructure or identity-based cryptography [1-5]. 
The modular exponentiation can be implemented using a series of modular squaring and modular multiplication operations. Therefore, modular exponentiation can be time consuming, and is often the dominant part of modern cryptographic algorithms for key exchange, electronic signature, and authentication. The modular exponentiation is a common operation for most cryptosystems and smart card systems. The modular exponentiation is composed of repetition of modular multiplications. Most of cryptographic systems based on modular exponentiation. Modular exponentiation can be time consuming, and is often the dominant part of modern cryptographic algorithms for key exchange, electronic signature, and authentication. Generally, modular exponentiation is represented using a chain of modular multiplications. The performance of such cryptosystems is primarily determined by the implementation efficiency of the multiplication and the exponentiation [1-12].
Modular arithmetic can be time consuming, and is often the dominant part of modern cryptographic algorithms for key exchange, electronic signature, and authentication. Generally, modular exponentiation is represented using a chain of modular multiplications. The performance of such cryptosystems is primarily determined by the implementation efficiency of the multiplication and the exponentiation [1-8].
As we know, the security of modern cryptography heavily relies on our inability to effectively factor large integers. Two different approaches are often used to reduce the execution time of the modular exponentiation operation. One approach is simply to reduce the number of modular multiplication. Therefore, modular exponentiation can be time consuming, and is the dominant part of modern cryptographic algorithms for key exchange, electronic signature and authentication [1-10]. 
Modular Exponentiation 
Modular exponentiation is normally considered to be a complicated arithmetic operation because of the inherent multiplication and division operations. In a signed-digit number with radix 2, three symbols {
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 As efficient computation of the modular exponentiations is very important and useful for many cryptosystems, we need fast multiplication designs or novel exponentiation algorithms such as the Montgomery reduction method, high-radix method, look-up table (LUT) method, addition chains method, square-and-multiply method, exponent-
folding method, residue number conversion method, key size partitioning method, and signed-digit recoding method. Moreover, a detailed survey of fast exponentiation techniques has been given in [7-14].
The most commonly used algorithms for computing αr are the square-and-multiply methods [6]. The square-and-multiply methods (also called binary methods) scan the bits of exponent r either from right to left or from left to right. The right-to-left binary algorithm is based on the observation that 
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, while the left-to-right binary algorithm follows from 
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[14-23].
Algorithm 1 LSB Modular Exponentiation 
Input: 
Message: M, Modulus: N, 
Exponent: E is a m-bits integer 
Output: 
Ciphertext: C = ME (mod N)

C = 1; S = M;

begin

for i = 0 to m-1 do                        /*scan from right to left*/
begin
if (ei = 1) then C = C × S (mod N)

S = S × S (mod N);                       /*square*/
end;

end.
Different from the LSB (Least Significant Bit) modular exponentiation algorithm, the MSB (Most Significant Bit) modular exponentiation algorithm computes exponentiation starting from the most significant bit of the exponent and proceeding to the right, which is depicted as follows [10-22].
Algorithm 2 MSB Modular Exponentiation

Input: 
Message: M, 

Modulus: N, 
Exponent: E is a m-bits integer 
Output: 
Ciphertext: C = ME (mod N)
C = 1;
begin
for i = m-1 downto 0 do                   /*scan from left to right*/

begin
C = C × C (mod N);                            /*square*/
if (ei = 1) then  C = C × M (mod N); /*multiply*/
end;

end.

Note that both the LSB and MSB binary algorithms have two same states. One state is to execute the multiplication operation as the bit “1” being scanned; the other state is to execute the squaring operation whether the bit “0” or  “1” being scanned. As the LSB and MSB algorithms have the same computations for both multiplication and squaring operations; therefore, they both share the same computational complexity [13-20]. 
For the computational complexity analyses of the LSB and MSB binary algorithms, take m-bit exponent for example, for the average case, we assume the occurrence probabilities for both bits “1” and bits “0” are the same. Then, the expectation hamming weights for bits “1” and “0” are both m/2. Therefore, on average, the computational complexities of both binary exponentiation algorithms are 2×(m/2)+ 1×(m/2) = 1.5m multiplications for evaluating the modular exponentiation of ME (mod N) [5-12]. 
Modular Multiplication
Modular multiplication is the fundamental and crucial operation in implementing circuits for cryptosystem, as the process of encrypting and decrypting a message requires modular exponentiation that can be decomposed into multiplications. Now there are still many novel methods issued in many computer security journals and reports for computer arithmetic operations and theoretical analyses. In fact, we can incorporate modular arithmetic and some advanced techniques to reduce the number of multiplications or accelerate the multiplication itself respectively for modern cryptographic applications. Assume the binary representation of multiplier B is
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. Performing complements is advantageous for speeding up of multiplication computations [11-22].

Algorithm 3 Chang-Kuo-Lin Multiplication
Input: 
Multiplicand: A; 

Multipliers:
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Function: Mul_with_Com(A, B, k): M
begin 

 Count the Hamming weight of B.

if 
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Return 
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In algorithm 3 shown above, we scan B from the least significant bit toward the most significant bit to sum them up and check if Ham(E)>
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 k-bit additions. Here “A<<<8” stands for the integer which is obtained by the left-shift eight bits from the multiplicand A. Since the Hamming weight of multiplier B is larger than
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 k-bit additions. Therefore, we need two 2k-bit subtractions. Assume that both addition and subtraction have the same computational complexity [10-20].
Modular Squaring
Squaring is used to substitute for multiplication because squaring is much more efficient than multiplication. This is due to the fact that
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The squaring algorithm is demonstrated in Algorithm 4. It’s mainly used to prevent the improper carry handling bug. This algorithm does maintain accuracy in carry handling. This algorithm fixes the improper carry handling bug produced in the standard squaring algorithm [15-24].
Algorithm 4 Guajardo-Parr Squaring 
Input: Integer 
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Output: Integer 
[image: image29.wmf]2

22121

(...)

nnb

SXssss

-

==


begin

si = 0 for i = 1 to 2n
for i = 1 to n
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for j=i+1 to n
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Return
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Numerical Complexity Analyses
In 1976, Diffie and Hellman proposed the first key agreement protocol which enables two parties to establish a session key. However, the basic Diffie-Hellman protocol does not authenticate the two communicating entities and is insecure against active attacks, for example, the man-in-the-middle attack in which an adversary cheats both participants and impersonates one participant in front of the other participant. Over the years, different approaches have been developed to solve the problem by improving the security and efficiency of the protocols [15-21].
The basic modular arithmetic operations can be described as: given M, E, D, and N, compute cipher message 
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 for decryption. It is performed using successive modular multiplications. This operation is time consuming for large operands. In the modular multiplication algorithm depicted as in algorithm 3. Assume that both addition and subtraction have the same computational complexity. The overall computational complexity for the above operation is
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Computing the minimal addition chain for a given exponent is a hard problem. We used genetic algorithms to yield optimal addition chains for large exponents. The algorithm by using shortest addition chain technique gives to compute the modular exponentiation C ≡ TE mod M. We showed that the addition chains obtained using the evolutionary methodology is always very much better than those used by the traditional exponentiation methods [13-18]. 
A simple procedure to compute C ≡ TE mod M is based on the paper-and-pencil method. Evaluate an addition chain of minimal length is very difficult. It is clear that one should not compute TE then reduce the result modulo M as the space requirements to store TE is E*log2 M, which is huge. This method requires E-1 modular multiplications computing all powers of T: T →T2 ... → TE-1 →TE [10-22]. 
In fact, there are several efficient algorithms that can find a near optimal one for finding the optimal solution and efficient method to operate modular arithmetic for information security usage. The addition chain attempts to find a chain of numbers such that the first number of the chain is 1 and the last is the exponent E and each number in this chain is the sum of two previous numbers. For instance, the longest addition chain is [1, 2, 3, …, E-2, E-1, E]. An addition chain of length l for an integer n is a sequence of integers [a0, a1, a2, …, al] such that a0=1, al=n and ak=ai+aj, 0 ≤i ≤j < k ≤ l [10-22]. 

Conclusions and Future Works
Nowadays, for software or hardware fast cryptosystems, one needs to reduce total number of modular multiplications. The modular exponentiation is a common operation used by several public-key cryptosystems, such as the RSA encryption scheme as well as key-exchange scheme. Exponentiation is a basic yet important operation for public key cryptography. Modular exponentiation of long integers is required in a number of public-key cryptosystem. The operands are considerably large. Performing modular exponentiation is computationally very complexity [15-25]. 
In several public-key cryptosystems, the main operation consists of the modular exponentiation, which is performed using successive modular multiplications. By performing complement representation and canonical recoding technique, the number of partial products can be further reduced. In order to reduce the execution time in these cryptosystems, the total number of modular multiplications must be reduced. For software or hardware fast cryptosystems, one needs to reduce total number of modular multiplications for less computational complexity [15-22]. 
In this paper, we introduce some methods to reduce the execution time by lowering the number of modular in order to reduce the computational complexities for modern cryptosystems. By adopting the parallel processing technique for signed-digit recoding exponent E, we can further enhance modular exponentiation algorithm and obtain the optimal overall computational complexity by adopting minimal-signed-digit radix-2 recoding exponent E and minimal signed-digit recoding technique. Moreover, for future work, as the multiplicative inverse operation in GF(2n) finite field can be done by a simple shift operation, we can further decrease the redundant computations of overall computational complexity for modular arithmetic [20-28].
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